西方古代和中世纪的光学成就简述
- 格式:doc
- 大小:6.33 MB
- 文档页数:16
光学发展简史光学作为一门研究光的传播、变化和控制的学科,具有悠久的历史和广泛的应用领域。
本文将为您介绍光学的发展历程,涵盖了从古代到现代的重要里程碑和突破。
1. 古代光学的起源光学的起源可以追溯到古代文明时期。
早在公元前350年摆布,古希腊哲学家亚里士多德就提出了光的传播是由于视觉物体发出的“视觉射线”进入人眼中。
然而,直到公元11世纪,光学领域的突破性发展才开始浮现。
2. 光的折射和反射在17世纪初,荷兰科学家斯涅尔斯和法国科学家笛卡尔独立地发现了光的折射和反射现象。
斯涅尔斯提出了著名的“斯涅尔斯定律”,即入射角、折射角和介质折射率之间的关系。
而笛卡尔则提出了光的反射定律,即入射角等于反射角。
这些发现为后来的光学研究奠定了基础。
3. 光的波动理论到了18世纪,英国科学家哈伊根斯和法国科学家菲涅尔提出了光的波动理论。
他们认为光是一种波动,能够在介质中传播。
这一理论解释了许多光的现象,如干涉和衍射。
然而,对于光的性质仍存在一些争议,直到20世纪初,爱因斯坦的光量子假设才给出了更完整的解释。
4. 光的粒子性和量子力学在20世纪初,爱因斯坦提出了光的粒子性,即光由一些离散的能量粒子组成,这些粒子被称为光子。
这一理论解释了光的电磁性质和光电效应等现象。
爱因斯坦的光量子假设为量子力学的发展奠定了基础,并为后来的光学研究提供了新的方向。
5. 激光的发明和应用到了20世纪中叶,激光的发明引起了光学领域的革命性变化。
1958年,美国物理学家理查德·汤姆斯和查尔斯·赫舍尔发明了激光,这是一种具有高度聚焦能力和单色性的光源。
激光的问世引起了光学技术的革命,被广泛应用于通信、医学、材料加工等领域。
6. 光学器件的发展随着光学理论和技术的不断发展,各种光学器件也相继问世。
例如,透镜、棱镜、光纤等器件的发明和改进,为光学研究和应用提供了强大的工具。
光学器件的发展使得我们能够更好地控制和利用光的性质,推动了光学技术的进步。
光学发展简史光学是研究光的传播、反射、折射、干涉、衍射等现象的科学领域。
自古以来,人们对光学现象的观察和研究向来存在,但真正的光学学科的发展可以追溯到公元前5世纪的古希腊时期。
古希腊时期的光学研究主要集中在对光的传播和反射的观察上。
古希腊哲学家亚里士多德提出了“直线传播”的理论,认为光是沿直线传播的。
而另一位古希腊哲学家尤凯利德则研究了光的反射现象,并提出了反射定律。
这些早期的研究为后来的光学理论奠定了基础。
在中世纪,光学的研究发展相对较慢。
直到17世纪,光学领域迎来了一次重大的突破。
伽利略·伽利莱通过自己的实验研究,发现了光的折射现象,并提出了折射定律。
他的研究为光学的发展打开了新的大门。
随后,荷兰科学家克里斯蒂安·惠更斯在光学研究中发挥了重要作用。
他通过实验观察了光的干涉和衍射现象,并提出了惠更斯原理,解释了光的传播和干涉现象。
惠更斯的研究成果为后来的光学理论和实践提供了重要的指导。
18世纪是光学发展的黄金时期。
英国科学家艾萨克·牛顿通过自己的实验研究,发现了光的色散现象,并提出了色散理论。
他还发明了反射式望远镜,并成功地将光学应用于天文观测。
牛顿的研究成果使光学学科得到了广泛的关注和发展。
19世纪,光学领域的研究主要集中在光的波动性质上。
法国科学家奥古斯丁·菲涅耳通过对光的干涉、衍射和偏振现象的研究,提出了菲涅耳衍射理论和菲涅耳偏振理论,为光的波动理论奠定了基础。
此外,德国物理学家赫尔曼·冯·亥姆霍兹也对光的波动性质进行了深入研究,并提出了亥姆霍兹方程,进一步推动了光学的发展。
20世纪以后,随着量子力学的发展,光学领域的研究进入了一个新的阶段。
量子力学的发展使光学的研究更加深入,涉及到光的粒子性质和量子力学效应。
在这一时期,光学应用领域也得到了极大的拓展,如光通信、激光技术、光学成像等。
至今,光学学科已经成为一个独立的学科领域,并在科学研究、工程技术、医学、通信等众多领域发挥着重要作用。
光学发展简史光学是一门研究光的性质和行为的学科,它的发展历史可以追溯到古代。
本文将为您详细介绍光学的发展简史,从古代到现代,逐步呈现光学学科的进步和突破。
1. 古代光学在古代,人们对光的性质和行为有了初步的认识。
古希腊的柏拉图和亚里士多德提出了光的传播是通过一种称为“视觉射线”的物质传播的理论。
另外,古希腊的毕达哥拉斯提出了“光锥”的理论,认为光是由一束直线射线组成的。
2. 光的折射与反射在16世纪,伽利略·伽利雷和威廉·斯涅尔分别研究了光的折射和反射现象。
他们的实验和观察结果奠定了光学的基础。
伽利略发现了光在不同介质中传播时的折射现象,并提出了著名的“斯涅尔定律”,即折射角和入射角的正弦比等于两个介质的折射率之比。
3. 光的波动理论到了17世纪,荷兰科学家克里斯蒂安·惠更斯提出了光的波动理论。
他认为光是由一系列波动组成的,这一理论解释了光的干涉和衍射现象。
这项理论为后来的光学研究提供了重要的基础。
4. 光的粒子性质在19世纪末,德国物理学家马克斯·普朗克和爱因斯坦的光电效应实验证明了光的粒子性质。
他们发现,光的能量是以离散的量子形式存在的,这一发现为量子力学的发展打下了基础。
5. 光的电磁理论到了19世纪末和20世纪初,詹姆斯·克拉克·麦克斯韦提出了光的电磁理论。
他认为光是由电磁波组成的,这一理论解释了光的偏振现象和干涉现象。
麦克斯韦的电磁理论为光学研究提供了重要的理论基础。
6. 光的量子理论20世纪初,爱因斯坦提出了光的量子理论,即光的粒子性质。
他认为光由一系列粒子(光子)组成,每个光子具有一定的能量。
这一理论解释了光的光谱现象和能量传递过程。
7. 光学技术的发展随着光学理论的不断发展,光学技术也得到了迅速的发展和应用。
例如,显微镜的发明使得人们可以观察微小的物体和细胞结构;望远镜的发明使得人们可以观测远处的天体;激光的发明和应用使得光学在通信、医学和工业领域有了广泛的应用。
光学发展简史光学是一门研究光的传播、反射、折射、干涉、衍射等现象的科学,它在人类社会的发展中扮演着重要的角色。
本文将为您介绍光学的发展历程,从古代到现代,带您了解光学学科的起源和演变。
古代光学光学的起源可以追溯到古代,早在公元前3000年摆布,古埃及人就开始使用凸透镜来放大物体。
古希腊哲学家亚里士多德则提出了光的传播理论,认为光是由眼睛发出的一种物质。
而古希腊数学家欧几里得则研究了光的反射和折射现象,并提出了著名的欧几里得几何学。
中世纪光学进入中世纪,光学的研究逐渐停滞。
然而,阿拉伯数学家和科学家在这个时期对光学的发展做出了重要贡献。
阿拉伯学者伊本·海森提出了光的直线传播理论,并通过实验验证了光的反射和折射规律。
此外,他还发现了凸透镜和凹透镜的放大和缩小作用。
近代光学随着科学的发展,光学在近代得到了极大的发展。
17世纪,荷兰物理学家胡克发现了光的干涉现象,并提出了光的波动理论。
此后,法国科学家菲涅耳进一步发展了光的波动理论,并解释了光的衍射现象。
这些理论的提出为后来的光学研究奠定了基础。
19世纪,德国物理学家迈克尔逊和英国物理学家亨利·卢米埃尔相继进行了光的干涉实验,验证了光的波动性。
此外,亨利·卢米埃尔还发现了光的偏振现象,并提出了偏振理论。
这些实验和理论的发现推动了光学领域的进一步发展。
20世纪,量子力学的发展为光学研究带来了新的突破。
爱因斯坦提出了光的粒子性理论,并解释了光电效应。
此后,激光的发明和应用成为光学领域的重要里程碑。
激光的研究不仅推动了科学技术的发展,还在医学、通信、材料加工等领域产生了广泛的应用。
现代光学进入21世纪,光学已经成为一个独立的学科,并涉及到多个领域的研究。
光学的应用范围越来越广泛,包括光通信、光储存、光显示、光计算等。
光学技术的不断创新和突破,为人类社会带来了巨大的变革和进步。
总结光学发展简史展示了人类对光学的探索和研究。
从古代的凸透镜到现代的激光技术,光学在科学、工程和医学等领域都发挥着重要作用。
光学的发展历史概述
从古时候开始,人们就对光产生了浓厚的兴趣。
最早的光学研究可以追溯到古希腊时期。
一位叫作泰勒斯的哲学家首先研究了拂晓时的日出和日落,认为这是由大海反射产生的。
此后,亚里士多德提出了“空气之眼”的理论,通过水晶球的折射来解释水面的形状。
在此基础上,中世纪的阿拉伯学者进一步研究了透镜和凸镜,提出了反向光行理论,即光线是从物体中心发出的。
这种理论成为了许多光学器材的基础,如显微镜和望远镜。
到了16世纪,意大利的伽利略最先使用望远镜来观测星体,使天文学研究得以进一步发展。
同时,德国的开普勒也研究了光的折射现象,提出了光程定律,并运用这种定律来探索望远镜的光学原理。
18世纪,牛顿提出了他的“色彩光谱理论”,认为白光可以分解成许多颜色构成。
他同时也发明了反射望远镜,成为了当时最流行的望远镜。
19世纪,光学研究得到了进一步发展。
法国的菲涅耳提出了他的光学波动理论,解释了光的折射和干涉等现象。
同时,英国的杨则发现了光的干涉现象,提出了关于光的波动性和粒子性两种不同解释的“双缝干涉实验”。
这标志着光学领域的一个重要转变,从机械性质转向波动性质。
20世纪以来,光学技术得到了巨大的发展,用于制造各种精密仪器和器材,如激光、光通信、摄影和医疗设备等。
同时,激光干涉和量子光学的研究也带来了许多新的发现和应用。
总的来说,光学在人类的历史上占有重要地位,它的发展历程也是科技进步的历程。
当今已经成为了一门独立的学科,应用广泛,有重要的影响力和指导意义。
光学发展简史范文光学是一门研究光的性质和行为的科学,它的发展历史可以追溯到古代时期。
下面是一份光学发展简史,介绍了光学领域的里程碑事件和科学家的贡献。
古代时期-光线的传播光学的研究可以追溯到古希腊时期,当时的科学家开始研究光的传播和折射。
亚里士多德认为光传播是由于眼睛发射出与物体相连的“视线”,而光学是研究视线的科学。
这种观点一直流传到中世纪。
中世纪-透镜和放大镜的发现中世纪期间,阿拉伯数学家和科学家研究了透镜和放大镜的光学性质。
他们发现凸透镜可以聚焦光线,而凹透镜则分散光线。
这些发现为后来望远镜和显微镜的发明奠定了基础。
17世纪-几何光学和光的波动理论17世纪是光学研究的重要阶段。
1657年,荷兰科学家斯尼尔斯发表了《几何光学》一书,系统地研究了光的传播和折射。
他提出了著名的“斯尼尔斯定律”,解释了光线折射的现象。
在同一时期,英国科学家赫胥黎进行了关于光的波动理论的研究。
他使用实验证据揭示了光向下弯曲的现象,并提出了光是由波动传播的理论。
这个理论奠定了光的波动性质的基础,并在以后的科学研究中起到了重要的作用。
19世纪-光的电磁性质和光谱分析19世纪是光学研究的又一个重要时期。
1831年,迈克尔·法拉第发现了电磁感应现象,揭示了光和电磁辐射之间的密切关系。
这一发现开启了以后对光和电磁辐射之间相互作用的研究。
在同一时期,德国科学家克莱因进行了光谱分析的研究。
他通过将光通过三棱镜分解成不同的颜色,然后用光谱仪进行分析,首次揭示了太阳光的组成。
克莱因的研究成果为后来的光谱学奠定了基础,并对物理学和化学领域有深远影响。
20世纪-量子光学和激光的发明20世纪是光学领域最具创新和突破的时期之一、在1905年,爱因斯坦提出了光的粒子性质,并解释了光电效应的现象。
这一理论对于解释光的微粒性质和光与物质的相互作用具有重要意义。
在同一时期,量子力学的发展也对光学研究产生了重大影响。
量子力学的发展使得科学家能够更好地了解光在微观领域的行为,并提出了新的光学模型和理论。
光学发展简史光学是研究光的传播、发射、操控和检测的科学领域,其发展历史可以追溯到古代。
本文将从古代到现代,详细介绍光学的发展历程。
1. 古代光学发展古代光学的起源可以追溯到公元前3000年左右的古埃及和古希腊。
古埃及人和古希腊人通过观察太阳和星星的运动,研究光的传播规律。
古希腊哲学家毕达哥拉斯和柏拉图提出了光是由微小的粒子组成的粒子理论,这为后来的光学研究奠定了基础。
2. 光的传播理论的发展17世纪,荷兰科学家胡克和牛顿等人提出了光的传播是以粒子的形式进行的粒子理论。
然而,法国科学家奥古斯丁·让·菲涅耳在19世纪初提出了波动理论,认为光是一种波动现象。
菲涅耳的波动理论解释了光的衍射和干涉现象,为光学的发展做出了重要贡献。
3. 光的电磁理论19世纪中叶,英国物理学家詹姆斯·克拉克·麦克斯韦提出了光是电磁波的电磁理论。
他的理论将光学与电磁学联系在一起,为后来的光学研究提供了新的方向。
麦克斯韦的电磁理论在当时引起了极大的关注,为后来的光的偏振和光的速度等研究提供了理论基础。
4. 光的偏振理论19世纪末,德国物理学家海因里希·赫兹通过实验证明了光是一种横波,并且可以通过偏振器进行偏振。
这一发现为光的偏振理论的建立奠定了基础。
随后,瑞士物理学家阿尔贝·爱因斯坦通过研究光的光电效应,提出了光是由光子组成的粒子理论,这一理论解释了光的光电效应现象。
5. 光的速度测量19世纪末,法国物理学家亨利·贝克勒尔通过实验证明了光的速度是恒定不变的,并且与光的波长和频率无关。
这一发现为光的速度测量提供了重要依据。
随后,美国物理学家阿尔伯特·迈克尔逊和爱德华·莫雷利利用干涉仪测量了光的速度,得到了非常精确的结果,为光的速度的研究提供了重要数据。
6. 光学仪器的发展随着光学理论的发展,各种光学仪器也得到了极大的改进和发展。
例如,望远镜的发明和改进使得人类能够观测到更远的天体;显微镜的发明使得人们能够观察到更小的物体和细胞结构。
光学发展简史光学是研究光的传播、反射、折射、干涉、衍射等现象的科学。
它的发展历史可以追溯到古代文明时期,人类对光学的研究与应用经历了漫长而丰富的过程。
本文将为您详细介绍光学发展的历史,从古代到现代的重要里程碑,带您一起了解光学的演变过程。
古代光学:光的直线传播和反射光学的起源可以追溯到古代希腊。
在公元前6世纪,希腊哲学家毕达哥拉斯提出了光的直线传播理论。
他认为光是由微小的粒子组成,这些粒子在直线上运动,形成了我们所见的光线。
此外,毕达哥拉斯还研究了光的反射现象,提出了反射定律。
公元前4世纪,亚里士多德进一步发展了光学理论。
他认为光是由眼睛发出的,通过视线与物体相交,然后再反射回眼睛。
亚里士多德的光学理论在古代得到了广泛的认可,成为了光学研究的基础。
中世纪光学:光的折射和几何光学在中世纪,光学的研究进入了一个新的阶段。
阿拉伯科学家伊本·海塔姆在10世纪对光的折射现象进行了深入研究。
他发现了光在不同介质中传播时的折射规律,并提出了著名的折射定律。
16世纪,意大利科学家伽利略·伽利莱和荷兰科学家威廉·斯内尔分别进行了光的研究。
伽利略通过实验观察到光的反射和折射现象,并提出了光的入射角等于反射角的定律。
斯内尔则发现了凸透镜和凹透镜的特性,并研究了它们对光的折射和聚焦效应。
17世纪,法国科学家勒内·笛卡尔和英国科学家伊萨克·牛顿进一步发展了光学理论。
笛卡尔提出了几何光学的基本原理,将光的传播和反射规律用几何方法进行描述。
牛顿则通过实验研究了光的分光现象,发现了光的色散现象,并提出了著名的白光由多种颜色组成的理论。
现代光学:波动光学和量子光学18世纪末,光学进入了波动理论的时代。
法国科学家奥古斯丁·菲涅耳通过实验和数学分析,提出了光的波动理论。
他解释了光的干涉、衍射和偏振现象,并成功解决了当时无法解释的一系列光学难题。
19世纪,苏格兰科学家詹姆斯·克拉克·麦克斯韦通过电磁理论将光与电磁波联系起来,提出了电磁波理论。
光学发展简史光学是研究光的传播、产生、检测和控制等现象和规律的科学。
它涉及到光的物理性质、光的波动性质、光的粒子性质以及光与物质的相互作用等方面。
光学的发展历史悠久,经历了漫长的探索和发展过程,本文将为您详细介绍光学的发展简史。
1. 古代光学光学的起源可以追溯到古代,古希腊哲学家柏拉图和亚里士多德对光的性质进行了初步的探索。
然而,最早系统地研究光学的是古希腊数学家欧几里得。
他在《几何原本》一书中提出了光的直线传播理论,并研究了光的反射和折射现象。
2. 中世纪光学中世纪时期,阿拉伯学者对光学的研究起到了重要的推动作用。
他们翻译了古希腊的光学著作,并进行了进一步的研究。
其中最著名的学者是伊本·海塔姆,他在《光学篇》中详细描述了光的传播和折射现象,并提出了光的直线传播原理。
3. 光的波动理论17世纪,荷兰科学家胡克和休谟等人提出了光的波动理论。
他们认为光是一种波动现象,能够通过介质中的振动传播。
这一理论得到了英国科学家牛顿的质疑和反驳,牛顿提出了光的粒子理论,并通过实验证实了自己的观点。
4. 光的粒子性质牛顿的光的粒子理论在当时得到了广泛的认可,但在后来的实验中遇到了一些难点。
19世纪初,法国科学家菲涅尔和英国科学家杨益达等人通过干涉和衍射实验证明了光的波动性质,推翻了牛顿的粒子理论。
这一发现对光学的发展产生了深远的影响。
5. 电磁理论与光的电磁性质19世纪中叶,麦克斯韦提出了电磁理论,认为光是由电磁波组成的。
这一理论得到了实验证实,并对光学的发展产生了重要的影响。
电磁理论的提出使得人们能够更好地理解光的传播和产生机制,为光学技术的发展奠定了基础。
6. 光的量子性质20世纪初,普朗克提出了量子理论,揭示了光的量子性质。
他认为光是由一束一束的能量量子组成的,这一理论被后来的实验证实。
量子理论的发展使得人们能够更深入地研究光的微观性质,为光学技术的进一步发展提供了理论基础。
7. 现代光学技术的发展随着科学技术的不断进步,光学技术得到了广泛的应用和发展。
光学的发展西方古代和中世纪的光学成就简述古代人对于光现象的记载和研究是和日常生活、观察天象、占星问卜等同时开始的,因此历史上的光学几乎与力学、数学等一起成为人们探索自然奥秘的最早部门.但由于光的物理本性不象力的本性那样比较容易为人们认识,因此古代光学基本上停留在对几何光学现象的描述与总结上,作为一门科学,发展比较缓慢.从光学器具看,中国的青铜镜早就应用,而玻璃和珐琅在埃及、希腊、罗马发现较早.柏拉图学园(428—348 B.C.)的教学内容中就已有光的直进和反射角与人射角相等的内容(反射定律的发明者已不可考).欧几里德(Euclid,约330—275 B.C.)在《光学)}一书中说:“我们假想光是直线进行的,在线与线之间还留出一些空隙米,光线自物体到人眼成为一个锥体,锥顶就在人眼,锥底在物体.只有被光线碰到的东西,才能为我们看见.”这就是“流出论”的根据.但原子论者则主张一切感觉都是从物体发出的物质流引起的.亚里士多德介于二者之间,主张“视觉是在很睛和可见物体之间的中介者运动的结果”.公元二世纪时托勒密(70—147)写了《光学》一书.他用如图6—1装置第一次得出折射的数据(见下表).BB图为 托勒密实验 由空气射入水中的折射托勒密的结论并不准确,他认为折射角与入射角成正比。
中世纪阿拉伯人阿尔加桑( Al -hazen , 965--1038)也写了一本《光学》,他通过解则知识正确指出眼的视觉功能,改进了托氏仪器,指出入射线、折射线与法线在一平面内,他还提出了有名的“阿尔加桑问题”。
从物点发出的光是如何汇集到限内成像的?他还通过晚霞的持续时间,计算出当时太阳处于地平线下10°,估算出大气层高度为52000步,后来开普勒指出这个计算结果不对,但物理思想是可贵的,阿尔加桑《光学》的拉丁文译本在十三世纪曾激励波兰数学家维特洛(Vitello )去研究光学.折射定律的建立望远镜出现后,为了改善天文、航海与战争中这一必备的利器,需要不断改善已有的光学元件的制备和提高望远镜的倍数,这就不能没有正确的理论研究.开普勒在1604年发表了对维特洛光学论文的注释,1611年发表了《屈光学》,他认为折射角厂由两部分组成,一部分正比于入射角i ,另一部分正比于人射角的正割sect .只有在小于30°时,托勒密的正比例定律才适用.在光近乎垂直入射时,i :r =3:2,他还得出玻璃的折射角不会超过42°.根据光路的可逆性,他得出存在有全反射现象的结论.在这些工作的基础上,他求出了曲率相等的双凸透镜的焦距和平面透镜的焦距,并设计了他的望远镜. 荷兰数学家斯涅耳( Willebroad Snel1, 1591-1626)在大约1621年发现了折射定律,如图,水中-点F 从空气中看好象在C 点,斯涅耳发现,对于任意人射角,===ri r AD i AD DF DCcsc csc sin sin 常量 这一定律是斯涅耳1626年去世后在他的遗稿中找到的,而第一个利用粒子(“网球”)模型推证这一定律使其具有现代形式的正是笛卡儿,他把余割之比换成了正弦之比.光的本性在自然界里,光是人们日常生活中最熟悉的一种现象,光能使世界上一切物体呈现出它们的形状和颜色我们赖以生存的氧气和食物的产生,也是以植物的光合作用为基础的。
总之,人类的生活离不开光.多少世纪以来,科学家们为探索光的本性作了大量的实验,提出了许多理论,但是至今还没有能得出最终的、根本性的回答。
人们根据实验很早就已经了解了一些基本光学现象:光沿直线传播;光从镜面反射的角度等于它射向镜面的角度(反射);光束从空气进入玻璃、水或者其他透明物体时,会发生偏折(折射);各束光可以彼此交叉通过而不相互干扰。
虽然这些规律早为人们确定,但是它们所包含的深刻内容还远远没有为人们认识清楚。
究竟光是什么?即关于光的本性这个问题的认识,在不同的历史发展阶段,是不断变化着的,甚至在同一历史时期,也存在两种截然相反的观点。
十七世纪,为了解释这些基本规律,形成了两大学派:一派是牛顿主张的“微粒说”,另一派是由惠更斯倡议的“波动说”。
光的本性是什么?对这个问题自古以来就有不同的回答。
科学发展到十七世纪,就形成了一场关于光的本性的争论,也就是微粒说和波动说之争。
这场争论,是科学(特别是光学)发展的产物,同时又成为科学新发展的动力之一。
微粒说是以牛顿为代表,波动说则是以胡克、惠更斯为代表。
1666年,英国科学家牛顿做了探讨光本性的第一个重要实验:他让太阳光通过一块三角棱镜,经棱镜射出的光束是一条按红、橙、黄、绿、蓝、靛、紫顺序排列的彩色光带。
这种光带就称为“光谱”。
白光就是由这几种光混合而成的。
为了解释这些光学现象,牛顿提出了光的微粒说;他认为:光是由弹性微粒流组成,由光源发出,以高速作直线运动。
牛顿以此为论据。
阐明了光沿直线传播的性质及反射定律,也解释了光的折射现象。
他认为光的传播速度决定于煤质的密度,煤质的密度越大,光在其中传播的速度也越大。
根据他的假设,光在水、玻璃中的速度大于空气中的速度。
但以后的实验结果与此恰恰相反,证明牛顿的这一结论是谬误的。
1672年2月6日牛顿送交皇家学会的一封信“关于光和色的新理论”一文,牛顿说出了自己关于光的物质性的见解,认为“光线可能是球形的物体”,这就是我们通常所说的光的微粒说。
牛顿用这种观念。
很容易解释光的直线传播,同时也能解释光的反射和折射。
但是这篇著作却引起了激烈的论战。
在这场论战中,反对牛顿对于光的本性的微粒见解的人是胡克。
胡克主张光是一种振动。
他举出金刚石受到摩擦、打击或加热时,在黑暗中会发光的例证来说明光必定是一种振动。
同时他还以金刚石的坚硬特性,提出这种振动必定是短促的。
当讨论了光的直线传播和光速有限之后,胡克认为,在一种均匀煤质中,这一运动在各个方面都以相等的速度在传播,于是发光体的每一个脉动或振动都必将成一个球面。
这个球面将不断地扩大,就如同把一石块投入水中后,在水面一点周围的环状波膨胀为越来越大的圆圈那样(尽管肯定要快得多)。
由此可知,在均匀煤质中扰动起来的这些球面的一切部分都与射线交成直角。
由此可见,胡克实际上已接触到了波前和波面的概念了。
胡克与牛顿争论时,提出不少问题,特别是微粒说所不能解释的一些事例。
为了回答胡克提出的问题,牛顿又进一步研究,想办法如何来完善自己的假说和理论。
由于牛顿对振动和波动过程有一个严格的了解并有一个严整的数学原理,所以他在与胡克争论过程中,认为在自己的关于光的粒子结构的理论中,作出的结论是正确的,但是他也表明作出这个结论并没有绝对肯定,所以只能用两个字来表示:“可能”。
进而认为这个结论在极端的情况下,仅是自己学说的大概的结果,而不是它的基本前提。
1675年12月9日,牛顿在送交皇家学会的一篇论文——“涉及光和色的理论的假说”——中,提出了一个把光的微粒和以大的振动相结合的新假说。
论文中写道:“以大的振动在这一假说和那一假说中都是一样有用的和不可缺的。
因为假定光线是从发光物质向各方面发射出去的小的微粒的话,那末当它们碰到任何一种折射或反射表面时,就必然要在以大中引起振动,正象石块被投到水中时要引起振动~样。
我还假定,这些振动将按照激发它们的上述颗粒性光线的大小和速度不同而有不同的深度和厚度。
”“只有这样它才能如此普遍而无所不包,以致把其他的假说也都包罗在内,而不需要创造什么新的假说”。
除此之外,牛顿在1675年12月21日写信给奥尔登堡(Henry Oldenbu,当时皇家学会的秘书)的信中在谈到他和胡克看法不同之处,牛顿认为,“除了假定以大是一种能振动的媒质以外,我和他没有什么共同之点。
然而我对这个假定有和他很不相同的用法:他认为能振动的以大就是光本身,而我则认为它不是。
这是一个很大的差别,正如他和笛卡儿的差别很大一样。
”牛顿在其他的论文中又提出并确立了光的周期性。
当牛顿在皇家学会宣读新的论文、阐述新的假说时,胡克却提出了关于优先权的要求。
于是牛顿在愤慨之下,决定不发表光学著作。
而牛顿的多年来的光学研究成果,只是在1704年间克死后的一年发表在他的《光学》著作中。
这一偶然事件,看来是影响了光学的发展。
波动论的先驱者是英国的罗伯特·胡克(一六三五——一七0三年),但最先将它系统化的是荷兰的惠更斯(一六二九——一六九五年)。
惠更斯认为,光是充满宇宙的光介质的波动,关于光波的传动方法,叫做所谓的惠更斯原理。
他虽然运用这个理论很好地说明了光的折射和波动,但没能充分地说明光的直射。
此外,也没能充分地说明一六六九年发现的冰州石的双折射,这是日为他把光行成是纵波(介质的振动方向同波的前进方向一致)的缘故。
荷兰科学家惠更斯是牛顿同时代的人,他提出了光的“波动说”。
他认为:光是一种机械波,和声波一样,它依靠煤质来传播、光在水、玻璃等折射煤质中传播速度比在空气中蚀而且各种颜色的光波长不同,传播速度也不一样,波长越短,传播速度越慢,因此紫光偏折最厉害。
波动说能解释光交叉通过而彼此不发生干扰的问题,但波动说不能解释光的直线传播。
微粒说与波动说争论不休,基于当时的实验条件及方法,无法用实验事实判断两种学说的优劣。
因为微粒说能够自然地、直观地说明光的直进现象,所以较易为人们所接受。
在物理学上,牛顿是绝对的权威,因此,在他死后大约一百年,粒子论甚嚣尘上,而波动论则被人们遗忘了。
波动光学的兴起在牛顿1704年出版《光学》一书以后,差不多相隔整整一个世纪(光学包括对光的本性的认识)进展不大,过去都把这一切归罪于牛顿的威望。
到了十九世纪光学的发展才有所突破,特别是物理光学的发展得到了长足的进步,开始了波动光学的英雄时期;这一时期从1800年一直持续到十九世纪三十年代,而这一发展主要发生在英国和法国,其代表人物是托马斯·扬和菲涅耳。
托马斯·杨十九世纪法国科学家托马斯·杨系统地解决了有关波动的数学问题,同时光的双缝干涉实验的结果也支持了光的波动说。
英国物理学家兼医生1773年6月13日生于萨默塞特的米尔佛顿;1829年5月10日卒于伦敦。
扬是一个神童。
他两岁能读书,四岁就已两次通读圣经。
他在青年时期,就学会了十几门外语,不仅包括希腊语、拉丁语和希伯来语,而且还有阿拉伯语、波斯语、土尔其语和埃塞俄比亚语。
他还能演奏包括风笛在内的多种乐器。
他是那种成人后仍是天才的最佳神童,在剑桥人称“奇迹扬”。
有钱的叔父死后,他便在剑桥过起富裕闲适的独立生活。
杨开始学医,并在爱丁堡大学年迈的布拉克“指导下修业。
后来他去德国,并于1796年在戈丁根大学取得博士学位,遂于二799年在伦敦开业行医。
从1801年到1803年期间,扬在朗福德伯爵新创办的皇家学院讲授自然科学,1802年被任命为皇家学会的外交秘书。