几种锂电池均衡电路的工作原理分享
- 格式:doc
- 大小:17.00 KB
- 文档页数:3
锂电池组均衡充电电源设计与实现一、引言随着新能源汽车、无人机、智能手机等产品的普及,锂电池已经成为了当今最常用的电池类型之一。
由于锂电池组的性能不均匀,充电和放电不均衡可能会导致电池的过充或过放,从而缩短电池的寿命甚至造成安全隐患。
为了解决这一问题,锂电池组均衡充电电源应运而生。
本文将重点介绍锂电池组均衡充电电源的设计原理和实现方法,包括设计思路、关键技术和实验结果。
1、均衡充电原理锂电池组由多个单体电池组成,每个单体电池的内阻、容量、电压等参数都会有一定的不同。
在充电过程中,由于各个单体电池的性能差异,必然会导致不同单体电池的充电状态发生差异,即产生不均衡现象。
为了确保每个单体电池都能达到最佳的充电状态,必须对电池组进行均衡充电。
均衡充电的原理就是在电池组中增加电阻、开关器件或其他辅助电路,对每个单体电池进行独立的充电或放电,以保证每个单体电池的电压、容量等参数在规定范围内,最终实现整个电池组的均衡充电。
2、设计思路在设计锂电池组均衡充电电源时,需要考虑以下几个方面:(1)均衡充电方案的选择:目前常见的均衡充电方案有被动均衡和主动均衡两种。
被动均衡是通过在每个单体电池之间串联一个电阻,通过电阻分压来实现均衡;主动均衡则是通过电子开关器件对每个单体电池进行主动充放电控制。
根据具体的应用场景和成本考虑选择合适的均衡充电方案。
(2)控制策略的设计:均衡充电过程中需要一个合理的控制策略,包括充电、放电、保护和故障处理等。
合理的控制策略可以有效地保证电池组的安全性和稳定性。
(3)硬件设计:包括电路图设计、PCB设计、原理图设计等。
硬件设计需要考虑均衡充电电源的工作环境、工作温度、充电电流、输出电压等参数。
1、被动均衡充电电源设计被动均衡充电电源是利用电阻进行均衡控制的一种方案,其设计原理比较简单,成本较低,但效率较低。
其主要特点是在充电电源输出端串联一个电阻矩阵,通过电阻分压来控制每个单体电池的充电状态,从而实现均衡。
bq40z50均衡原理
BQ40Z50是一种用于锂电池管理系统的集成电路芯片。
其均衡原理是通过控制每个单体电池的充放电,使得电池组中各个单体电池之间的电压差保持在一个可接受的范围内,以确保电池组的整体性能和稳定性。
基本原理如下:
1. 监测电池电压:BQ40Z50对每个单体电池的电压进行实时监测。
2. 判断电池状态:通过比较电池之间的电压差,判断是否需要进行均衡操作。
3. 均衡操作:当发现有单体电池电压差超过指定范围时,
BQ40Z50会自动启动均衡操作。
具体的均衡方法包括充电均衡、放电均衡和空载均衡。
- 充电均衡:将电流从电压较高的电池向电压较低的电池输送,使得电池之间的电压差减小。
- 放电均衡:将电流从电压较低的电池抽取,然后通过外部电阻或电池负载进行耗散,使得电池之间的电压差减小。
- 空载均衡:将电池组的输出断开,通过外部电阻将电流从电压较高的电池抽取,使得电池之间的电压差减小。
通过这些均衡操作,BQ40Z50可以提高电池组的总体性能和寿命,并保持电池组各个单体电池之间的电压平衡。
1 恒定分流电阻均衡充电电阻分流均衡充电原理如图1所示每个锂离子电池单体上都并联一个分流电阻。
从电路中可以看出,电阻上的分流电流必须远大于电池的自放电电流,才能达到均衡充电的效果。
一般锂离子电池的自放电电流为C/20000左右,所以流过分流电阻上的电流取C/200是比较合适的。
另外,每个分流电阻的偏差也是影响均衡效果的重要因素。
经过一定次数的充放电循环后,单电池的偏差可以用下面的公式确定:V电池电压偏差=R分流×I自放电+2×V单电池×K电阻偏差,若分流电阻取20Ω±0.05%,则电池电压偏差能够控制在50mV范围内。
每个电阻的平均功率为0.72W,但是无论电池充电过程还是电池放电过程,分流电阻始终消耗功率。
2 通断分流电阻均衡充电通断分流电阻均衡充电原理如图2所示。
通断分流电阻均衡充电与电阻分流均衡充电的区别就是增加了一个通断开关,这个开关的控制可以由单片机系统软件来实现,也可以通过简单的逻辑电路来实现。
采用这种控制方式的均衡电路只在TAPER充电的恒压充电段工作,其他时间通断开关始终断开,这样需要电池组放电时,分流电阻不消耗宝贵的能量。
在光照期,太阳电池发电功率是有富余的,这时均衡电路消耗一定的能量对于电源系统来说具有一定的合理性。
在LEO轨道,这种均衡电路的工作时间只占10%左右,所以要达到上面论述的均衡效果,电阻值需减小10倍,可见峰值热功耗是相当大的,这是这种电路的主要缺点。
另外,通断开关的实效是致命故障,所以必须采用冗余手段。
3 开关电容均衡充电开关电容均衡充电原理如图3所示,从图中可以看出,顺序开关驱动电路主要由时钟电路构成,它驱动多路开关顺序闭合,顺序把锂离子电池单体接入传送电容器,通过传送单电池之间的不平衡能量,达到均衡充电的目的。
同时,通过测量传送电容器上的电压来监测各个单电池的电压。
若某个单电池发生短路故障,低电压比较器输出开关禁止信号,禁止短路的单电池接入传送电容器,防止影响其他单电池的正常工作,同时给恒流恒压变换器送入电池低电压报警信号,使恒流恒压变换器根据单电池短路的情况确定正确的恒定电压。
锂电池的均衡充电的工作原理锂电池是一种常见的充电器设备,被广泛应用于移动设备、电动车辆和储能系统等领域。
在充电过程中,锂电池的均衡充电起着重要的作用,它能够保证各个电池单体充电状态的一致性,提高电池组的整体性能和寿命。
锂电池的均衡充电是通过均衡电路来实现的。
均衡电路是一种能够监测和调节电池单体之间电压差异的装置。
当充电过程中,电池单体之间的电压差异过大时,均衡电路会自动将电流从电压较高的电池单体转移到电压较低的电池单体,以实现充电状态的均衡。
均衡电路通常由均衡电路板、控制芯片和开关电路等组成。
均衡电路板上安装了多个均衡电路单元,每个均衡电路单元与一个电池单体相连接。
控制芯片负责监测电池单体之间的电压差异,并通过开关电路控制电流的流动。
当电池单体之间的电压差异超过设定的阈值时,控制芯片会启动均衡电路,将电流从电压较高的电池单体转移到电压较低的电池单体,直到电池单体的电压达到均衡。
均衡充电的工作原理是基于电池单体之间的电压差异。
在锂电池组中,由于电池单体的制造工艺和使用情况的差异,不同电池单体之间的电压可能存在差异。
而这种电压差异会导致电池单体之间的充放电不均衡,进而影响整个电池组的性能和寿命。
均衡充电的过程可以分为两个阶段:检测阶段和均衡阶段。
在检测阶段,控制芯片会周期性地监测电池单体之间的电压差异。
如果电压差异超过设定的阈值,控制芯片会进入均衡阶段。
在均衡阶段,控制芯片会通过开关电路将电流从电压较高的电池单体转移到电压较低的电池单体。
这样,电池单体之间的电压差异会逐渐减小,直到达到设定的均衡状态。
均衡充电过程中,控制芯片会根据电池单体的电压变化实时调整均衡电流的大小,以确保均衡充电的效果。
均衡充电可以有效地提高锂电池组的整体性能和寿命。
首先,均衡充电可以避免电池单体之间的过充和过放现象,减少电池的损耗和老化。
其次,均衡充电可以提高电池组的能量密度和输出功率,提高电池组的运行效率和使用时间。
此外,均衡充电还可以提高电池组的安全性能,减少因电池单体电压差异引起的潜在安全问题。
锂电池均衡器原理
锂电池均衡器是一种专用于维护和管理由几节锂电池构成的电池组的设备。
这种设备的原理是,利用在不同锂电池之间的欠压差来实现锂电池之间的均衡。
锂电池中的单个电池电压可以被视为一个静态系统参数,而它们之间的电压则是一种动态系统参数。
经过几轮迭代之后,锂电池组中所有电池的电压都可以得到均衡。
锂电池均衡器的实现原理是基于有限状态机(FSM)。
有限状态机可以模拟并实现从零到满的流程。
当某一块电池的电压较低时,均衡器就会将功率分配到它,从而补充锂电池的电源,直到这块电池的电压回到满足要求的水平为止,如此反复,就能保证组中所有电池都处于满足要求的电压水平,从而达到均衡的目的。
三极管电池均衡电路
三极管电池均衡电路是用于平衡串联锂电池电压的电路。
在串联锂电池组中,由于各个电池之间的容量差异和使用频率不同,会导致电池组中某些电池电压过高或过低,影响整个电池组的性能和寿命。
为了解决这个问题,可以采用三极管电池均衡电路。
三极管电池均衡电路一般由三个三极管、电阻和电容组成。
工作原理如下:当某个电池电压过高时,这个电池的正极连接到一个三极管的基极,通过控制三极管的开关状态,将多余的电荷导出,以达到均衡电压的目的。
当某个电池电压过低时,另一个三极管则会将电流导入该电池,提高其电压。
通过不断的均衡操作,最终使得整个电池组中各个电池的电压相对均衡。
需要注意的是,三极管电池均衡电路只能解决电压不平衡的问题,不能解决容量不平衡的问题。
另外,在设计和使用三极管电池均衡电路时需要考虑串联电池组的电流平衡、功耗、热稳定等问题。
因此,根据实际应用需求,需要合理选择电路元件和设计参数。
变压式锂电均衡电原理
对于变压式锂电均衡,下面是其原理:
1、动态均衡:变压式锂电均衡主要采用的动态均衡方式,以正电芯的
正极为基准,利用一个单独的变压器在正电芯封装框中实现电芯,按
照电芯的开路电压,以特定的电流实现晶体管的闭合,从而达到了锂
电均衡的作用。
2、增量均衡:通过控制恒定闪烁的频率外加增量控制,调整输入电流
充放电,实现锂电池本来存在差异电压均衡或趋近于平衡,而且会持
续受到输入信号的控制,维持锂电均衡的目的,当然实现某个锂电池
充放电时,也能通过调整不同电路,实现不同效果。
3、分组和渐变均衡:利用多个电路比较相邻电芯的电压,通过改变电
流功率,实现全电芯均衡的目的,而分组和渐变的策略,则注重从高
电压电芯开始,逐步从高到低的电压进行充电,这种方法有利于保持
电芯的稳定性,从而避免了过分的均衡,也更容易控制充电的过程。
4、电压模式均衡:采用电压模式方式对电芯进行充电,也可以实现电
压均衡,这种方式不需要额外控制电路,可以通过确定电芯充放电模式,将电压稳定地调节到一致,从而实现电压均衡,但充放电效率低,只适用于低量级的锂电池应用。
总的来说,变压式锂电均衡有多种技术实现,根据不同需求而定,将是锂电均衡技术中重要的一环,为锂电大容量、高效率、稳定运行提供有力保证。
锂电池组均衡充电电源设计与实现引言随着电动车、无人机和移动设备的普及,锂电池的应用范围越来越广泛。
锂电池的充电特性和安全性也成为人们关注的焦点。
锂电池组内单体电池之间的电压差异会导致充电不均衡,进而影响电池组的寿命和安全性。
锂电池组均衡充电方案成为了当前锂电池技术研究的热点之一。
本文将介绍一种基于直流-直流转换器的锂电池组均衡充电电源设计与实现。
一、锂电池组均衡充电的原理锂电池组均衡充电的原理是通过对电池组中每个单体电池实施独立的充电控制,使得每个单体电池的电压均衡,并保持在合理范围内。
通常来说,锂电池组均衡充电的实现需要借助于充电管理系统(BMS)来监控和管理每个单体电池的充电状态。
在充电过程中,BMS 会根据每个单体电池的电压情况来动态调节充电电流,以达到均衡充电的目的。
二、锂电池组均衡充电电源设计锂电池组均衡充电电源的设计需求如下:1. 可实现对锂电池组内单体电池的独立充电控制;2. 具备高效率和稳定的性能;3. 具备过压、过流、过温等多种保护功能。
基于上述设计需求,本文提出一种基于直流-直流转换器的锂电池组均衡充电电源设计方案。
该方案将采用多路独立的直流-直流转换器,每路转换器负责对电池组内的一个单体电池进行充电控制。
通过智能控制器对多个转换器进行协调控制,实现对整个电池组的均衡充电。
具体设计方案如下:1. 选择高性能的直流-直流转换器芯片,通过并联多路转换器的方式来实现对各个单体电池的独立充电控制;2. 设计智能控制器,根据BMS提供的每个单体电池的电压信息,动态调节各个转换器的输出电流,以实现均衡充电;3. 设备保护电路,对电压过高、过流、过温等情况进行监测和保护,确保充电过程中的安全性。
通过以上实现步骤,我们就可以得到一套完整的锂电池组均衡充电电源系统。
我们还可以对系统进行测试验证,确保其性能和稳定性符合设计要求。
四、未来展望锂电池组均衡充电技术是锂电池技术领域的热点之一,目前已有很多企业和研究机构在进行相关研究。
锂电池平衡充电原理
锂电池的使用是一种非常好的环保产品,但是由于其自身结构的原因,在使用过程中也会产生一定的问题,就是锂电池的不一致性。
所以需要对其进行充电和放电。
锂电池在充放电时会产生不平衡,所以为了保证电池在使用过程中具有较高的一致性,就需要对其进行充电和放电。
这就是锂电池平衡充电原理。
锂电池的不一致性主要由以下几种原因造成:
(1)极片上的活性物质颗粒大小不同,导致每个电池的容量和电压不同。
(2)化成工艺不够精确,造成极片上活性物质颗粒大小不一。
(3)单体电池内阻差异大,使得单个单体电压不同。
在充电过程中,必须对这些问题进行处理。
为了保证锂电池不存在不一致性,必须在充电过程中对锂电池进行均衡充电。
均衡充电原理
锂电池均衡充电是通过将锂离子电池串联或并联以使其内部电压相等来达到电池平衡的目的。
— 1 —
为了实现对锂离子电池内部电压的均衡充电,必须进行两个方面的工作:
(1)采用恒流源为每个锂离子电池提供恒定电流;
— 2 —。
4.2v锂电池充电电路图(一):锂电池充电均衡电路这个均衡电路用的是三个一模一样的并联稳压电路组成的,每个电池上并一个。
电路原理图如下:每个稳压电源都调节到4.2V。
均衡的原理是,当电池电压都小于4.2V时,并联稳压电路不起作用,充电电流都从电池上通过:如果电池不均衡,其中有一个先充满(到达了4.2V),那么并联稳压电路就开始工作,起到分流作用,会把电压一直稳定到4.2V,即充电电流就不再经过充满的电池了:原理就这么简单,再看看并联稳压电路的原理。
下面是单个的电路,TL431是基准电压,通过调节可变电阻,把电压调节到4.2V。
如果电池两端小于4.2V,TL431不吸收电流,即下面的Ib=0,所以Ic=0,三级管关闭,充电电流就还是通过电池。
如果电池两端到达4.2V,TL431开始吸收电流,Ib》0,充电电流(即Ic)通过三极管,就不通过电池了,即不再给电池充电了。
另外说明一下,这个电路中的三个串联的二极管IN4001,是起分压作用的,可以减少散耗在三极管TI P42上的功率。
如果不接这三个二极管IN4001,那么三极管TI P42上散耗的功率P=4.2V&TI mes;充电电流,加上之后,P=(4.2V-3&TI mes;0.7V)×充电电流最右边的发光二极管有指示作用,灯亮,表示电压已经达到4.2V,即这个均衡电路对应的电池已经充满电了。
实际做好的电路板:电路调试也比较简单,就是先不接电池,均衡电路直接接恒流电源(如果电源不支持恒流,可以串一个电阻,慢慢的把电源电压调上来)。
然后一个一个调节可变电阻,让每个均衡电路的两端都是4.20V.实际使用效果还不错,每个电池电压被严格限制到了4.20V。
4.2v锂电池充电电路图(二)锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。
最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li+MnO2=LiMnO2该反应为氧化还原反应,放电。
最简单的锂电池均衡方法
最简单的锂电池均衡方法如下:
1.在蓄电池包的各单体蓄电池上附加一个并联均衡电路,以达到分流的用途。
在这种模式下,当某个蓄电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未充满的蓄电池充电。
该方法简单,但会带来能量的损耗,不适合快充系统。
2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为准确的均衡状态。
但对电池包,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。
即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。
3.按时、定序、单独对电池包中的单体电池进行检测及均匀充电。
在对电池包进行充电时,能保证电池包中的每一个电池不会发生过充电或过放电的情况,因而就保证了电池包中的每个电池均处于正常的工作状态。
4.运用分时原理,通过开关组件的控制和切换,使额外的电流流入电压相对较低的蓄电池中以达到均衡充电的目的。
该方法效率比较高,但控制比较复杂。
5.以各蓄电池的电压参数为均衡对象,使各蓄电池的电压恢复一致,均衡充电时,电容通过控制开关交替地与相邻的两个蓄电池连接,接受高电压蓄电池的充电,再向低电压蓄电池放电,直到两蓄电池的电压趋于一致。
该种均衡方法较好的解决了蓄电池包电压不平衡的问题,但该方法重要用在蓄电池数量较少的场合。
6.整个系统由单片机控制,单体蓄电池都有独立的一套模块。
模块根据设定程序,对各单体蓄电池分别进行充电管理,充电完成后自动断开。
锂电池组串联电压均衡
锂电池组串联时,由于每个单体电池的电化学性质不同,容易导
致电压不平衡。
为了提高锂电池组的性能和安全性,需要进行电压均衡。
电压均衡的方法有两种:被动式均衡和主动式均衡。
被动式均衡
是通过串联电阻等被动元件实现的,不需要外部电源控制,但效率低,只能在低电流下工作。
主动式均衡则需要使用外部电源进行控制,通
常通过电子电路实现,效率更高,能在高电流下工作。
主动式均衡可以分为两种方式:开关式和线性式。
开关式均衡使
用开关管将电池串联组中电压高的电池放电到电压低的电池中,实现
电容的充放电。
线性式均衡使用稳压器将电压高的电池通过稳压器放
电到电压低的电池中。
无论采用哪种方法均衡电压,都需要进行电压检测和控制。
检测
电池电压,判断是否需要进行均衡,控制电路进行均衡操作。
均衡过
程中需要在一定的时间内完成,不能过度放电电池,保护电池的寿命。
锂离子电池被动均衡电路
锂离子电池的被动均衡电路通常由多个电平二极管(或MOSFET)和电容器组成。
这个电路的作用是让电池组中的各个电池在充电和放电时尽可能均匀地分配电荷,从而提高电池组的寿命和性能。
在被动均衡电路中,电平二极管或MOSFET被用来将电池组中电压较高的电池的电荷传递到电压较低的电池中。
当电池组中某个电池的电压高于其它电池时,电平二极管或MOSFET将被导通,将电荷从这个电池中流出并传递给其它电池,直到电池组中各个电池的电压相等为止。
电容器则用来储存电荷,并且可以平滑电压波动。
当电平二极管或MOSFET导通时,电荷会流入电容器,当电平二极管或MOSFET截止时,电容器则会将电荷释放到电池组中。
需要注意的是,被动均衡电路只能在电池组中的电压差异不太大的情况下起作用。
如果电池组中的电压差异较大,则需要使用主动均衡电路来实现电荷的均衡。
锂电池保护板均衡工作原理
锂电池保护板是用于保护锂电池免受过充、过放、过流和短路等电池异常情况的损害的。
它通常由保护电路和均衡电路两部分组成。
保护电路是锂电池保护板的核心部分,主要由一个或多个保护芯片组成。
保护芯片通过对电池电压、电流、温度等参数的监测,实时判断电池是否处于安全工作范围内。
一旦监测到电池电压过高、过低,电流过大,或温度异常等情况,保护芯片会立即触发保护功能,切断电池与负载之间的连接,防止电池受到进一步的损害。
均衡电路是用来解决锂电池充电和放电过程中电池单体之间的不均衡问题。
由于锂电池内部每个单体之间的特性稍有不同,充放电过程中容易导致电池单体之间的电压差异,长期存在这种不均衡状态会影响整个电池组的性能,甚至导致电池的损坏。
为了解决这个问题,均衡电路会对电池组中的每个单体进行均衡充电或放电,将电池单体的电压保持在一个较为均匀的范围内,确保电池组的性能和寿命。
总之,锂电池保护板通过保护电路对电池进行实时监测,并在电池异常情况下切断电池与负载之间的连接,保护电池的安全性;同时,均衡电路可以解决电池充放电过程中的电压不均衡问题,提高整个电池组的性能和寿命。
锂电池的均衡电路原理
锂电池的均衡电路是为了解决充放电过程中电池单体之间的电压差异问题而设
计的。
由于使用时间的不同或者其他因素,不同单体之间的电压可能会有差异,这会导致电池的性能下降甚至损坏。
均衡电路的原理是通过在每个电池单体之间连接电阻、电容、开关等元件,以及控制电路来实现对单体电压的均衡调节。
具体原理如下:
1. 检测电压差异:均衡电路会监测每个电池单体的电压,并将其与其他单体进行比较,以确定是否存在电压差异。
2. 选择均衡路径:当发现电压差异时,均衡电路会选择一个合适的路径,将电流从电压较高的单体导向电压较低的单体。
这个路径可以通过开关元件来实现。
3. 控制均衡过程:均衡电路会根据需要控制均衡的速度和程度。
一般情况下,均衡电路会逐渐调节电流大小,使电压差异逐渐减小,直到达到预设的均衡状态。
通过均衡电路的工作,可以保持每个电池单体之间的电压差异在可接受的范围内,延长电池的寿命并提高整体性能。
这对于锂电池的安全性和可靠性非常重要。
郑州正方科技:
锂电池组在市场以及各个领域的应用已经屡见不鲜,给我们的生活,工业等等带来了很多的益处,当然,锂电池组在冲放电的过程中最重要的一个环节就是均衡环节,因为你需要保证锂电池组的输出以及输出合理到每一节电池,目前锂电池组最常见的两种均衡方式是耗能式均衡以及转能式均衡。
耗能式均衡顾名思义就是把锂电池组中某节电压高的电池用电阻把多余电量耗尽。
这种方式的均衡的成本较低,设计也是相对简单,在锂电池组中单节锂电池之间的电压不能达到一致时能够起到一定的作用,但是相对的,这种方式的均衡也较为容易出现故障,而且均衡时锂电池所发出的温度较高。
而且有一点,因为锂电池组中各个单节电池的电容都不尽相同,所以每次充电,容量较小的电池电量会很快的达到饱和,由于容量较大的电池还在充电中,容量较小的锂电池就会均衡,以类似于放电额形式去耗除电量一直循环直到大容量的电池电量饱和为止,所以大家可以想象时间久了,容量较小的电池整体性能就会大大额下降,这个就跟我们手机电池长时间用性能下降是一个道理。
所以耗能式均衡存在着很大的弊端。
能量转移式均衡也很好理解,就是让电池组中能量较高额锂电池转移到能量较低的锂电池上,这种方式的均衡乍一听确实很实用,但是在实际情况下,目前的能量转移式均衡并不是很完善,因为这种方式的均衡并不能通过检测单节电池的电压来进行能量转移的,而是通过电池容量来进行能量转移的,当高能量的电池向低能量的电池转移
能量的时候,因为均衡电流以及充电电流时固定的,不可控的,所以在转移的时候,低容量的电池可能会达到过充值,锂电池保护板就会工作从而停止充电,那么整个循环就会因此终止。
纵观来讲,锂电池的均衡在目前来说还不能得到一个很好的完善,这方面的技术还有待改进!。
分享⼏种锂电池均衡电路的⼯作原理原⽂新能源的发展,电动汽车发展,都会⽤到能量密度⽐更⾼的锂电池,⽽锂电池串联使⽤过程中,为了保证电池电压的⼀致性,必然会⽤到电压均衡电路。
在这⼏年的⼯作过程中,⽤到过⼏种电池的均衡电路,在这⾥就跟⼤家⼀起分享⼀下。
随着锂电池⽤途的增加,多节串联⼤容量锂电池的保护,电池管理及均衡必将会得到发展,希望⾃⼰做过的⼀些⼩东西能对⼤家有所帮助。
最简单的均衡电路就是负载消耗型均衡,也就是在每节电池上并联⼀个电阻,串联⼀个开关做控制,当某节电池电压过⾼时,打开开关,充电电流通过电阻分流,这样电压⾼的电池充电电流⼩,电压低的电池充电电流⼤,通过这种⽅式来实现电池电压的均衡,但这种⽅式只能适⽤于⼩容量电池,对于⼤容量电池来说是不现实的。
下图为⼀负载消耗性均衡的⽰意图第⼆种均衡⽅法我没有实验过,就是飞度电容法。
简单的说就是每⼀节电池并联⼀个电容,通过开关这个电容既可以并联到本⾝这节电池上,也可以并联到相邻的电池。
当某节电池电压过⾼,⾸先将电容与电池并联,电容电压与电池⼀致,然后将电容切换到相邻的电池,电容给电池放电。
实现能量的转移。
由于电容并不消耗能量,所以可以实现能量的⽆损转移。
但这种⽅式太繁琐了,现在的动⼒电池动不动⼏⼗节串联,要是采⽤这种⽅式,那的需要多少开关来控制啊。
下图为飞度电容法⼯作原理图,只是画出了相邻两节电池的均衡原理图。
第⼀次做均衡,是做的⼀款动⼒电池组的充电,电池容量80ah的两组并联,要求均衡电流为10a,原来了解的⼀点均衡的原理根本不够⽤啊,这么⼤电流都相当于⼀个⼀个的⼩模块了,最后还真的是搞了n个⼩模块串联,每节电池并联⼀个⼩模块,如果单体电池电压低于设定值,启动相应的并联模块,对低电压电池启动充电,补充能量提升电压,实现均衡。
下图为当时采⽤的均衡电路的⽰意图,DC-DC输⼊母线既可以是电池电压,也可是是别的模块提供的直流输⼊。
根据需要灵活配置。
主动均衡⽅法可以采⽤我前⾯提到的⼀个变压器多路输出的⽅法如果你想利⽤下⾯的电路⽰意图,做⼀个多路输出的反激电源,利⽤各个模块的输出电压来对电池实现均衡,我估计你需要很深的功⼒才可以,因为交叉调整率估计就会搞死你。
几种锂电池均衡电路的工作原理分享
新能源和电动汽车的发展,都会用到能量密度比较高的锂电池。
而锂电池串联使用过程中,为了保证电池电压的一致性,必然会用到电压均衡电路。
今天跟大家一起分享一下,我在工作中用过几种电池的均衡电路,希望对大家有所帮助。
最简单的均衡电路就是负载消耗型均衡,也就是在每节电池上并联一个电阻,串联一个开关做控制。
当某节电池电压过高时,打开开关,充电电流通过电阻分流,这样电压高的电池充电电流小,电压低的电池充电电流大,通过这种方式来实现电池电压的均衡。
但这种方式只能适用于小容量电池,对于大容量电池来说是不现实的。
负载消耗性均衡的示意图
第二种均衡方法我没有实验过,就是飞渡电容法。
简单的说就是每一节电池并联一个电容,通过开关这个电容既可以并联到本身这节电池上,也可以并联到相邻的电池。
当某节电池电压过高,首先将电容与电池并联,电容电压与电池一致,然后将电容切换到相邻的电池,电容给电池放电。
实现能量的转移。
由于电容并不消耗能量,所以可以实现能量的无损转移。
但这种方式太繁琐了,现在的动力电池动不动几十节串联,要是采用这种方式,需要很多开关来控制。
飞渡电容法工作原理图,只是画出相邻两节电池的均衡原理图。
第一次做均衡,是做的一款动力电池组的充电,电池容量80ah 的两组并联,要求均衡电流为10a。
原来了解的一点均衡的原理根本不够用,这么大电流都相当于一个一个的小模块了,最后还真的是采用n 个小模块串联,每节电池并联一个小模块,如果单体电池电压低于设定值,启动相应的并联模块,对低电压电池启动充电,补充能量提升电压,实现均衡。
下图为当时采用的均衡电路的示意图,DC-DC 输入母线既可以是电池电压,也可以是别的模块提供的直流输入,根据需要灵活配置。