某配送中心向六家超市节约里程法
- 格式:docx
- 大小:12.39 KB
- 文档页数:1
节约里程法应用案例在当今竞争激烈的商业环境中,物流成本的有效控制对于企业的生存和发展至关重要。
节约里程法作为一种优化配送路线的有效方法,能够显著降低运输成本,提高物流效率。
接下来,让我们通过一个具体的案例来深入了解节约里程法的实际应用。
假设我们有一家位于城市中心的配送中心,需要向位于城市不同区域的五个客户(A、B、C、D、E)配送货物。
每个客户的需求量以及他们之间的距离如下表所示:|客户|需求量(吨)|与配送中心距离(公里)||||||A|5|10||B|8|12||C|3|8||D|6|15||E|4|11||客户|A|B|C|D|E|||||||||A| | 18 | 22 | 25 | 16 ||B| 18 || 10 | 18 | 12 ||C| 22 | 10 || 14 | 9 ||D| 25 | 18 | 14 || 20 ||E| 16 | 12 | 9 | 20 ||首先,我们按照传统的方法,即每个客户单独配送,计算出总运输里程。
配送中心到客户 A 的往返里程为 2×10 = 20 公里。
配送中心到客户 B 的往返里程为 2×12 = 24 公里。
配送中心到客户 C 的往返里程为 2×8 = 16 公里。
配送中心到客户 D 的往返里程为 2×15 = 30 公里。
配送中心到客户 E 的往返里程为 2×11 = 22 公里。
总运输里程为 20 + 24 + 16 + 30 + 22 = 112 公里。
接下来,我们应用节约里程法来优化配送路线。
第一步,计算两两客户之间的节约里程数。
例如,客户 A 和客户 B 之间的节约里程数为:(配送中心到 A 的距离+配送中心到 B 的距离 A 到 B 的距离)× 2 =(10 + 12 18)× 2 = 8 公里。
按照同样的方法,计算出所有两两客户之间的节约里程数,如下表所示:|客户|A|B|C|D|E|||||||||A| | 8 | 6 | 5 | 2 ||B| 8 || 4 | 3 | 4 ||C| 6 | 4 || 2 | 3 ||D| 5 | 3 | 2 || 5 ||E| 2 | 4 | 3 | 5 ||第二步,根据节约里程数的大小对路线进行合并和优化。
节约里程法例1:设配送中心向7个客户配送货物,其配送路线网络、配送中心与客户的距离以及客户之间的距离如下图与下表所示,图中括号内的数字表示客户的需求量(单位:t),线路上的数字表示两结点之间的距离(单位:km),现配送中心有2台4t卡车和2台6t卡车两种车辆可供使用。
(1)试用节约里程法制订最优的配送方案。
(2)设配送中心在向客户配送货物过程中单位时间平均支出成本为450元,假定卡车行驶的平均速度为25 km/h,试比较优化后的方案比单独向各客户分送可节约多少费用?(1)作运输里程表,列出配送中心到用户及用户间的最短距离P0P1 8 P1P2 4 5 P2P3 8 9 4 P3P4 12 16 11 7 P4P5 5 13 9 13 10 P5P6 14 23 18 22 19 9 P6P7 19 27 23 27 30 20 11 P7(2)按节约里程公式求得相应的节约里程数(3)将节约里程按从大到小顺序排列表-4)根据载重量约束与节约里程大小,选择配送路线。
优先择节约里程数最大的连接点:P6-P7、P3-P4最优方案:P0-P7-P6-P5-P0、P0-P4-P3-P2-P0、P0-P1-P0由于P6-P7是最大节约里程数连接点,所以优先选择P6-P7,又因P0-P6-P7-P1-P0路线载重量6.2t大于6t故选择P0-P7-P6-P5-P0路线5.9t(此路线选择一辆6t卡车)因P3-P4为第二大节约里程数连接点,且因路线P0-P4-P3-P2-P1-P0载重量为6.7t大于6t,故选择P0-P4-P3-P2-P0路线3.9t(此路线选择一辆4卡车)最后选P0-P1-P0路线2.8t(此路线选择一辆4卡车)得路线: P0-P7-P6-P5-P0、P0-P4-P3-P2-P0、P0-P1-P0节约里程数=(19+14+5+12+8+4+8)*2-(19+11+9+5+12+7+4+4+8+8)=53km(53/25)*450=954元例2:设配送中心向5个客户配送货物,其配送路线网络、配送中心与客户的距离以及客户之间的距离如下图与下表所示,图中括号内的数字表示客户的需求量(单位:t),线路上的数字表示两结点之间的距离(单位:km),现配送中心有3台2t卡车和2台4t卡车两种车辆可供使用。
节约里程法例1:设配送中心向7个客户配送货物,其配送路线网络、配送中心与客户的距离以及客户之间的距离如下图与下表所示,图中括号内的数字表示客户的需求量(单位:t),线路上的数字表示两结点之间的距离(单位:km),现配送中心有2台4t卡车和2台6t卡车两种车辆可供使用。
(1)试用节约里程法制订最优的配送方案。
(2)设配送中心在向客户配送货物过程中单位时间平均支出成本为450元,假定卡车行驶的平均速度为25 km/h,试比较优化后的方案比单独向各客户分送可节约多少费用?(1)作运输里程表,列出配送中心到用户及用户间的最短距离P0P1 8 P1P2 4 5 P2P3 8 9 4 P3P4 12 16 11 7 P4P5 5 13 9 13 10 P5P6 14 23 18 22 19 9 P6P7 19 27 23 27 30 20 11 P7(2)按节约里程公式求得相应的节约里程数(3)将节约里程按从大到小顺序排列表-4)根据载重量约束与节约里程大小,选择配送路线。
优先择节约里程数最大的连接点:P6-P7、P3-P4最优方案:P0-P7-P6-P5-P0、P0-P4-P3-P2-P0、P0-P1-P0由于P6-P7是最大节约里程数连接点,所以优先选择P6-P7,又因P0-P6-P7-P1-P0路线载重量6.2t大于6t故选择P0-P7-P6-P5-P0路线5.9t(此路线选择一辆6t卡车)因P3-P4为第二大节约里程数连接点,且因路线P0-P4-P3-P2-P1-P0载重量为6.7t大于6t,故选择P0-P4-P3-P2-P0路线3.9t(此路线选择一辆4卡车)最后选P0-P1-P0路线2.8t(此路线选择一辆4卡车)得路线: P0-P7-P6-P5-P0、P0-P4-P3-P2-P0、P0-P1-P0节约里程数=(19+14+5+12+8+4+8)*2-(19+11+9+5+12+7+4+4+8+8)=53km(53/25)*450=954元例2:设配送中心向5个客户配送货物,其配送路线网络、配送中心与客户的距离以及客户之间的距离如下图与下表所示,图中括号内的数字表示客户的需求量(单位:t),线路上的数字表示两结点之间的距离(单位:km),现配送中心有3台2t卡车和2台4t卡车两种车辆可供使用。
节约里程法案例详解假如由一家配送中心P向两个用户A、B送货,配送中心到两客户的最短距离分别是L1和L2,A和B间的最短距离为L3,AB的货物需求量分别是Q1和Q2,且Q1+Q2小于车辆装载量Q【如果Q1+Q2大于车辆装载量Q,那一辆车就无法装完两位客户的货物】。
如下图所示:如果配送中心用两辆汽车分别对A、B两个用户各自往返送货时,汽车行驶的总里程L是L=2(L1+ L2)如果用一辆汽车向A、B两个用户巡回送货,则汽车行驶总里程L′为L′= L1+ L2+L3根据三角形的一边之长必定小于另外两边之和的原理,后一种配送方案比前一种方案节约里程△L为△L=2(L1+ L2)-(L1+ L2+L3)= L1+ L2-L3【这就是节约里程法产生的初衷,以最短距离最优配载完成送货作业】案例:位于市内的百家姓配送中心(P0)向它旗下的10家连锁商店p i(i=1,2,…,10)配送商品,其配送网络如下图所示。
图中括号内的数字表示每一家连锁店的需求量(t),线路上的数字表示两节点之间的距离(km)。
配送中心现有2t和4t车辆可供使用(无数量限制),并且每辆车配送距离不得超过30km。
请为百家姓配送中心制定最优的配送方案。
分析:初始方案:如果从P点向各点分别派车送货。
1、从百家姓配送中心出发,需要设计10条配送线路,分别向10家连锁店配送商品;2、需要10辆2t的配送车辆(每家连锁店的需要量都低于2t),总配送距离为148km。
第二种:节约里程法解题思路:相互间的节约里程计算根据△L== L1+ L2-L3 原理,例如以“百家姓配送中心交通图”中的P0(配送中心)到客户d、客户c的节约里程为例:dc△L==P0d(L1)+P0c (L2)-dc(L3 )==8 + 7 - 5=10如此计算出客户d和客户c间的节约里程数为10,以此方法计算出各个节点的节约里程数。
方案修正过程(优化到最终线路)1、方案修正过程实际上是线路规划过程,根据节约里程法原理从节约里程数最大的节点开始选择(这是先要排序的原因);2、所有规划线路的起点和终点都是配送中心,这里是P0;3、最大节约里程是a和b间的节约里程数15,那么路线的走向可以是P0-A或P0-B。
基于节约里程法连锁超市配送路线优化设计【摘要】随着连锁超市经营市场竞争的加剧,进一步降低配送物流成本,建立一套科学完善的物流配送体系成为连锁超市经营成败的关键,节约里程法作为一种物流运筹启发算法在进行连锁超市配送路线优化设计、降低配送物流成本具有良好的适用性与实际意义。
【关键词】连锁超市;节约里程法;路线优化一、引言随着连锁经营在中国的快速发展,连锁超市经营通过“统一采购、统一核算、统一配送”的经营模式,凭借良好的规模经济与物流成本优势成为流通领域最主要的零售业态。
然而,随着市场竞争的加剧,连锁超市经营必须具备一套高效的物流配送体系,进行科学合理的配送路线优化设计,将配送商品以最短的时间、最快的速度、最低的物流成本送到到指定门店或消费者手中,节约里程法是一种解决连锁超市配送路线优化问题的有效方法。
二、节约里程法基本思想与操作方法(一)节约里程法的基本思想节约里程法又称节约算法,是用于解决一个配送中心向多个指定客户巡回送货的最优路线优化问题的启发式算法,目标是以最短的配送距离、最少的货运车辆与司机、最短的送货时间、最少的物流成本完成指定配送任务。
设P是某超市配送中心所在地,A和B为客户所在地,PA距离为a,PB距离为b,AB距离为c,送货时最直接的方法是利用两辆车分别给两个客户送货,总行程距离为2a+2b,若进行节约里程法进行配送路线优化,采用共同巡回送货的方式送货,那么总行程为a+b+c,节约的里程数为(2a+2b)-(a+b+c)=a+b-c,根据“三角形两边之和大于第三边”原理,可知a+b-c>0,其差值即为优化路线后节省的运输距离。
(二)节约里程法的操作步骤1、确定相关已知条件,如客户位置、各客户订货量、配送中心车辆类型与数量等。
2、计算确定配送中心与客户及客户之间的距离,一般可以通过DijkStra等算法解决网络中两点间的最短路问题。
3、根据节约里程法基本原理计算各配送点巡回优化配送比单独往返配送节约里程数,并根据节约里程数从大到小排序列表。
例:有一配送(P)具有如图所示的配送网络,其中A-J表示收货站,()内数字表示发送量(吨),路线上的数字表示道路距离(公里)。
问为使行走距离尽量小,应该如何去求配送线路?假设能够利用的车是2吨车(即最大载重量是2吨)和4吨车两种,并限制车辆一次运行的初步距离是30公里。
解题步骤:1.第一步:作出最短距离矩阵,首先从配送网络图中计算出配送中心与收货点之间以及收货点相互之间的最短距离矩阵,见下表所示:表一:最短距离矩阵(单位:公里)例如:计算A-B的节约里程项目如下:P-A的距离是:a=10P-B的距离是:b=9A-B的距离是:c=4节约里程项目为:a+b-c=10+9-4=15公里3.第三步:节约项目分类,再把节约项目由大到小顺序排列。
(1).初次解。
线路数:10总行走距离:(10+9+7+8+8+8+3+4+10+7)*2=148公里车辆台数:2吨车10台(2).二次解。
按节约里程由大到小的顺序,连接A-B,A-J,B-C连接线。
线路数:7总行走距离:148-15-13-11=109公里车辆台数:2吨车6台,4吨车1台(3).三次解。
其次节约里程最大的是C-D和D-E。
C-D,D-E两者都有可能与二次解的线路A连接,但由于A的车辆载重量与行走距离有限,不能再增加收货点。
为此,略去C-D而连接D-E。
总行走距离:109-10=99公里车辆台数:2吨车5台,4吨车1台(4).四次解。
接下来节约里程大的是A-I和E-F。
由于A已组合在完成的线路A中,所以略去,不能再增加收货点。
为此,略去A-I 而将E-F连接在线路B上。
线路数:5总行走距离:99-9=90公里车辆台数:2吨车3台,4吨车2台(5).五次解。
再继续按节约里程由大到小排出I-J,A-C,B-J,B-D,C-E。
由于同一组总有一头或两头包含在已完成的线路A中,不能再作出新的线路。
只考虑把下一组F-G组合在完成的线路B中。
总行走距离:85公里车辆台数:2吨车2台,4吨车2台线路A:4吨车,总行走距离27公里,装载量3.6吨。
用节约里程法求配送路线的优化:问题一:已知C11.6C220.8C32.2 1.00.7C43.1 2.6 3.0 2.5C53.0 2.0 2.5 2.5 3.0C64.3 3.2 3.6 3.7 3.4 1.5C72.0 1.5 2.0 1.5 2.5 1.63.0C80.7 1.8 1.6 1.2 3.0 2.6 4.0 1.4C94.5 3.5 4.0 4.0 3.0 2.6 3.0 3.2 4.2C10表1 合肥市庐阳区老乡鸡部分营业网点的行车距离2、算法的实现假设配送中心使用载重量为 4 吨的厢式货车向其10个分店(C1—C10)配送物资,各点间单位运费均一样,各客户间距离如表 1 所示,各客户配送量如表2所示分店C1C2C3C4C5C6C7C8C9C10需求 1.2 1.6 1.3 1.0 1.20.8 1.1 1.6 1.4 1.2表2 营业点物料需求表3、求配送路线的优化(具体优化步骤的过程要的,一起给我,你可以直接在草稿纸上做,拍照给我都可以,最终结果可以参考下表):根据以上数据,采用节约法优化配送路线,其结果如表3。
路线号配送路线配送距离载重量实载率%(t)123问题二:已知:1、C19.6C29.3 3.5C310.0 4.2 1.0C412.07.1 4.0 3.5C56.014.513.514.015.0C610.0 2.2 4.1 4.17.120.0C75.612.310.510.311.06.514.0C86.58.2 6.1 5.8 4.611.29.87.8C94.513.011.811.712.7 1.814.09.69.0C102、假设配送中心使用载重量为 4 吨的厢式货车向其10个分店(C1—C10)配送物资,各点间单位运费均一样,各客户间距离如表 1 所示,各客户配送量如表2所示分店C1C2C3C4C5C6C7C8C9C10需求 1.0 1.8 1.20.9 1.2 1.5 1.3 1.612 1.13求配送路线的优化亲,麻烦你啦,帮帮忙,我学的都交给老师了,555555…….。
配送线路优化的方法节约里程法学习目标技能目标:具备根据实际情况选择合理的线路优化方法进行线路优化的能力线路优化设计1、线路优化设计的意义配送线路设计就是整合影响配送运输的各种因素,适时适当地利用现有的运输工具和道路状况,及时、安全、方便、经济地将客户所需的商品准确地送达客户手中。
在配送运输线路设计中,需根据不同客户群的特点和要求,选择不同的线路设计方法,最终达到节省时间、运距和降低配送运输成本的目的配送线路优化方法一、直送式配送运输适用方法—最短路径法(标点设计最短线路)适用条件:1、由配送中心向每一位客户开展专门送货。
2、该客户的送货量一般必须满足车辆的满载。
配送效果:1、配送车辆满载运输2、配送运输路线距离最短。
配送线路优化方法二、分送式配送---节约里程法适用方法—节约里程法适用条件:1、由配送中心向多位客户开展拼装送货。
2、每位客户的送货量都不能满足车辆的满载。
配送效果:1、配送车辆满载运输2、配送运输路线距离最短。
节约里程法的意义送货时,由一辆车装载所有客户的货物,沿着设计的最佳路线依次将货物送到各位客户手中,这样既能保证按时按量将用户需要的货物及时送达,又节约车辆,节约了费用,缓解了交通紧张的压力,并减少了运输对环境造成的污染。
1、满足客户的配送需要2、减少配送车辆的使用,节约运营费,减少固定资产的投入3、社会意义节约里程法1、基本原理2、案例分析3、优缺点分析4、改进建议基本原理基本原理是几何学中三角形的一边之长必定小于另外两边之和节约里程法核心思想是依次将运输问题中的两个回路合并为一个回路,每次使合并后的总运输距离减少的幅度最大,直到达到一辆车的满载限制时,再进行下一辆车的优化,优化过程分为并行方式和串行方式两种。
节约里程法假如一家配送中心(DC)向两个用户A、B运货,配送中心到两用户的最短距离分别是a和b,A和B间的最短距离为c,A、B的货物的需求量分别是Qa和Qb,且Qa+Qb小于运输装载量Q,如图所示,如果配送中心分别送货。