普传变频器在恒压供水上的应用
- 格式:doc
- 大小:54.00 KB
- 文档页数:2
PLC、变频器在恒压供水系统中的应用【摘要】在恒压供水中通过变频器控制水泵的速度,用以调节水管中压力,并利用PLC进行逻辑控制。
PLC作为整个控制系统的核心经过检测元件实时监视、跟踪水管内压力,并经变频器的PID调节保证供水压力,通过PLC 控制变频与工频切换,自动控制水泵投入的台数和电机转速,实现闭环自动调节恒压变量供水,在保持恒压下,达到控制流量的目的。
目前变频调速器已成为恒压供水设备的主体,它不仅可以完全取代传统的高位水箱、水塔等供水方式,而且也消除水质的二次污染,更具有节省能源、自动化程度高、供水操作的利用率均衡,供水泵房,在运方便、提高经济效益等优点。
【关键词】PLC;变频调速;恒压供水;PID控制1.引言当下常用的供水方式有市政管道直接给用户供水、通过天台的水池供水、恒压供水几种。
市政管道直接给用户供水用户不需要自己添加设备、成本低,供水压力一般只能供到6层楼以下,压力不稳定,一般只是在城郊结合农村和小城镇。
通过天台的水池供水只能对9层楼以下的建筑,如果楼层太高,采用这种方式供水,则建筑物的承重负荷大;容易造成二次污染,天台水池长期不清晰容易滋生各种细菌、微生物,不利于人体健康;供水消耗电能多,不利于技能,压力比较稳定。
恒压供水用户用水压力稳定,无论在用水高峰期,还是低谷,水管压力的波动小(因为系统是根据设定压力值与实际压力值进行PID调节,保证水管中的压力稳定);没有二次污染,在天台不需要做水池,楼的承重低;节能、节约电能呢个大约是常规供水的20%。
通过比较可以看出无论是从日后改造还是节能角度恒压供水都已经是最好的供水方式。
2.恒压供水系统的组成及原理2.1恒压供水系统的组成恒压供水所用到的新电工技术包括PLC、变频器控制技术、传感检测技术。
PLC属于核心技术,变频器主要进行调速,在工业控制中使用非常广泛,在风机、水泵负载中使用有节能的功能。
传感检测技术将测量量(如速度、流量、压力等)变化,信号(0-5V或4-20mA)A/D、D/A转换[A/D模块→PLC→D/A模块],控制变频器输出频率起到调节水泵的转速。
湖南工程学院课程设计任务书课程名称:运动控制系统题目:通用变频器在恒压供水系统中的使用专业班级:自动化0701学生姓名:李兴帆学号:22指导老师:赵葵银.唐勇奇.刘星平审批:任务书下达日期2010年12 月13日设计完成日期2010年12月24日目录第1章总体方案设计 (1)1.1总体思路 (1)1.2总体结构框图 (1)1.3系统硬件选型 (2)第2章各单元电路设计 (3)2.1主电路设计 (3)2.2 继电器控制电路设计 (4)2.3 PLC控制电路设计 (5)2.4 PID调节电路设计 (6)2.5电路各项参数检测和保护 (7)第3章 PLC程序设计 (8)3.1 PLC程序设计流程图 (8)3.2PLC输入输出引脚分配 (8)3.3PLC程序 (10)第4章故障分析和电路改进 (13)第5章总结和体会 (14)第6章参考文献 (15)第7章附录(总电路图) (16)第1章总体方案设计1.1总体思路本设计主要由3台水泵、1台变频器、PLC以及线性远传压力传感器等组成。
其中PLC、变频器和压力传感器组成闭环反馈控制系统。
使用1台变频器带动3台常用泵,供水量大时,采用3台泵,供水量少时,采用1台泵。
在大范围上控制供水的流量;变频器内部PID调节器控制变频器对变频泵进行速度调节,在小范围上控制供水的流量。
水泵的速度调节采用变频调速技术,利用变频器对水泵进行速度控制。
水泵电机为执行装置,其转速由变频器控制,实现变流量恒压供水。
变频器接受控制发出的信号,实现对水泵的速度控制;控制器综合给定信号和反馈信号,经过PID的调节,向变频器输出运转频率指令。
压力传感器检测出管网的实时出水压力,并将其转变为控制器可接受的模拟信号(即反馈信号),这样就构成了双闭环的实时恒压供水控制系统。
1.2 总体结构框图图1-1 变频恒压供水结构图1.3 系统硬件选型(1).水泵选型:跟据以上用户的流量,选择三台大功率水泵组的电机功率分别为7.5KW,三台大功率水泵组用于白天对用户的恒压供水,以达到恒定水压和节能的目的,(2).CPU选型:根据本次设计的通用变频器恒压供水系统的控制系统实际所需端子数目,考虑PLC端子数目要有一定的预留量,因此选用的S7-200型PLC的主模块为CPU226型,其数字量输出(DQ)为16点,输出形式为DC24V继电器输出;数字量输入CPU226为24点,输入形式为+24V直流输入。
普传变频器在恒压供水系统解决方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【前言】变频调速恒压供水技术以其节能、安全、供水高品质等优点,在供水行业得到了广泛应用。
恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今先进、合理的节能型供水系统。
普传科技作为具有电机设计生产基础的变频器专业制造商,为市场和客户考虑,开发出多泵供水控制系统软件,配合高性能普传变频器,在恒压供水系统中得到广泛应用。
【特点】采用普传变频器与普传多泵供水系统专用控制器构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。
【系统优点】1.恒压供水技术因采用变频器改变电动机电源频率,而达到调节水泵转速改变水泵出口压力,具有降低管道阻力,大大减少截流损失的效能。
2.由于变量泵工作在变频工况,在其出口流量小于额定流量时,泵转速降低,减少了轴承的磨损和发热,延长泵和电动机的机械使用寿命。
因实现恒压自动控制,不需要操作人员频繁操作,降低了人员的劳动强度,节省了人力。
3.水泵电动机采用软启动方式,按设定的加速时间加速,避免电动机启动时的电流冲击,对电网电压造成波动的影响,同时也避免了电动机突然加速造成泵系统的喘振。
4.由于变量泵工作在变频工作状态,在其运行过程中其转速是由外供水量决定的,故系统在运行过程中可节约可观的电能(平均25%以上),系统具有收回投资快,而长期受益,其产生的社会效益也是非常巨大。
1.供水系统配线图(以4泵供水为例)2.变频器与供水板之间的连接示意图3.供水控制原理当有若干台水泵同时供水时,由于在不同时间(白天和晚上),不同季节(夏天和冬天),用水流量的变化很大,为了节约能源和保护设备,本着多用多开,少用少开的原则,进行切换。
一、恒压供水系统的基本方案传统的恒压供水方案主要有两种:一是水塔(或高位水箱)供水,二是气压罐供水。
这两种方案都存在投资大,耗电多,可靠性差,压力控制不便,不利于数据监测和传递自动化等缺欠。
目前,由于变频器品质的完善和提高,由变频器控制水泵转速的恒压供水方式取代传统恒压供水方式已经十分普遍。
独立小规模供水系统可采用:变频器+水泵+压力传感器(运传压力表)的控制方式,大规模综合供水系统可采用:变频器+水泵+压力传感器+PLC的控制方式,可进行组态监控。
都可实现良好的恒压供水效果,技术性能、经济效益均明显好于传统的供水方式。
二、HLPP系列变频器在恒压供水系统中的基本功能HLPP系列变频器是恒压供水专门设计产品其主要功能:(1)直接启、停功能加泵:变频器输出频率为上限值,设定压力>反馈压力+泵切换偏差,经判断、延迟后则启动第二台泵(第一台泵进入工变频器在恒压供水系统中的应用田庆才 哈尔滨德强商务学院共建工程部频工作状态)。
若第二台泵工作后,仍能满足加泵条件则继续加泵。
若设定压力与反馈压力达到平衡则不加泵不减泵。
若全部水泵都工作,反馈压力仍小于设定压力则出现欠压报警。
减泵:系统工作中若出现反馈压力大于设定压力则变频器输出频率下降,下降到下限频率后,反馈压力仍大于设定压力,经判断、延时后减泵。
减泵时先断开工频工作时间最长的泵。
若反馈压力仍大于设定压力则继续减泵,直到压力平衡。
若所有泵都减停后,压力仍大于设定压力系统发出过压极警。
(2)循环软启动功能系统工作过程在完成判断和延时后,自动选择停机时间长的泵进行启动,并且输出频率由零逐渐上升,完成大功率电机的软启功能,完全取代传统的降压启动方案(Y-△启动、自耦变压器启动)(3)定时换泵功能若系统处于不加泵不减泵状态下,当允许未工作泵停泵时间超过定时换泵时间设定值,系统判断工作时间最长的泵停泵,直接启动未工作泵。
在系统处于不加泵不减泵状态。
允许未工作时间超过设定值,系统记忆当前运行频率,启动未工作泵,并逐渐运行到记忆频率。
变频器在恒压供水系统中的应用1 恒压供水的意义所谓恒压供水是指通过闭环控制,使供水的压力自动地保持恒定,其主要意义是:1、提高供水的质量用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。
而用水和供水之间的不平衡集中反映在供水压力上,即用水多而供水少则压力低;用水少而供水多则压力大。
保持供水的压力恒定可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水质量。
2、节约能源用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分明显。
3、起动平稳起动电流可以限制在额定电流以内,从而避免起动时对电网的冲击,对于比较大的电机,可省去降压起动的装置。
4、可以消除起动和停机时的水锤效应电机在全压下起动时,在很短的起动时间里,管道内的流量从零增大到额定流量,液体流量十分急剧的变化将在管道内产生压强过高或过低的冲击力,压力冲击管壁将产生噪声,犹如锤子敲击管子一般,故称水锤效应。
采用了变频调速后,可以根据需要,设定升速时间和降速时间,使管道系统内的流量变化率减小到允许范围内,从而达到完全彻底地消除水锤效应的目的。
2 恒压供水的主电路通常在同一路供水系统中,设置两台常用泵,供水量大时开2台,供水量少时开1台。
在采用变频调速进行恒压供水时,为节省设备投资,一般采用1台变频器控制2台电机,主电路如图1所示,图中没有画出用于过载保护的热继电器。
图1 恒压供水系统主电路图控制过程为:用水少时,由变频器控制电动机M1进行恒压供水控制,当用水量逐渐增加时,M1的工作频率亦增加,当M1的工作频率达到最高工作频率50Hz,而供水压力仍达不到要求时,将M1切换到工频电源供电。
同时将变频器切换到电动机M2上,由M2进行补充供水。
当用水量逐渐减小,即使M2的工作频率已降为0Hz,而供水压力仍偏大时,则关掉由工频电源供电的M1,同时迅速升高M2的工作频率,进行恒压控制。
如果用水量恰巧在一台泵全速运行的上下波动时,将会出现供水系统频繁切换的状态,这对于变频器控制元器件及电机都是不利的。
变频器在恒压供水系统中的应用发布时间:2021-01-15T03:48:47.705Z 来源:《云南电业》2020年8期作者:邹志坤[导读] 使用变频器作为恒压供水系统,不仅可以在一定程度上延长水泵的使用寿命,而且可以节省能源。
(沈阳百福得机械有限公司 114000)摘要:使用变频器作为恒压供水系统,不仅可以在一定程度上延长水泵的使用寿命,而且可以节省能源。
在恒压供水系统中,变频器的工作下可以提高水压的稳定性,即使在高峰和低耗水的时间段内也可以通过系统的智能来调节水压。
变频器技术、PC和触摸屏可以的完美实现结合。
同时,在科技迅猛不发展的今天,变频器在恒压供水系统中已经有了性价比高,节约能源,智能转换、工作可靠等等高水平优势,而且可以很多程度上提高了供水质量。
关键词:恒压供水;变频器:应用引言电厂化水车间泵站承担着恒压供水的重要任务,泵的负载会消耗大量电能,为了完成一些必要的工作,消耗的电能是这类负载的重要组成部分。
所以,提高泵站效率,降低能耗对节约系统用电具有重要意义。
而变频器控制当前是相对先进的节能系统。
通过检测水压,调节泵频率并结合PLC控制可以轻松实现提高效率且减少能耗。
1.变频器恒压供水系统简介恒压变频控制系统的原理是在其工作状态下,将供水出水管的水压自动最为第一调节对象,在这期间,变频器还会通过系统功能的自动识别板块,来对出水主管口在实际工作中现实存在的供水压力通过遵循控制器系统中认为设置的压力限额来进行识别控制。
同时,在系统中的供水压力限额是可以通过人工设置来达到一定的恒定额。
可以是每个周期时间量中所表现为的常数。
因此,这就需要通过人为设定,将变频器在一定时间段内设定的恒定压力要保持在出水口实际供水压力的设定压力下。
如下图所示,当水管内的实际流水压力比系统运行过程中所设定压力限额要低,且水管中的水量持续加大时,控制系统将接受正压差。
计如果在操作过程中实际供水压力高于设定压力,则情况正好相反:变频器的输出频率降低,水泵速度降低,因此实际供水压力增加。
变频技术在恒压供水中的应用变频恒压供水摘?要阐述了变频恒压供水的原理及系统结构,分析了变频供水设备的性能特点,用实例证明了变频恒压供水的经济性。
关键词变频调速;恒压供水;节能 TM92 A 1673-9671-(xx)071-0186-01随着生活水平的提高和现代工业的发展,加之高层建筑越来越多的走入寻常百姓家,人们对供水的质量提出了更高的要求。
早期的水塔、气压罐、高位水箱等设备,容易形成二次污染,且自动化程度低,供水系统不能随负荷变化改变运行状态,远远不能满足现代人对水质、供水稳定性的要求。
变频恒压供水以其节能、安全、高品质的供水质量等优点,在生活中得到很大的发展和推广。
1 变频调速的原理根据电机原理,异步电动机的转速公式n=ns(1-s)可见,它的调速方式实际上有两类:一类是在电机中旋转磁场的同步速度ns恒定的情况下调节转差率s,包括调压调速、转子串电阻调速、斩波调速和滑差离合器调速等,都属于低效调速,另一类是调节电机旋转磁场的同步速度ns.,根据ns.=60f/p可知,通过改变磁极对数和频率可以实现调速,即变极调速和变频调速,都属于高效率的调速方式。
当异步电机的磁极对数p不变时,电机转子转速与定子电源频率f成正比,因而连续调节电源频率,就可以平滑地调节同步转速,从而调节转子转速。
异步电机采用变频调速时不但能无级调速,而且可根据负载特性的不同,通过适当调节电压与频率之间的关系,使电机始终运行在高效区,并保证良好的运行特性。
异步电机采用变频启动更能改善启动性能,降低启动电流,增加起动转矩。
2 变频恒压供水的系统构成2.1 系统的硬件组成图1所示为本单位二幢11层建筑6楼以上变频恒压供水系统框图。
从图中可以看出,系统硬件构成主要包括变频器VVVF、可编程控制器PLC(或PID调节器)、压力控制器(或压力变换器及远程压力表)及控制柜等组成。
本例中,供水系统用一台变频器控制多台水泵联合协调工作。
由于变频器及PLC具有良好的通信接口,可以方便地与其他系统或设备进行数据交换,可以通过PC机来改变存贮器中的控制程序,可以灵活地满足用户各种数据处理的要求,且随着PLC产品的系列化和模块化,通用性强,可代替性高,因而得到了广泛的推广和使用。
普传变频器在恒压供水上的应用日常的生产,生活供水系统中的水泵,一般是由交流电机驱动,其供水压力与流量的调节大多采用传统的方式,通过控制水泵的运行台数,辅助于阀门的开度变化的方式进行调节。
但是一日内的负荷变化较大,特别是午夜与凌晨的时段,产生大马拉小车的现象------这种情在春冬两季更为明显,这样既浪费能源,又使供水管网的压力波动。
而变频恒压供水系统不仅节约电能,而且能很好的解决“水锤效应”和“憋泵”现象,是十分经济科学有效的供水解决方案。
在在此,我们介绍普传PI7600,PI7800变频器在恒压供水上的应用。
普传PI7600,PI7800变频器,内置PID控制器,它只需与外部配置的一个简单的压力传感器或者远传压力表,就能构成一个压力闭环控制系统,其自动将设定的压力值和反馈回路的管网压力进行比较,自动调节变频器的输出频率与电压,从而改变水泵驱动电机的转速,使水泵出口侧的压力维持恒定。
参数设置如下:
F04=7,频率设定设为用PID调节方式设定;
F05=1;即可以通过键盘,外部端子,RS485通信等控制变频器的启动,停止等;
F61=1;即负载类型为水泵;具体设置,根据现场控制的实际情况,参考说明书设置;
F72下的P02=2,即反馈信号0—10V来自外部端子----远传压力表(如果反馈信号是来自压力传感器的DC 4-20mA,则把P02=1);
F72下的P03=3,即通过操作变频器键盘的方式来设定所需要的压力值;
当P03=3时,根据需要的压力值和远传压力表的量程来确定P04的值。
如需要的压力是5KG,而表的量程是10KG,则把P04=50%(5/10=50%)。
一般的我们建议:按所需压力值得2倍的量程来选择压力表。
F70下的C01=10%,此参数为启动压力百分比,即当管网压力值下降到“C01*设定压力值“时,变频器又开始启动;此参数要根据具体需要进行合理的设置;
C02=15(HZ),即随着变频器的频率下降,当其频率小于或者等于C02值超过“停机延时时间H08“时,变频器进入停机状态。
此参数要根据具体需要进行合理的设置;
注:建议把F68下的H07,H08设为0.1S。
这样系统会比较灵敏。
注意事项:
一.在出水口处,在压力表的前端装一个止回阀-----请选择质量好的止回阀,否则止回阀漏水会造成压力达不到或者变频器停止不下来-------这样既方便调试,又能防止水锤现象的损害。
二.压力表不要离出水口太近,一般建议在出水口的5米左右,以缓冲水泵的出水压力,避免冲坏压力表;压力表最好通过环形缓冲管接在水管上;如果水管的连接件有橡胶件,请确保橡胶件的耐压值大于泵所能达到的最大压力值,否则橡胶件有可能被压破。
三.接压力表的信号线最好采用屏蔽线,避免干扰。
四.如果系统在调节时,压力表的指针来回震荡的比较厉害,可以把F72下的P05调大些,或者把P07调小些,具体参见说明书。
五.电源输入端最好装一个空开或者漏电保护开关。