控制系统仿真实验
- 格式:doc
- 大小:106.50 KB
- 文档页数:11
《自动控制原理》控制系统的simulink仿真实验一、实验目的1.初步了解Matlab中Simulink的使用方法,熟悉simulink模块的操作和信号线的连接。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,熟悉各种典型环节的响应曲线。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验仪器Matlab7.0 , 计算机三、实验原理Simulink是MATLAB中的一种可视化仿真工具。
Simulink是一个模块图环境,用于多域仿真以及基于模型的设计。
它支持系统设计、仿真、自动代码生成以及嵌入式系统的连续测试和验证。
四、实验内容及步骤1、建立仿真模型系统1.1 运行Matlab,在命令窗口“Command Window”下键入“Simulink”后回车,则打开相应的系统模型库;或者点击工具栏上的“Simulink”图标,进入系统仿真模型库,然后点击左上角“新文件”图标,打开模型编辑窗口。
1.2 调出模块在系统仿真模型库中,把要求的模块都放置在模型编辑窗口里面。
从信号源模块包(Sources)中拖出1个阶跃信号(step)和1个白噪声信号发生器(band-limited white noise);从数学运算模块包(Math Operations)中拖出1个比例环节(gain)和1个加法器(sum);从连续系统典型环节模块包(Continuous) 中拖出1个微分环(Derivative)和3个传函环节(transfer Fcn);从信号与系统模块包(Signals Routing) 拖出1个汇流排(mux);从输出模块包(Sinks)中拖出1个示波器(scope);所有模块都放置在模型编辑窗口里面。
1.3 模块参数设置(鼠标左键双击各典型环节,则可进行参数设置)双击打开白噪声信号发生器,设定功率(Noise power)为0.0001,采样时间(Sample time)为0.05。
打开比例环节,设定比例增益为2;打开3个传函环节(transfer Fcn),通过参数设定,分别构成积分、惯性和二阶环节。
一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。
二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。
首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。
2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。
3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。
4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。
调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。
五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。
实验六:Simulin建模与仿真一、实验目的1、掌握Simulink建模与仿真的基本方法。
2、熟悉Simulink基本模块库及主要元件的使用方法。
二、实验学时:4学时三、实验原理:1、Simulink 仿真过程在已知系统数学模型或系统框图的情况下,利用Simulink进行建模仿真的基本步骤如下。
(1)启动Simulink,打开Simulink库浏览器。
(2)建立空白模型窗口。
(3)由控制系统数学模型或结构框图建立Simulink仿真模型。
(4)设置仿真参数,运行仿真。
(5)输出仿真结果。
2、Simulink建模与仿真基本方法根据给定的数学模型或控制系统框图,可建立Simulink仿真模型。
下面以图3-1所示的控制系统框图为例,说明Simulink建模与仿真的基本方法。
图中R 是单位阶跃输入信号,Y为系统输出响应。
建立图6-3所示系统框图的Simulink仿真模型的基本方法如下。
1.启动MATLAB/Simulink工具箱依次启动MATLAB软件、Simulink模块库浏览器后,如图6-1所示。
2.建立Simulink空白模型Simulink空白模型的建立可通过如下方法进行。
1、在MATLAB主窗口中选择【File】→【New】→【Model】命令。
2、在Simulink模块库浏览器窗口中选择【File】→【New】→【Model】命令。
3、单击Simulink模块库浏览器工具栏中的(New model)工具。
图6-1 闭环控制系统框图通过上述方法可以打开Simulink空白模型,如图6-2所示。
并可将其保存为后缀是mdl的文件(Simulink仿真模型的文件存储格式),例如Example_Model.mdl。
在保存Simulink模型文件的时候,为了实现向下兼容,MATLAB R2008/Simulink 7.1允许将模型保存为其他版本的Simulink模型。
图6-2 空白模型窗口3.根据系统框图选择模块构建Simulink仿真模型,首先需要知道所需模块所属的子模块库名称。
《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。
通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。
MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。
实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。
实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。
通常,控制系统可以利用线性方程或差分方程进行建模。
本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。
2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。
可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。
例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。
3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。
例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。
通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。
实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。
通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。
通过改变放大比例K的值,我们可以观察到超调量的变化趋势。
同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。
根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。
2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。
控制系统仿真实验报告班级:测控 1402 班姓名:王玮学号: 14050402072018 年 01 月实验一经典的连续系统仿真建模方法一实验目的 :1了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2掌握机理分析建模方法。
3深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写数值积分法仿真程序。
4掌握和理解四阶 Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。
二实验内容 :1.编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1)将阀位u增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(3)利用 MATLAB 中的 ode45() 函数进行求解,比较与(1)中的仿真结果有何区别。
2.编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(4)阀位增大 10%和减小 10%,利用 MATLAB中的 ode45() 函数进行求解阶跃响应,比较与( 1)中的仿真结果有何区别。
三程序代码 :龙格库塔 :%RK4文件clccloseH=[1.2,1.4]';u=0.55; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:));xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型 :function dH=f(H,u)k=0.2;u=0.5;Qd=0.15;A=2;a1=0.20412;a2=0.21129;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2 编写四阶Runge_Kutta公式的计算程序,对线性状态方程(18)式进行仿真:1阀值 u 对仿真结果的影响U=0.45;h=1;U=0.5;h=1;U=0.55;h=1;2 步长 h 对仿真结果的影响:U=0.5;h=5;U=0.5;h=20;U=0.5;h=39U=0.5;h=50由以上结果知 , 仿真步长越大 , 仿真结果越不稳定。
实验一 经典的连续系统仿真建模方法一 实验目的1. 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2. 掌握机理分析建模方法。
3. 深入理解一阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写 数值积分法仿真程序。
4. 掌握和理解四阶 Runge-Kutta 法,加深理解仿真步长与算法稳定性的关系。
二 实验内容1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1) 将阀位u 增大10%和减小10%,观察响应曲线的形状;u=0.45时的图像:010020030040050060070080090010001.251.31.351.41.451.5u=0.55010020030040050060070080090010001.351.41.451.51.551.61.651.7开大或关小阀位之后,稳态值会相应的从原液位上升或下降,这是符合实际的。
(2) 研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定? 由(1)可知,当步长为40时,仿真结果是稳定的 当步长为80时的图像12345670200400600800100012001400160018002000-140-120-100-80-60-40-20020h (1,1)的数值稳定,但是并不是实际求得的稳态值。
h (1,2)的值显然发散。
进一步取小步长,取hstep=42时,图像出现偏差,但是稳态值不变0200400600800100012001.351.41.451.51.551.61.651.71.75Hstep=65时,图像偏差明显0200400600800100012001400160018000.511.522.53而hsetp=65.7时,图像就发散了020040060080010001200140016001800-25-20-15-10-55(3)利用MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。
控制系统仿真实验报告姓名:王天雷班级:231142学号:20131004363学院:自动化专业:自动化指导老师:刘峰2017 年 1 月目录7.2.2 (1)7.2.3 (7)7.2.4 (12)7.2.5 (17)7.2.6 (21)7.3.1 (24)总结 (25)7.2.2 控制系统的阶跃响应实验目的:观察学习控制系统的单位阶跃响应 记录单位阶跃响应曲线掌握时间响应分析的一般方法实验内容: 1. 二阶系统1)键入程序,观察并记录单位阶跃响应曲线 First.m close all; clear all; clc;num=[10];den=[1 2 10]; step(num,den); title(‘阶跃响应曲线’);2)键入damp(den) 计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录结果:Eigenvalue (闭环根) Damping (阻尼比) Freq. (rad/s)(无阻尼振荡频率)()102102++=s s sG-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000 -1.00e+000 - 3.00e+000i 3.16e-001 3.16e+0003)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:由理论知识知编写代码x.m%返回峰值时间,超调量,调节时间5%,2% function [tr b ts1 ts2]=x(a,wn) wd=wn*(1-a^2)^0.5;%求解wd tp=3.14/wd;%峰值时间b=exp((-3.14*a/(1-a^2)^0.5));%超调量 ts1=3.5/(wn*a),ts2=4.5/(wn*a);%调节时间 计算得到理论值,填入表中3//πωπ==d p t 4.52%(00.9)3.55%n s n t ζωζζω⎧∆=⎪⎪=<<⎨⎪∆=⎪⎩2 1)修改参数,分别实现和的响应曲线,并记录 程序:second.m clear all; close all; clc;n0=10;d0=[1 2 10];step(n0,d0);%原系统,kesai=0.36 hold on;%保持原曲线n1=n0;d1=[1 6.32 10];step(n1,d1);%kesai=1; n2=n0;d2=[1 12.64 10];step(n2,d2);%kesai=2;如图,kesai 分别为0.36,1,2,曲线幅度递减2)修改参数,分别写出程序实现和的响应曲线,并记录程序:third.m clear all; close all; clc;n0=10;d0=[1 2 10];step(n0,d0);%原系统,wn0=10^0.5 hold on;%保持原曲线n1=0.25*n0;d1=[1 1 n1];step(n1,d1);%wn1=0.5*wn0; n2=4*n0;d2=[1 4 n2];step(n2,d2);%wn2=4*wn0=2;1=ζ2=ζ0121w w n =022w w n =如图,wn=2*wn0,wn0,0.5*wn0,上升时间逐渐增长,超调量不变3. 作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果(1),有系统零点的情况(2),分子、分母多项式阶数相等(3),分子多项式零次项为零(4),原响应的微分,微分系数为1/10程序:%各系统阶跃响应曲线比较G0=tf([10],[1 2 10]);G1=tf([2 10],[1 2 10]);G2=tf([1 0.5 10],[1 2 10]); G3=tf([1 0.5 0],[1 2 10]);G4=tf([1 0 ],[1 2 10]); step(G0,G1,G2,G3,G4); grid on;title(' Step Response 曲线比较');()10210221+++=s s s s G ()102105.0222++++=s s s s s G ()1025.0222+++=s s s s s G ()10222++=s s s s G4.试做一个三阶系统和四阶系统的阶跃响应,并分析实验结果 假设一个三阶和一个四阶系统,如下sys1=tf([1],[1 1 1 1]);sys2=tf([1],[1 1 1 1 1]);step(sys1,sys2);如图,分别为sys1,sys2系统阶跃响应曲线分析1:系统阻尼比和无阻尼振荡频率对系统阶跃相应的影响11123+++=s s s sys 112234++++=s s s ssys解:在欠阻尼响应曲线中,阻尼比越小,超调量越大,上升时间越短,通常取kesai在0.4到0.8之间,此时超调量适度,调节时间较短;若二阶系统的阻尼比不变,振荡频率不同,其阶跃响应的振荡特性相同但响应速度不同,wn越大,响应速度越快。
第二部分控制系统仿真实验
实验一MATLAB软件操作练习
一、实验目的
1.熟悉MATLAB软件的基本操作;
2. 学会用MATLAB做基本数学计算
3. 学会矩阵的创建。
4.熟悉利用MATLAB计算矩阵。
二、实验内容
1. 帮助命令
使用help命令,查找 sqrt(开方)函数的使用方法;
2.在命令窗口输入矩阵A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2;
3 3 3]
3. 矩阵运算
(1)矩阵的乘法
已知A=[1 2;3 4]; B=[5 5;7 8];
求A^2*B
(2)矩阵除法
已知 A=[1 2 3;4 5 6;7 8 9];
B=[1 0 0;0 2 0;0 0 3];
A\B,A/B
(3)矩阵的转置及共轭转置
已知A=[5+i,2-i,1;6*i,4,9-i];
求A.', A'
(4)使用冒号选出指定元素
已知: A=[3 2 3;2 4 6;6 8 10];
求A中第3列前2个元素;A中所有列第2,3行的元素;
三、实验步骤
1. 熟悉MATLAB的工作环境,包括各菜单项、工具栏以及指令窗口、工作空间窗口、
启动平台窗口、命令历史窗口、图形文件窗口和M文件窗口。
2.在指令窗口中完成实验内容中规定操作并记录相关实验结果,并撰写实验报告。
实验二 M 文件编程及图形处理
一、实验目的
1.学会编写MATLAB 的M 文件;
2.熟悉MATLAB 程序设计的基本方法;
3. 学会利用MATLAB 绘制二维图形。
三、实验内容
1.基本绘图命令
(1)绘制余弦曲线y=cos(t),t ∈[0,2π]
(2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5), t ∈[0,2π]
2.基本绘图控制
绘制[0,4π]区间上的x1=10sint 曲线,并要求:
(1)线形为点划线、颜色为红色、数据点标记为加号;
(2)给横坐标标注’t ’,纵坐标标注‘y(t)‘,
3.M 文件程序设计
(1)编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值);
(2)编写分段函数
⎪⎩⎪⎨⎧
≤≤-<≤=其它
02121
0)(x x x x x f
的函数文件,存放于文件ff.m 中,计算出)2(f ,)3(-f 的值
二、实验要求
1. 预习实验内容,按实验要求编写好实验程序;
2. 上机调试程序,记录相关实验数据和曲线,并撰写实验报告。
实验三 数学模型建立与转换
一、实验目的
1.学会用MATLAB 建立控制系统的数学模型。
2.学会用MATLAB 对控制系统的不同形式的数学模型之间的转换和连接。
二、实验内容
1.建立控制系统的数学模型
用MATLAB 建立下述零极点形式的传递函数类型的数学模型:
)
1)(1(3)(+++=s s s s G 2.不同形式及不同类型间的数学模型的相互转换
1)用MATLAB 将下列分子、分母多项式形式的传递函数模型转换为零极点形式的传递函数模型:
2)用MATLAB 将下列零极点形式的传递函数模型转换为分子、分母多项式形式的传递函数模型:
3. 用MATLAB 命令求如下图所示控制系统的闭环传递函数
三、实验要求
预习实验内容,按实验要求编写好实验程序,调试程序,记录相关实验数据和曲线,并撰写实验报告。
22642202412)(23423++++++=s s s s
s s s G )
43)(43)(2)(1()5)(6()(j s j s s s s s s s G -+++++++=
实验四 控制系统响应及性能分析
一 、实验目的
⑴ 掌握控制系统频率特性曲线绘制方法。
⑵ 学会用MATLAB 绘制控制系统的根轨迹。
⑶ 学习控制系统动态响应曲线的绘制及动态性能指标的测试方法
二、实验内容
1. 已知系统的开环传递函数为:
s s s s s G o 4036820)(234+++=
求系统在单位负反馈下的阶跃响应曲线。
2. 系统开环传递函数如下:
22(24)()(4)(6)( 1.41)
r K s s G s s s s s s ++=++++ 要求绘制系统根轨迹并进行系统分析。
①在MATLAB 环境下输入程序
num=[1 2 4];
den=conv([1 0],conv([1 4],conv([1 6],[1 1.4 1])));
rlocus(num,den)
绘制出系统的根轨迹图
②输入命令
rlocfind(num,den)
移动鼠标,确定系统变为不稳定时的k 值。
3. 系统结构图如下所示,试用nyquist 频率曲线判断系统的稳定性。
如果系统稳定,求出系统稳定裕度。
并绘制系统的单位冲激响应以验证判断结论。
其中
)
10625.0)(125.0)(185.0(7.16)(+++=s s s s s G
三、实验要求
1.预习实验内容,按实验要求编写好实验程序,调试程序;
2.根据控制系统的响应曲线,分析系统的性能;
3.记录相关实验数据和曲线,并撰写实验报告。
实验五 控制系统综合
一、实验目的
(1). 学习校正装置的设计和实现方法。
(2).掌握MATLAB 进行控制系统设计的基本方法
二、实验内容
设被控对象的传递函数为:
10()(5)
o G s s s =+ 设计方案,满足下列设计要求:。
1. 串联超前校正
参考程序:
ng=10;
dg=[1,5,0];
G0=tf(ng,dg);
kc=10;
dPm=70+10;
[mag,phase,w]=bode(G0*kc);
Mag=20*log10(mag);
[Gm,Pm,Wcg,Wcp]=margin(G0*kc);
phi=(dPm-Pm)*pi/180;
alpha=(1+sin(phi))/(1-sin(phi));
Mn=-10*log10(alpha);
Wcgn=spline(Mag,w,Mn);
T=1/Wcgn/sqrt(alpha);
Tz=alpha*T;
Gc=tf([Tz 1],[T 1]);
bode(G0*kc,G0*kc*Gc);
[Gm1,Pm1,Wcg1,Wcp1]=margin(G0*kc*Gc);
2.串联滞后校正
参考程序:
clear
clc
close
num=100;
den=[1 5 0];
[gm,pm,wcg,wcp]=margin(num,den);
dpm=-180+70+12;
[mag,phase,w]=bode(num,den);
wc=spline(phase,w,dpm);
magg=20*log10(mag);
mm=spline(w,magg,wc);
beta=10^(-mm/20);
w2=0.2*wc;
t=1/(beta*w2);
num1=[beta*t,1];
den1=[t,1];
gc=tf(num1,den1);
h=tf(num,den);
g=h*gc;
[gm1,pm1,wcg1,wcp1]=margin(g);
bode(g,'y')
hold on
bode(h,'r')
hold off
pm1
三.实验要求
1.本实验属于设计性实验,根据实验内容选择设计方案,如串联校正,PID控制等;
2.按实验要求编写好实验程序,调试程序,得到校正前和校正后的BODE图;3.记录相关数据和曲线,并撰写实验报告。
实验六 simulink 仿真
一、实验目的
1.掌握SIMULINK软件的基本内容及仿真方法。
2.熟悉实际系统动态结构图的建立方法。
二、实验内容
1. 利用SIMULINK进行时域系统分析,选择合适的增益k使系统跟踪输入给定信号。
2. 建立如图2所示的典型PID控制位置随动系统模型,选择阶跃输入模块.用示波器观察系统的仿真输出。
并对Kp、Ki、Kd参数进行调整,使系统具有较满意的动态性能。
①打开各相应函数库,建立如图3所示的PID控制系统的结构图程序文件;
②打开各元件参数设置窗口,输入各参数。
先取Kp=5,Ki=0.5,Kd=1;
③打开simulation菜单,选择Parameter项,设定适当的仿真参数;
④启动仿真,观察响应的动态特性;
⑤调整Kp、Ki、Kd参数,使得系统具有较满意的动态性能。
三.实验要求
1.SIMULINK环境下建立系统的仿真模型,调节实验参数,获得满意的响应曲线;
2.记录相关数据、模型和曲线,并撰写实验报告。
10。