低介电常数玻璃粉
- 格式:docx
- 大小:11.16 KB
- 文档页数:2
一种新型的耐高温功能性材料低熔点玻璃粉在耐高温涂料中的应用耐高温涂料是一种在电厂、钢厂、水泥厂等常年高温的应用环境下,可涂布在各种基材的高温发热部件上,提供装饰和保护作用的涂料。
随着现代工业和国防建设的迅速发展,耐高温涂料的应用温度要求越来越高。
众所周知,有机硅树脂是有机合成树脂中耐高温性能最好的树脂,而一般的有机硅树脂的分解温度在300-500度之间,因此当应用温度超过500度以上时,单靠有机硅树脂的涂层已经破坏分解,从而丧失了对基材的保护作用。
那么有没有一种材料可以在树脂分解之后依然稳定存在,持续保护基材呢?是的,答案存在于英国威姆宝莱(Williamblythe)有限公司研发制造的Flamtard V低熔点玻璃粉中!在400~500℃时有机硅树脂受热大量分解时,Flamtard V开始熔融,,当温度继续升高,在600 ℃和700 ℃时低熔点玻璃粉进一步熔化、流动铺展成连续相,接替原有的有机硅树脂膜层,并与涂层中的耐高温颜填料黏附在一起,表面变得比较平滑,形成了一层致密、完整的耐高温涂层。
Flamtard V低熔点玻璃粉具有以下特点:一.它是合成的无机非金属材料,无毒、无味,不含铅等重金属;原产于极其重视健康和环保的欧洲,配方中完全不使用含铅化合物等重金属物质,而国内某些劣质低熔点玻璃粉大量使用含铅化合物,对生产和使用人员的健康带来风险。
二.外观为平均粒径4-5微米的白色粉末,易于添加在涂料中;三.与普通玻璃相比,其玻璃转移温度(Tg)大幅度降低,Tg从1,000~1,500度降低到500度左右,符合追求低碳节能环保的国家政策;四.化学性质非常稳定,储存和运输时分类为非危险品.同时还拥有高附着力、高热稳定性;耐酸碱、耐磨、耐黄变;低热膨胀系数等优势。
集多种本领于一身的Flamtard V,在耐高温涂料中究竟表现如何?经测试,选择耐热性良好的有机硅树脂作为基料,辅以美扬时代代理的Flamtard V低熔点玻璃粉和云母、滑石等各种耐热颜填料,通过配方优化可制得在700℃保温6h后附着力仍可达到1级的高温涂料。
低介电常数材料的特点、分类及应用胡扬摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其在集成电路工艺中的应用。
指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。
正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。
最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。
关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材料 ;Air-Gap1.引言随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。
对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。
这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。
2.背景知识低介电常数材料大致可以分为无机和有机聚合物两类。
目前的研究认为,降低材料的介电常数主要有两种方法:其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。
在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。
材料分子密度的降低有助于介电常数的降低。
这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。
一、基本信息:玻璃粉是安米微纳的一种无机类方体硬质超细颗粒白色粉末,生产中使用原料高温高纯氧化硅及氧化铝等原料,再经过超洁净的生产工艺,形成无序结构的玻璃透明粉体,化学性质稳定,具有耐酸碱性、化学惰性、低膨胀系数的超耐候粉体材料;是一种抗划高透明粉料,粒径小、分散性好、透明度高、防沉效果好;经过表面改进,具有良好的亲和能力,并且有较强的位阻能力,能方便地分散于涂料中,成膜后可增加涂料丰满度,制成的水晶透明度底漆类,既保持清晰的透明度,又提供良好的抗刮性。
二、理化性能物理指标:外观:白色粉末白度:94平均粒径:1.5~13.5um 刮板细度:10~45um堆积比重:0.56~1.89g/ml比重:2.57g/ml吸油量:13-25g/100g莫氏硬度:7.2 PH:7.0 化学成分:硅铝类1、玻璃粉外观为白色粉末,微观为清澈透明。
2、玻璃粉的细度:一般为500目全通过。
平均粒径在8微米。
3、颗粒形态:方体或类圆球状颗粒,且表面较为光滑。
4、具有良好的绝缘性:由于纯度高,杂质含量低,性能稳定,电绝缘性能优异,使固化物具有良好的绝缘性能和抗电弧性能。
5、抗裂性:可以匹配物料的膨胀系数,能降低树脂固化反应的放热峰值温度,降低固化物的线膨胀系数和收缩率,从而消除固化物的内应力,防止开裂。
6、抗腐蚀性:玻璃粉不易与其他物质反应,与大部分酸、碱不起化学反应,其颗粒均匀覆盖在物件表面,具有较强的抗腐蚀能力。
7、阻燃性:玻璃粉(T801)粉体生产颗粒级配合理,使用时能减少和消除沉淀、分层现象;可使固化物的抗拉、抗压强度增强,耐磨性能提高,并能增大固化物的导热系数,增加阻燃性能。
8、经硅烷偶联剂处理的玻璃粉,对各类树脂有良好的相容性,吸附性能好,易混合分散,无结团现象。
9、玻璃粉作为功能填充料,加进有机树脂中,不但提高了固化物的各项性能,尤其是阻燃性、绝缘性、耐候性和抗刮性等。
10、玻璃粉因其折光率同绝大多数树脂的匹配,因而使涂料(尤其家具漆)有较高的透明性。
低介电常数材料分类引言:在现代科技领域中,材料的介电性质是一个非常重要的参数。
介电常数是描述材料对电场响应的能力的量度,也是决定材料在电子器件中应用的关键因素之一。
在众多材料中,有一类特殊的材料具有低介电常数,被广泛应用于微电子、光电子、通信等领域。
本文将对低介电常数材料进行分类和介绍。
一、聚合物材料聚合物材料是一类具有低介电常数的材料,其主要成分是由碳、氢、氧、氮等原子组成的高分子化合物。
聚合物材料的介电常数通常在1.5以下,具有优异的电绝缘性能和低耗电性能。
这种材料在微电子领域中被广泛应用于电子封装材料、电路板、光纤等器件中,以提高信号传输速度和减小信号损耗。
二、氧化硅材料氧化硅是一种具有低介电常数的无机材料,其介电常数一般在3以下。
氧化硅具有优异的绝缘性能和耐高温性能,被广泛应用于半导体器件中。
在微电子制造过程中,氧化硅常被用作绝缘层材料、填充材料和衬底材料等,以提高器件的性能和稳定性。
三、氮化硅材料氮化硅是一种具有低介电常数的复合材料,其介电常数通常在2以下。
氮化硅具有高硬度、高熔点和优异的抗腐蚀性能,被广泛应用于微电子和光电子器件中。
在半导体制造过程中,氮化硅常被用作绝缘层、光波导和光纤等材料,以提高器件的性能和可靠性。
四、低介电常数填充材料低介电常数填充材料是一种特殊的材料,主要用于填充微电子器件中的空隙,以减小器件中的介电常数。
这种材料通常是由微孔材料或多孔材料构成,其介电常数可以控制在1以下。
低介电常数填充材料的应用可以有效地减小信号传输中的信号损耗和串扰,提高器件的性能和可靠性。
五、低介电常数薄膜材料低介电常数薄膜材料是一种具有低介电常数的薄膜材料,其介电常数通常在2以下。
这种材料常被用作微电子器件中的绝缘层、介电层和光学层等,以提高器件的性能和稳定性。
低介电常数薄膜材料具有良好的热稳定性和机械强度,能够满足微电子器件在高温和高压环境下的应用要求。
六、低介电常数纳米材料低介电常数纳米材料是一种具有低介电常数的纳米颗粒材料,其介电常数通常在1以下。
低介电常数low k
低介电常数或称low-K材料是当前半导体行业研究的热门话题。
通过降低集成电路中使用的介电材料的介电常数,可以降低集成电路的漏电电流,降低导线之间的电容效应,降低集成电路发热等等。
介电常数较低的材料主要用于微电子领域,作为金属导线间绝缘的材料。
传统半导体使用二氧化硅作为介电材料,其介电常数约为4。
而真空的介电常数为1,干燥空气的介电常数接近于1。
低介电常数材料的研究与高分子材料密切相关。
随着制程的不断推进,二氧化硅已逐渐接近应用上的极限。
因此,低介电常数材料的研究成为了一个重要的研究方向。
此外,低介电常数材料在实验过程中应尽量减小电压和电流的损伤,同时可以通过表面dep层来保护材料不受损坏。
总的来说,低介电常数材料的研究是一个不断深入的过程,对于推动半导体行业的发展和提升集成电路的性能具有重要的意义。
如需了解更多信息,建议查阅相关论文或咨询专业人士。
低熔点玻璃粉使用方法低熔点玻璃粉是一种具有较低熔点的玻璃材料,常用于各种工艺品的制作。
它具有较高的透明度和耐热性,可以在较低的温度下熔化成液体,非常适合用于手工制作。
下面将介绍低熔点玻璃粉的使用方法。
第一步:准备工具和材料在使用低熔点玻璃粉前,首先要准备好所需的工具和材料。
工具方面,可以准备一个玻璃工艺刀、镊子、热风枪等;材料方面,需要准备低熔点玻璃粉、玻璃基板等。
第二步:设计制作方案在使用低熔点玻璃粉进行制作之前,需要事先设计好制作方案。
可以根据自己的想法和创意,确定制作的形状、图案等。
可以使用纸张或计算机软件进行绘制,以便在制作过程中有一个明确的指导。
第三步:准备玻璃基板将准备好的玻璃基板放置在工作台上,确保其平整稳固。
可以使用透明的胶水将玻璃基板固定在工作台上,以免在制作过程中发生移动或倾斜。
第四步:取适量低熔点玻璃粉根据制作方案的要求,取适量的低熔点玻璃粉。
可以使用玻璃工艺刀或镊子将玻璃粉取出,并均匀地撒在玻璃基板上。
第五步:加热熔化使用热风枪将玻璃基板上的低熔点玻璃粉加热熔化。
要注意热风枪的温度和角度,以免过热或烧焦玻璃粉。
可以将热风枪调至适当的温度,然后从较远的距离开始加热,逐渐靠近玻璃粉,直到其完全熔化为止。
第六步:整理和修饰待低熔点玻璃粉熔化后,可以使用镊子或其他工具对其进行整理和修饰,使其形成所需的形状和图案。
可以在熔化的玻璃粉上绘制线条、点缀颜色等,以增加艺术感。
第七步:冷却固化将制作好的玻璃工艺品放置在通风处,让其自然冷却固化。
不要用手触摸热玻璃,以免烫伤。
待玻璃完全冷却后,取下玻璃工艺品,即可完成制作过程。
低熔点玻璃粉的使用方法就是以上几个步骤。
在使用过程中,要注意安全,避免受伤。
同时,可以根据自己的创意和想法,灵活运用低熔点玻璃粉,制作出独一无二的艺术品。
希望以上介绍对您有所帮助。
低熔点玻璃粉的成分
低熔点玻璃粉的成分可以包括以下几种:
1. 硼酸盐:如硼酸钠、硼酸铅等。
硼酸盐是低熔点玻璃粉的主要成分,它具有较低的熔点和高的抗热震性能。
2. 硅酸盐:如硅酸钠、硅酸钙等。
硅酸盐是玻璃的主要成分之一,可以提供稳定的化学性质和良好的机械性能。
3. 碱金属氧化物:如氧化钠、氧化钾等。
碱金属氧化物可以降低玻璃的熔点,并且对玻璃的抗热震性能有一定的影响。
4. 金属氧化物:如氧化铅、氧化锌等。
金属氧化物可以提高玻璃的抗热震性能和光学性能。
5. 其他添加剂:如氟化物、硒化物等。
这些添加剂可以改变玻璃的特性,如提高透明度、调节熔点等。
玻璃粉玻璃粉为安米微纳一种无机类方体硬质超细颗粒粉末,外观为白色粉末。
生产中使用原料高温高纯氧化硅及氧化铝等原料,再经过超洁净的生产工艺,形成无序结构的玻璃透明粉体,化学性质稳定,具有耐酸碱性、化学惰性、低膨胀系数的超耐候粉体材料;是一种抗划高透明粉料,粒径小、分散性好、透明度高、防沉效果好;经过表面改进,具有良好的亲和能力,并且有较强的位阻能力,能方便地分散于涂料中,成膜后可增加涂料丰满度,制成的水晶透明度底漆类,既保持清晰的透明度,又提供良好的抗刮性。
玻璃粉,是一种易打磨抗划高透明粉料,主要用于生产高档家俱时作水晶底漆用,以及用作装修用底面两用漆。
中文名玻璃粉主要原料、SiO2、特点易打磨抗划高透明粉料,粒径小外观无定型硬质颗粒粉末PH值6-7目录1. 12. 23. 3一、简介玻璃粉末为机无定型硬质颗粒粉末,生产中使用原料为、SiO2、等电子级原料混匀后,再高温进行固相反应,形成无序结构的玻璃均质体,化学性质稳定,其耐酸性已远远超过,但在化学组成表达中按通常惯例折合成氧化物形成,如:PbO,SiO2等表示。
请注意区别.物理指标:外观:白色粉末白度:≥94:平均粒径:±比重:ml吸油量:28±100g莫氏硬度:化学成分:硅酸盐类二、特性1、玻璃粉透明度好、硬度高、粒径分布均匀。
2、玻璃粉分散性好,与树脂和油漆体系中的其他成分相溶性佳。
3、玻璃粉经多次表面处理,在油漆体系中作填充,漆膜不带蓝光,重涂性好。
4、用在高档耐刮伤面漆中,可增加面漆的硬度、韧度,提高漆膜的抗刮伤性能,具有消光作用,可提高漆膜的耐候性。
5、同比滑石粉,玻璃粉在油漆开稀后较易沉淀,故防沉措施应适当加强。
三、应用说明玻璃粉是一种易打磨抗划高透明粉料,粒径小、分散性好、透明度高、防沉效果较好;经过多次表面改进,具有良好的亲和能力,并且有较强的位阻能力,能方便地分散于涂料中,成膜后可增加涂料丰满度,制成的水晶透明底漆类,既保持清漆的透明度,又提供良好的打磨性。
玻璃粉的产品参数
一、产品简介:
玻璃粉是以玻璃制品为原料,通过破碎、磨碎、筛分等工艺加工而成的粉状产品。
玻璃粉具有化学稳定性好、耐高温、耐酸碱腐蚀、绝缘性能好等特点,广泛应用于建材、化工、光电等领域。
二、产品规格:
1. 粒度:粒度为10目至3000目可根据客户要求定制。
2. 颜色:透明、白色、灰色等,可根据客户需求定制。
3. 化学成分:硅酸盐含量>95%,钠与钙的含量<3%。
4. 密度:2.4g/cm³-2.6g/cm³。
5. 抗折强度:根据客户需求,可定制不同的抗折强度。
6. 熔点:约1500°C。
7. 包装形式:一般使用塑料袋、编织袋、桶装等包装形式。
三、产品特性:
1. 高纯度:采用高品质的玻璃原料,确保了产品的纯度和稳定性。
2. 正确尺寸:经过严格的筛分和磨碎工艺,确保了产品的粒度符合要求。
3. 稳定性好:产品具有优异的化学稳定性,能够在高温、酸碱环境下保持稳定。
4. 条状微粉:可根据需要调配出不同细度和加工要求的产品。
5. 尺寸可调性好:可根据客户需求进行定制生产,符合不同领域的使用要求。
6. 可重复利用:环保性能好,可循环利用,符合可持续发展理念。
四、产品应用:
1. 建筑领域:可用于混凝土和水泥制品中,提高强度和耐久性。
2. 化工领域:可作为填料和助剂,用于橡塑制品、涂料、油漆等的生产。
3. 光电领域:可用于光学镜头和光学玻璃的制造。
4. 电子领域:可用于印刷电路板、涂料等的生产。
以上即为关于玻璃粉的产品参数,希望对您有所帮助。
第43卷第4期2024年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.4April,2024CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能卫志洋,王晓东,苏㊀腾,陈欢乐,高㊀峰,苗㊀洋(太原理工大学材料科学与工程学院,太原㊀030024)摘要:低介电常数㊁低介电损耗的微晶玻璃是制造低温共烧陶瓷基板的重要材料㊂本文采用熔融水淬法制备了CaO-B 2O 3-SiO 2(CBS)微晶玻璃,重点研究了m (CaO)/m (SiO 2)质量比㊁B 2O 3含量对CBS 微晶玻璃介电性能的影响㊂结果表明:CBS 微晶玻璃的主要晶相有Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂随着m (CaO)/m (SiO 2)质量比的增加,介电常数增加,介电损耗先降低后增加;硅灰石相的增多使介电损耗从2.87ˑ10-3降到1.36ˑ10-3,介电损耗随着SiO 2㊁Ca 2B 2O 5和CaB 2O 4含量的增加而增大㊂随着B 2O 3含量的增加,介电常数先增加后减少,而介电损耗则相反㊂当m (CaO)/m (SiO 2)质量比为0.89㊁B 2O 3含量为15%(质量分数)时,在900ħ烧结3h,CBS 微晶玻璃的热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为5.85,介电损耗为1.37ˑ10-3(10GHz)㊂关键词:CaO-B 2O 3-SiO 2;微晶玻璃;介电常数;介电损耗;微观结构;低温共烧中图分类号:TQ174.1㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)04-1274-10Preparation and Dielectric Properties of CaO-B 2O 3-SiO 2Glass-CeramicsWEI Zhiyang ,WANG Xiaodong ,SU Teng ,CHEN Huanle ,GAO Feng ,MIAO Yang(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)Abstract :Glass-ceramics with low dielectric constant and low dielectric loss is an important material for the manufacture of low temperature cofired ceramic substrates.CaO-B 2O 3-SiO 2(CBS)glass-ceramics was prepared by melt-water quenching method,and the effects of m (CaO)/m (SiO 2)mass ratio and B 2O 3content on the dielectric properties of CBS glass-ceramics were studied.The results show that the main crystalline phases of CBS glass-ceramics are Ca 3Si 3O 9,Ca 2B 2O 5,CaB 2O 4,SiO 2and Ca 2SiO 4.The dielectric constant increases,the dielectric loss decreases first and then increases with the increase of m (CaO)/m (SiO 2)mass ratio.The increase of wollastonite phase decreases the dielectric loss from 2.87ˑ10-3to 1.36ˑ10-3.The dielectric loss increases with the increase of SiO 2,Ca 2B 2O 5and CaB 2O 4content.With the increase of B 2O 3content,the dielectric constant increases first and then decreases,and the dielectric loss is reversed.When m (CaO)/m (SiO 2)mass ratio is 0.89and B 2O 3content is 15%(mass fraction),the coefficient of thermal expansion is 7.16ˑ10-6㊀ħ-1,the dielectric constant is 5.85,and the dielectric loss is 1.37ˑ10-3(10GHz)after sintering at 900ħfor 3h.Key words :CaO-B 2O 3-SiO 2;glass-ceramics;dielectric constant;dielectric loss;microstructure;low temperature co-firing 收稿日期:2023-10-18;修订日期:2024-01-09基金项目:国家留学基金委山西省研究项目(2022-042);山西省重点研发计划项目(202102030201006);山西省基础研究计划(202203021221059)作者简介:卫志洋(1997 ),男,硕士研究生㊂主要从事低温共烧陶瓷的研究㊂E-mail:weizhiyang27@通信作者:苗㊀洋,博士,副教授㊂E-mail:miaoyang198781@ 0㊀引㊀言当今时代信息技术和高频通信迅猛发展,对性能卓越的介电材料需求日益增加㊂低介电常数㊁低损耗的材料具有较小的延迟且适用于新一代通信的数据传输[1]㊂CaO-B 2O 3-SiO 2(CBS)微晶玻璃因优异的介电特性及广泛的应用前景受到关注㊂在CBS 体系中,硅灰石的介电常数εr 和介电损耗tan δ较低,常用于陶瓷基板材料领域[2]㊂微晶玻璃的性能在很大程度上依赖于其化学组成,尤其是钙硅比和氧化硼含量㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1275㊀适量的CaO能提高化学稳定性,对CBS的机械强度有一定的强化作用㊂Ca2+具有高极化率,因此钙含量较高的CBS的εr都较大,需要控制氧化钙的含量㊂CaO由CaCO3分解得到,B2O3和SiO2都是网络形成体,但是网络结构不同,主要起骨架的作用[3]㊂B2O3是二维层状结构,主要由[BO3]连接而成㊂当加入CaO时,系统中游离氧增加,并与[BO3]结合生成[BO4],[BO4]可以强化CBS的强度[4]㊂当加入过量的B2O3时,大量的B3+破坏陶瓷的结构,使陶瓷的性能恶化,削弱了CBS的介电性能[5]㊂SiO2是三维结构,由[SiO4]构成,其介质损耗小,但熔融温度高,制备微晶玻璃时有很大的困难㊂Ca2+可以与Si O反应,会改变网络的原有结构[6],粒子位移更容易,在较高的温度下,液相的黏度会降低,晶体生长更容易,促进微晶玻璃的析晶㊂He等[7]通过两步烧结工艺制备了三种配方的CBS,研究了硼对CBS微晶玻璃晶相和微观结构的影响㊂观察到硼含量较高的样品结构疏松,晶粒排列被破坏;当n(Ca)ʒn(Si)ʒn(B)摩尔比为1.0ʒ1.0ʒ0.6时,在700ħ保温1h,再升温至900ħ时介电性能良好,εr均为6(1㊁10MHz),tanδ为2.27ˑ10-3(1MHz)和3.37ˑ10-3(10MHz)㊂Chiang等[8]制备了6种CaO-B2O3-SiO2玻璃试样,探讨了三种组分对致密性㊁热性能和介电性能的影响㊂高CaO含量的样品烧结温度低,密度较大,高SiO2含量的样品烧结温度高,密度较小㊂Ca2+的极化率为3.16Å3,远高于B3+的0.05Å3和Si4+的0.87Å3,因此高CaO的试样εr较高㊂[SiO4]对玻璃的结构有强化作用,当SiO2含量较高时,玻璃的介电损耗较小㊂韦鹏飞等[9]通过熔融法制备了CBS,主要探究了B2O3对CBS性能的影响㊂结果发现,当B2O3为35%(文中均为质量分数)时,在850ħ下烧结15min,介电性能最好,εr为6.42,tanδ为0.0009(9.7Hz)㊂现有研究显示,钙硅比和氧化硼含量的调整可以显著影响微晶玻璃的结构与性能㊂本研究旨在深入探讨这两个关键因素如何协同作用,从而影响钙硼硅微晶玻璃的介电性能㊂通过实验研究和理论分析,着眼于通过精确控制化学成分来优化微晶玻璃的介电特性,以满足现代高频电子设备的严苛要求㊂本文采用熔融淬火法制备了CBS微晶玻璃,在低温共烧陶瓷(low temperatrue co-fired ceramic,LTCC)基板制作要求的烧结温度范围内,重点研究了m(CaO)/m(SiO2)质量比和B2O3对CBS材料介电性能的影响㊂1㊀实㊀验1.1㊀样品制备原料为CaCO3(99.99%)㊁SiO2(99.99%)㊁H3BO3(99.99%),购自麦克林试剂公司,表1和表2分别为不同m(CaO)/m(SiO2)质量比和不同B2O3含量的CRS玻璃配方㊂按照表中设计的原料配比,准确称量三种氧化物粉末总计30g,将原料研磨3h,置于氧化铝坩埚,在1500ħ下熔融2h㊂将高温下的熔融玻璃水淬得到碎玻璃,研磨成粉并过200目(74μm)筛,然后球磨干燥得到玻璃粉末㊂造粒压块,将生坯样品在500ħ下加热1h 除去黏合剂,然后在六个温度(800㊁825㊁850㊁875㊁900和925ħ)下烧结3h,空气中加热速率为5ħ/min㊂表1㊀不同m(CaO)/m(SiO2)质量比的CBS玻璃配方Table1㊀CBS glass formulations with different m(CaO)/m(SiO2)mass ratiosNumber Mass fraction/%CaO B2O3SiO2m(CaO)/m(SiO2) CBS132.5015.0052.500.62CBS240.0015.0045.000.89CBS342.9215.0042.10 1.02CBS448.0015.0037.00 1.30表2㊀不同B2O3含量的CBS玻璃配方Table2㊀CBS glass formulations with different B2O3contentNumber Mass fraction/%CaO SiO2B2O3m(CaO)/m(SiO2) CBS543.3048.608.100.89CBS642.4047.6010.000.891276㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷续表Number Mass fraction /%CaO SiO 2B 2O 3m (CaO)/m (SiO 2)CBS740.0045.0015.000.89CBS837.7042.3020.000.891.2㊀结构与性能表征烧结试样的体积密度通过阿基米德排水法测量㊂采用X 射线粉末衍射仪(XRD,TD-3500)测定相组成,测试电压为35kV,电流为25mA,扫描速率为5(ʎ)/min,扫描范围为10ʎ~80ʎ,Cu-K α辐射㊂利用扫描电子显微镜(SEM,ZEISS)观察微晶玻璃的微观结构㊂采用同步热分析仪(NETZSCH,STA449)进行DSC 测试,在空气气氛中以10ħ/min 的速率从10ħ升至1100ħ,氧化铝坩埚用作参考材料,测试样品是过筛后的玻璃粉㊂拉曼光谱(RENISHAW)测量的波数范围为100~1100cm -1㊂在TE011模式下,使用Rohde&Schwarz网络分析仪(ZNA43,10MHz ~43.5GHz)测量烧结样品的Q 值,以计算介电性能㊂2㊀结果与讨论2.1㊀m (CaO )/m (SiO 2)质量比对CBS 微晶玻璃介电性能的影响固定B 2O 3的含量,设定m (CaO)/m (SiO 2)质量比为0.62㊁0.89㊁1.02㊁1.30,制得CBS i (i =1㊁2㊁3㊁4,下同)系列,表征m (CaO)/m (SiO 2)质量比对CaO-B 2O 3-SiO 2的影响㊂表1为具体的配方组成㊂2.1.1㊀差热分析图1㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的DSC 曲线Fig.1㊀DSC curves of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 图1为四种不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2玻璃的DSC 曲线㊂四个DSC 曲线中有较大的析晶峰和吸热台阶,其中CBS1和CBS4的放热峰有较宽的温度范围,两个放热峰的峰值温度相差较小,导致第二个放热峰不明显[10]㊂所有玻璃的吸热台阶都在625~675ħ,此时液相开始出现,改变m (CaO)/m (SiO 2)质量比后,玻璃化转变温度相差不大㊂放热峰峰值温度分别为841.9㊁831.7㊁852.1㊁853.9ħ,此放热峰对应生成的CaSiO 3相㊂玻璃的第二个放热峰在图中不明显,此放热峰对应Ca 2B 2O 5晶体的析出[11]㊂2.1.2㊀密度及收缩率体积密度能够反映陶瓷材料的致密化程度㊂体积密度越大样品越致密,微晶玻璃中的气孔就越少[12]㊂图2为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率㊂当B 2O 3的质量分数为15%时,在烧结温度增加的情况下,CBS1和CBS4的密度减小,这是由于升温结晶过程中玻璃相在不断减小,而结晶生成新相的密度没有玻璃相的密度高㊂而CBS2和CBS3的密度先增加后减小,这是在升温过程中由于液相作用下微粒的流动和结晶以及在这个过程中气孔排除的结果㊂2.1.3㊀物相分析图3为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱㊂XRD 晶相组成上略有差异,主要晶相包括Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂对比CBS i 的XRD 谱,当Ca 2+的含量较少时,[SiO 4]会与[SiO 4]结合生成SiO 2[13]㊂当Ca 2+的含量增加时,CBS2中硅灰石衍射峰强度大于SiO 2的衍射峰强度,故CBS2中硅灰石相的数量相对其他微晶玻璃较多,这有益于材料的介电性能㊂随着m (CaO)/m (SiO 2)质量比的增加,微晶玻璃中SiO 2逐渐较少,CaO 与[BO 3]结合增多,开始出现Ca 2B 2O 5晶相衍射峰并增强㊂第4期卫志洋等:CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能1277㊀图2㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率Fig.2㊀Volume density,density and transverse shrinkage of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios图3㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.3㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios 图4㊀不同m(CaO)/m(SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱Fig.4㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.4㊀拉曼图谱分析图4为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱㊂CBS1微晶玻璃的拉曼光谱在大约114㊁143㊁400和558cm -1处为SiO 2振动峰㊂其中114㊁143和400cm -1处的振动峰归因于六层结构内的Si O Si 对称拉伸-弯曲㊂184cm -1处的弱峰归因于O 在Si O Si 中的对称拉伸-弯曲,该模式与四方α-方英石结构框架内的六元SiO 4四面体环相关[14-15]㊂大约503cm -1处的弱峰归属于CaSiO 3中的Ca O 拉伸/弯曲[15-16]㊂而558cm -1属于CaSiO 3中的振动[16-17]㊂CBS2和CBS3㊁CBS4微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁282㊁313㊁400㊁439㊁486㊁503㊁558㊁681和761cm -1处出现峰值㊂282㊁313㊁439和558cm -1处的峰被指定为CaSiO 3中的振动㊂以486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸/弯曲㊂681和761cm -1处的峰与桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲有关[16-18]㊂而114㊁143和400cm -1处的峰与方英石的Si O Si 对称拉伸/弯曲有关[14,18-19]㊂196cm -1处的峰对应于石英四元环内的Si O Si 对称拉伸/弯曲[20-21]㊂增加钙硅比会导致玻璃网络中的硅氧四面体结构减少,钙离子则与更多的氧离子形成配位键,这种结构变化导致玻璃网络的刚性增加㊂钙离子具有较高的极化率,其极化作用会增强玻璃网络的极性;钙离子的极化作用增强,导致玻璃网络的极性增加,这使得玻璃中的电子云重叠增加;钙离子与氧离子的配位键逐渐增强,而硅氧四面体之间的共价键则逐渐减弱,这使得玻璃网络更加紧密,热膨胀系数降低,玻璃网络的内部应力和应变增加,导致拉曼峰向短波方向移动㊂极性的增加又使得介电常数增加,此外,钙离子与氧离子配位键的增强还会导致玻璃网络的电子云重叠增加,从而增强电子的流动性,1278㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷增加电导率,这对介电性能产生负面影响㊂2.1.5㊀SEM 显微形貌分析图5为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片㊂试样温度为最高密度所对应的烧结温度,部分微裂纹为氢氟酸腐蚀的结果㊂图中纤维状㊁角砾㊁条带状等交错的晶体为硅灰石相,而球状晶体主要是SiO 2[21]㊂其中玻璃相大多被腐蚀完全,露出各种大小晶粒,含部分间隙㊂随着Ca 2+的增加,Si O 键的结构被破坏,造成玻璃结构的疏松,这促进了晶体的形成和长大,增加了试样中晶相的数量[22]㊂在图5(b)中,大部分晶相为硅灰石,其余图5(a)㊁(c)㊁(d)中SiO 2以球状晶相包裹住其他晶相,不易看出㊂致密程度只是影响微晶玻璃介电性能的一个因素,晶相的组成和数量也有很大的影响[23]㊂图5㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片Fig.5㊀SEM images of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.6㊀介电性能分析图6㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的介电常数和介电损耗Fig.6㊀Dielectric constant and dielectric loss of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 微晶玻璃材料是多相系统,包括晶相㊁玻璃相和气相㊂影响材料介电常数的因素包括晶相的组成㊁数量和相的介电常数[24]㊂图6为四种不同m (CaO)/m (SiO 2)质量比的微晶玻璃的介电性能㊂增加Ca 2+会降低试样的致密化程度,同时结构被破坏,材料的极化强度增强[25],介电常数也增加㊂介电损耗随着m (CaO)/m (SiO 2)质量比明显降低,这是由于硅灰石相的介电损耗较低,随着硅灰石相的增多,介电损耗从2.26ˑ10-3降到1.36ˑ10-3;继续增大m (CaO)/m (SiO 2),SiO 2㊁Ca 2B 2O 5和Ca 3B 2O 6开始出现并增加,试样的介电损耗又开始增大㊂可以得出,当m (CaO)/m (SiO 2)质量比为0.89时,介电性能最佳㊂2.2㊀B 2O 3对CBS 微晶玻璃介电性能的影响当m (CaO)/m (SiO 2)质量比为0.89时,设定B 2O 3的含量为8.1%(文中均为质量分数)㊁10.0%㊁15.0%㊁20.0%㊁26.0%,制得CBS i (i =5㊁6㊁7㊁8,下同)第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1279㊀系列,表征了B2O3含量对CaO-B2O3-SiO2的影响㊂2.2.1㊀差热分析图7为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线㊂不同DSC曲线中都有较大的析晶峰及吸热台阶[26]㊂放热峰峰值温度分别为835.3㊁833.9㊁831.7㊁845.1ħ,整体趋势是先降低后升高,此时生成CaSiO3相,说明B2O3含量的适当增加会使CaSiO3的析出温度降低,更易在较低温度下析出㊂硅灰石的介电性能较好,所以需要更多的硅灰石以提升CBS的介电性能[27]㊂当B2O3含量为20%时,CBS8的CaSiO3析晶峰峰值温度比CBS7增加了15ħ左右,所需的温度升高,从而增大了烧结难度㊂而且当系统中出现大量的B3+时,会抢夺与Si4+反应的Ca2+,进而影响CaSiO3的析出[28]㊂两个析晶峰之间的温度差距较小不易看出,使得第二个放热峰不太明显,此放热峰相应生成Ca2B2O5晶相,每种玻璃均出现了反映玻璃化转变的吸热台阶,玻璃网络中出现液相㊂玻璃化转变温度也是先降低后略微升高,说明硼的存在可以加速玻璃化,同时降低玻璃的熔点,有利于结晶相的析出[29]㊂图7㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线Fig.7㊀DSC curves of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.2㊀密度及收缩率图8为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率㊂样品的密度随着温度的增加先增加后减小[30]㊂B2O3能够与游离氧结合生成[BO4],促进CBS结构的致密,当B2O3含量过量时,以独立的层状结构存在,使CBS结构中的气孔增多㊂当B2O3含量为13%时,试样的体积密度整体高于其他对比量,此时试样的烧结致密化程度最高㊂随着B2O3含量的增加,收缩率随着试样中颗粒间缝隙以及气孔的变化而略微下降,下降至接近14%㊂图8㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率Fig.8㊀Volume density,density and transverse shrinkage of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.3㊀物相分析图9为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的XRD谱㊂前两种玻璃的XRD曲线峰型相似,主要1280㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷的晶相均为Ca 3Si 3O 9㊁Ca 2B 2O 4㊁Ca 2B 2O 5和SiO 2,随着B 2O 3含量的增加及Ca 2SiO 4析出,SiO 2的晶相峰强度逐渐降低,硅灰石衍射峰的强度逐渐增强㊂B 2O 3的增加会开放系统的网络结构,离子在网络外的运动变得容易,液相的黏度降低,促进晶体的形成和长大,这对晶体的结晶是有利的[31]㊂此外,随着B 2O 3含量的增加,Ca 2B 2O 5开始析出,SiO 2减小,这对介电性能也有所影响㊂2.2.4㊀拉曼图谱分析图10为不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱,CBS5㊁CBS6和CBS7㊁CBS8微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁253㊁282㊁313㊁373㊁400㊁426㊁458㊁486㊁503㊁558㊁623㊁681㊁761㊁797㊁910㊁954和981cm -1处出现峰值㊂253㊁282㊁313㊁373和558cm -1处的峰为CaSiO 3中的振动[14,17-18,20]㊂以253㊁486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸-弯曲振动[32-33]㊂此外,623㊁681㊁761和797cm -1处的峰归因于桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲㊂910㊁954和981cm -1处的峰归因于CaSiO 3中分别具有3㊁2和1个非桥氧单元的四面体硅酸盐单元的对称拉伸[17,19-20]㊂114㊁143㊁400㊁426和458cm -1处的峰归属于方英石六元环内Si O Si 键的对称拉伸-弯曲振动㊂196cm -1处的峰对应于柯石英四元环内Si O Si 键的对称拉伸-弯曲[17-18,20]㊂当增加氧化硼的质量分数时,玻璃中的[BO 3]八面体结构增加,这使得玻璃网络更加开放,热膨胀系数增加㊂玻璃网络的内部应力和应变降低,导致拉曼峰向长波方向移动㊂图9㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.9㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 图10㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱Fig.10㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 2.2.5㊀SEM 微观形貌分析图11为不同B 2O 3含量的CBS 微晶玻璃的SEM 照片㊂由于氢氟酸的腐蚀完全,试样的晶相已完全显露㊂图11(a)中大都是球状,只有中间部分可以看到板状晶体,此时试样中除玻璃相外,以SiO 2居多,还有部分的硅灰石相生成㊂随着B 2O 3含量的增加,图11(b)㊁(c)中呈纤维状㊁角砾㊁条带状的硅灰石相开始增多,且晶体的间隙相对较小,晶粒增大,表明B 2O 3含量的升高使结晶过程明显增强[34]㊂图11(d)中出现细小粒状㊁柱状的SiO 2,晶粒细小而且数量较多,但还没有长大,腐蚀所暴露的间隙说明了玻璃相的位置,所以介电损耗会比其他试样增加[35]㊂2.2.6㊀介电性能分析图12为不同B 2O 3含量的CBS 试样的介电常数和介电损耗㊂随着B 2O 3含量的升高,介电常数先增加后减少,介电损耗则相反㊂当B 2O 3含量为8.1%时,晶相以SiO 2居多,硅灰石被SiO 2包裹,由于SiO 2的介电常数较低,为3.8,所以此阶段试样的介电常数也比较低,为6.22;当B 2O 3含量开始增加,由于硅灰石相的介电常数比SiO 2高,但介电损耗比较低,此时试样主要是硅灰石相㊁少量的SiO 2以及玻璃相,所以介电常数增加,介电损耗下降㊂结合图11(d)和图9的XRD 谱,大的孔隙以及Ca 2B 2O 4的逐渐增多是介电损耗增加的主要原因㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1281㊀图11㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的SEM照片Fig.11㊀SEM images of CaO-B2O3-SiO2glass-ceramics with different B2O3content图12㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的介电常数和介电损耗Fig.12㊀Dielectric constant and dielectric loss of CaO-B2O3-SiO2glass-ceramics with different B2O3content㊀㊀表3为本文与几种当前商用LTCC基板材料在性能上的对比,可知本文材料基本可以达到当前材料应用的要求㊂表3㊀本文与几种典型商用LTCC基板材料对比Table3㊀This thesis compares with several typical commercial LTCC substrate materialsLTCCs(main composition)Supplierεr tanδ/10-3CTE/(10-6㊀ħ-1) A6M(CaO-B2O3-SiO2)Ferro 5.90<2@10.0GHz7.00C0-d720(MgO-Al2O3-SiO2)Kyocera 4.900.85@1MHz 2.10951(Al2O3+CaZrO3+glass)Dupont7.806@3.0GHz 5.80 This thesis 5.85 1.37@10.0GHz7.163㊀结㊀论1)通过熔融水淬法制备出的CBS微晶玻璃密度为2.54g/cm3,试样的烧结温度为900ħ,满足温度方1282㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷面基板材料的要求㊂2)增加Ca2+能够破坏Si O键的结构,使硅灰石晶相的质量分数上升;当缺乏Ca2+时,[SiO4]会与[SiO4]结合,生成SiO2相㊂钙离子的极化作用导致玻璃网络的极性增加,最终导致介电常数的增加㊂硼的存在加速了玻璃化,降低了玻璃的熔点,晶相的析出更加容易,硅灰石晶相数量的增加,会影响材料的介电性能㊂介电常数先增加后减少,介电损耗则相反㊂3)通过调节m(CaO)/m(SiO2)质量比以及B2O3含量得到了性能良好的微晶玻璃㊂当m(CaO)/m(SiO2)质量比为0.89,B2O3质量分数为15%时,热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为εr为5.85,介电损耗tanδ为1.37ˑ10-3(10GHz)㊂参考文献[1]㊀LIN Z H,LI M H,HE J Q,et al.Effect of Ta2O5addition on the structure,crystallization mechanism,and properties of CaO-B2O3-SiO2glassesfor LTCC applications[J].Ceramics International,2023,49(3):4872-4880.[2]㊀曹㊀禹,海㊀韵,朱宝京,等.低温共烧陶瓷用玻璃材料研究进展[J].硅酸盐学报,2022,50(4):1182-1192.CAO Y,HAI Y,ZHU B J,et al.Research progress on glass materials for low-temperature co-fired ceramics[J].Journal of the Chinese Ceramic Society,2022,50(4):1182-1192(in Chinese).[3]㊀WANG M,ZUO R Z,JIN J,et al.Investigation of the structure evolution process in sol-gel derived CaO-B2O3-SiO2glass ceramics[J].Journalof Non-Crystalline Solids,2011,357(3):1160-1163.[4]㊀周丹丹.低温共烧陶瓷CaO-B2O3-SiO2的组成㊁结构与性能的研究[D].上海:华东理工大学,2018.ZHOU D D.Study on the component,structure and properties of low temperature sintered CaO-B2O3-SiO2ceramics[D].Shanghai:East China University of Science and Technology,2018(in Chinese).[5]㊀JIA A Q,ZHANG W J,CHENG X Y,et al.Effects of B2O3contents on crystallization behaviors and dielectric properties of CaO-B2O3-SiO2glass ceramics[J].Key Engineering Materials,2016,680:301-305.[6]㊀DAI B,ZHU H K,ZHOU H Q,et al.Sintering,crystallization and dielectric properties of CaO-B2O3-SiO2system glass ceramics[J].Journal ofCentral South University,2012,19(8):2101-2106.[7]㊀HE D F,GAO C.Effect of boron on crystallization,microstructure and dielectric properties of CBS glass-ceramics[J].Ceramics International,2018,44(14):16246-16255.[8]㊀CHIANG C C,WANG S F,WANG Y R,et al.Characterizations of CaO-B2O3-SiO2glass-ceramics:thermal and electrical properties[J].Journal of Alloys and Compounds,2008,461(1/2):612-616.[9]㊀韦鹏飞,郝凌云,杨晓莉,等.Ca/Si摩尔比对CBS系微晶玻璃结构与性能的影响[J].电子元件与材料,2014,33(2):65-67.WEI P F,HAO L Y,YANG X L,et al.Effect of Ca/Si mol ratio on microstructure and properties of CaO-B2O3-SiO2glass ceramics[J].Electronic Components and Materials,2014,33(2):65-67(in Chinese).[10]㊀SHAO H B,WANG T W,ZHANG Q T.Preparation and properties of CaO-SiO2-B2O3glass-ceramic at low temperature[J].Journal of Alloysand Compounds,2009,484(1/2):2-5.[11]㊀FU Y,LI P Z,TAO H J,et al.The effects of Ca/Si ratio and B2O3content on the dielectric properties of the CaO-B2O3-SiO2glass-ceramics[J].Journal of Materials Science:Materials in Electronics,2019,30(15):14053-14060.[12]㊀ZHU H K,ZHOU H Q,LIU M,et al.Microstructure and microwave dielectric characteristics of CaO-B2O3-SiO2glass ceramics[J].Journal ofMaterials Science:Materials in Electronics,2009,20(11):1135-1139.[13]㊀MAO H J,WANG F L,CHEN X Y,et al.Preparation of BaO-MgO-Al2O3-SiO2/Al2O3glass-ceramic/ceramic LTCC substrate material formicrowave application[J].Journal of Materials Science:Materials in Electronics,2023,34(4):247.[14]㊀KINGMA K J,HEMLEY R.Raman spectroscopic study of microcrystalline silica[J].American Mineralogist,1994,98(7):975-978.[15]㊀BATES J B.Raman spectra ofαandβcristobalite[J].The Journal of Chemical Physics,1972,57(9):4042-4047.[16]㊀KUNRCXR J D.Raman and infrared study of pressure-induced structural changes in CaMgSirO6,and CaSiO,glasses[J].AmericanMineralogist,1992,77,258-269.[17]㊀WANG S F,LAI B C,HSU Y F,et al.Dielectric properties of CaO-B2O3-SiO2glass-ceramic systems in the millimeter-wave frequency range of20-60GHz[J].Ceramics International,2021,47(16):22627-22635.[18]㊀LI J F,SUN Y Q,LI Z M,et al.Short-range and medium-range structural order in CaO-SiO2-TiO2-B2O3glasses[J].ISIJ International,2016,56(5):752-758.[19]㊀PARTYKA J,LES'NIAK M.Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials fromSiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,152:82-91.第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1283㊀[20]㊀TSAI Y L,HUANG E,LI Y H,et al.Raman spectroscopic characteristics of zeolite group minerals[J].Minerals,2021,11(2):167.[21]㊀HUANG B H,XIA T,SHANG F,et al.A new BaB2O4microwave dielectric ceramic for LTCC application[J].Journal of the European CeramicSociety,2023,43(14):6107-6111.[22]㊀ZHANG P,HAO M M,XIAO M,et al.Crystal structure and microwave dielectric properties of novel BiMg2MO6(M=P,V)ceramics with lowsintering temperature[J].Journal of Materiomics,2021,7(6):1344-1351.[23]㊀LIU J Z,WU X F,XU N X,et al.Crystallization,sinterability and dielectric properties of CaO-B2O3-SiO2glass ceramics with Al2O3additives[J].Journal of Materials Science:Materials in Electronics,2015,26(11):8899-8903.[24]㊀关振铎,张中太,焦金生.无机材料物理性能[M].2版.北京:清华大学出版社,2011.GUAN Z D,ZHANG Z T,JIAO J S.Physical properties of inorganic materials[M].2nd ed.Beijing:Tsinghua University Press,2011(in Chinese).[25]㊀YAN T N,ZHANG W J,MAO H,et al.The effect of CaO/SiO2and B2O3on the sintering contraction behaviors of CaO-B2O3-SiO2glass-ceramics[J].International Journal of Modern Physics B,2019,33(9):1950070.[26]㊀ZHU H Y,FU R L,AGATHOPOULOS S,et al.Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2glasses and glass-ceramics forLTCC applications[J].Ceramics International,2018,44(9):10147-10153.[27]㊀DING Y Y,LIU S X,LI X Y,et al.Luminescent low temperature co-fired ceramics for high power LED package[J].Journal of Alloys andCompounds,2012,521:35-38.[28]㊀WANG S F,LAI B C,HSU Y F,et al.Physical and structural characteristics of sol-gel derived CaO-B2O3-SiO2glass-ceramics and theirdielectric properties in the5G millimeter-wave bands[J].Ceramics International,2022,48(7):9030-9037.[29]㊀ZHOU X H,LI E Z,YANG S L,et al.Effects of La2O3-B2O3on the flexural strength and microwave dielectric properties of low temperatureco-fired CaO-B2O3-SiO2glass-ceramic[J].Ceramics International,2012,38(7):5551-5555.[30]㊀ALENCAR M V S,BEZERRA G V P,SILVA L D,et al.Structure,glass stability and crystallization activation energy of SrO-CaO-B2O3-SiO2glasses doped with TiO2[J].Journal of Non-Crystalline Solids,2021,554:120605.[31]㊀FU S L,HSI C S,KANG C Y,et al.Investigations of lead-free glasses for post-fired and embedded thick film resistors[J].Key EngineeringMaterials,2013,573:137-142.[32]㊀HAJIAN A,ARTEMENKO A,KROMKA A,et al.Impact of sintering temperature on phase composition,microstructure,and porosificationbehavior of LTCC substrates[J].Journal of the European Ceramic Society,2022,42(13):5789-5800.[33]㊀DONG C,WANG H,YAN T N,et al.The influence of CaF2doping on the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2glass-ceramics for LTCC applications[J].Crystals,2023,13(5):748.[34]㊀LU Y,SHAN Y T,GUO X,et al.Effect of silica addition on microstructure,sintering behavior,and dielectric properties of borosilicateglass/alumina composites for LTCC application[J].Journal of Materials Science:Materials in Electronics,2023,34(5):443. [35]㊀任海深.B2O3-La2O3-MgO-TiO2微晶玻璃基低温共烧陶瓷研究[D].上海:中国科学院上海硅酸盐研究所,2018.REN H S.Study on B2O3-La2O3-MgO-TiO2glass-ceramics based LTCC materials[D].Shanghai:Shanghai Institute of Ceramics,Chinese Academy of Sciences,2018(in Chinese).。
低介电常数材料fteos
低介电常数材料(Low-K materials)是一种在集成电路制造中使用的材料,其特点是具有较低的介电常数。
介电常数是描述材料对电场的响应能力的物理量,低介电常数意味着材料在电场作用下的响应能力较弱。
在集成电路中,使用低介电常数材料可以减少信号传输的延迟和能量损耗,从而提高电路的工作速度和效率。
FTEOS是一种常用的低介电常数材料,是指氟化硅玻璃(Fluorinated Tetraethylorthosilicate)。
FTEOS材料具有较低的介电常数,通常在2.0以下,因此被广泛应用于半导体制造中的超大规模集成电路(VLSI)和超大规模集成电路(ULSI)的制作工艺中。
使用FTEOS材料作为绝缘层可以减少晶体管之间的电容耦合效应,降低信号传输延迟,提高电路的工作速度。
除了FTEOS之外,还有许多其他的低介电常数材料被用于集成电路的制造中,如氧化二硅(SiO2)、氮化硅(Si3N4)、氧化氮化硅(SiON)等。
这些材料都具有较低的介电常数,可以在一定程度上改善集成电路的性能。
在选择低介电常数材料时,除了介电常数之外,还需要考虑材
料的机械性能、热稳定性、化学稳定性等因素,以确保材料在集成电路制造过程中能够满足要求,并且不会对器件的可靠性和稳定性造成负面影响。
总的来说,低介电常数材料在集成电路制造中起着至关重要的作用,能够帮助提高电路的性能和可靠性,促进集成电路技术的发展。
低介电常数玻璃粉低介电常数玻璃粉: 高科技中的关键材料1. 引言低介电常数玻璃粉作为一种重要的高科技材料,在电子行业、通信领域以及光电科技中扮演着重要的角色。
它的独特特性使其成为了现代科技发展中不可或缺的一部分。
本文将带您深入探讨低介电常数玻璃粉的定义、应用及其在相关领域中的意义。
2. 低介电常数玻璃粉的概述低介电常数玻璃粉是一种具有低介电常数特性的微粒状材料。
通常,玻璃粉由硅酸盐基础材料制成,并具有较低的介电常数值。
介电常数是材料导电性能的关键指标,它描述了材料中电磁波传播速度的能力。
低介电常数意味着在特定频率下,电磁波能够更快地在材料中传播,从而提高了信号传输和通信效率。
3. 应用领域3.1 电子行业低介电常数玻璃粉在电子行业中具有广泛应用。
它被用作集成电路(IC)的绝缘材料,用于减少电路中的电磁干扰和信号损耗。
其低介电常数使电信号得以更快速地传播,从而提高了电路的运行速度和稳定性。
低介电常数玻璃粉还被广泛用于半导体制造中的介电层,以实现更高的集成度和更快的芯片运行速度。
3.2 光电科技在光电科技领域,低介电常数玻璃粉的应用也非常重要。
光纤通信系统中,玻璃粉常用于制造高速光纤的包覆层,以提供更低的光信号衰减和更高的信号传播效率。
低介电常数玻璃粉还可用于制造光学透镜和光学玻璃等光电器件,以满足高分辨率、高传输速率和高质量图像的需求。
3.3 通信领域低介电常数玻璃粉在通信领域中发挥着重要作用。
它可以用于制造基站射频器件的绝缘层,以降低电路之间的相互干扰和信号损耗。
低介电常数玻璃粉还可以用于制造高频射频微波电路的介电材料,提高通信设备的工作性能和稳定性。
4. 低介电常数玻璃粉的意义低介电常数玻璃粉的出现和应用对于现代科技的发展具有重要意义。
通过使用低介电常数玻璃粉作为材料,可以显著提高电子设备、光电器件和通信系统的性能和效率。
其高速传输、低信号损耗的特性对于提高信息传输的可靠性和速度至关重要。
低介电常数玻璃粉的应用还能够减少电子设备的能源消耗,降低对环境的影响。
邹平低熔点玻璃粉用途
邹平低熔点玻璃粉是一种重要的无机材料,在现代工业和科技领域中得到了广泛的应用。
其主要用途包括:
1. 玻璃制造:邹平低熔点玻璃粉可以作为玻璃原料的一部分,用于制造低熔点玻璃,如低熔点玻璃钢、低熔点玻璃陶瓷等。
2. 陶瓷制造:邹平低熔点玻璃粉可以作为陶瓷材料的添加剂,用于提高陶瓷的密度、强度和抗压性能,同时还可以改善陶瓷的颜色和表面质量。
3. 涂料制造:邹平低熔点玻璃粉可以作为涂料的成分,用于提高涂料的耐候性、硬度和光泽度,同时还可以增加涂料的附着力和耐化学性能。
4. 粘接剂制造:邹平低熔点玻璃粉可以作为粘接剂的成分,用于制造高性能的结构胶和密封胶,同时还可以提高粘接剂的耐温性能和耐化学性能。
5. 电子材料制造:邹平低熔点玻璃粉可以作为电子材料的一部分,用于制造电容器、电感器、陶瓷电子元件、传感器等,同时还可以提高电子材料的耐高温性能和耐化学性能。
总之,邹平低熔点玻璃粉在现代工业和科技领域中有着广泛的应用,其独特的性能和优良的性能使得它成为了一种重要的无机材料。
- 1 -。
低介电常数玻璃粉
介电常数与玻璃粉的关系
介电常数的定义
介电常数是描述物质对电场的响应能力的物理量。
它表示了物质在电场作用下的极化程度,即电场中的电荷在物质中的分布情况。
介电常数越大,表示物质对电场的响应能力越强,即电荷易于在物质中移动。
玻璃粉的特性
玻璃粉是一种非晶态固体材料,具有无定形结构和无序排列的特点。
它具有较高的硬度、耐高温和耐腐蚀性能,因此在许多领域有广泛的应用。
然而,由于玻璃粉的介电常数较高,使得其在一些特定应用中存在局限性。
低介电常数的需求
在一些高频电子器件、光学器件和微电子系统等领域,对材料的介电常数有较低的要求。
较低的介电常数可以减少电荷的极化现象,降低信号传输的能量损耗,提高器件的工作效率。
因此,研究和开发低介电常数的玻璃粉具有重要的意义。
低介电常数玻璃粉的制备方法
材料选择
为了制备低介电常数的玻璃粉,需要选择合适的原料。
常见的原料包括硅酸盐、硼酸盐、氟化物等。
这些材料具有较低的介电常数,并且在制备过程中能够形成稳定的非晶态结构。
混合与熔融
选取合适比例的原料,将其混合均匀。
然后,将混合物进行高温熔融,使其达到液态状态。
熔融过程中需要控制温度和时间,以确保原料充分融合和反应。
粉碎与筛分
将熔融后的玻璃块进行粉碎,得到玻璃粉。
然后,对玻璃粉进行筛分,去除不符合要求的颗粒,保证产品的均匀性和纯度。
退火处理
对玻璃粉进行退火处理,使其结构更加稳定。
退火温度和时间的选择需要根据具体材料的性质和要求进行调整。
低介电常数玻璃粉的应用领域
高频电子器件
低介电常数的玻璃粉在高频电子器件中有广泛的应用。
它可以用作介电层或绝缘层,减少信号传输的能量损耗,提高器件的工作效率。
同时,低介电常数也可以减少电子器件之间的相互干扰,提高系统的稳定性。
光学器件
光学器件对材料的透明性和光学性能有较高的要求。
低介电常数的玻璃粉具有较高的透明度和较低的折射率,可以用于制备光学透镜、光纤等器件。
它还可以用作光学涂层的基材,提高涂层的光学性能。
微电子系统
微电子系统中的集成电路和微机电系统对材料的介电常数有较低的要求。
低介电常数的玻璃粉可以用于制备微电子系统的绝缘层和封装材料,减少信号的串扰和干扰,提高系统的可靠性和稳定性。
其他领域
低介电常数的玻璃粉还可以应用于电池隔膜、光纤通信、光学涂层等领域。
它的应用范围广泛,对提高材料的性能和器件的工作效率具有重要意义。
结论
低介电常数的玻璃粉具有重要的应用价值。
通过选择合适的原料和制备方法,可以制备出具有较低介电常数的玻璃粉。
这种材料在高频电子器件、光学器件和微电子系统等领域有广泛的应用。
未来,随着科技的不断发展,对低介电常数玻璃粉的需求将进一步增加,相关研究和开发也将得到更多的关注和重视。