北京市朝阳区2016届高三3月第一次综合练习(一模)数学理试题 Word版含答案(数理化网)
- 格式:doc
- 大小:1.18 MB
- 文档页数:13
2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。
2016年普通高等学校招生全国统一考试〔##卷〕数学〔理科〕第Ⅰ卷〔共50分〕一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 〔1〕[2016年##,理1,5分]若复数z 满足232i z z +=-,其中i 为虚数为单位,则z =〔〕〔A 〕12i +〔B 〕12i -〔C 〕12i -+〔D 〕12i -- [答案]B[解析]设(),,z a bi a b R =+∈,则2()i 23i 32i z z z z z a b a a b +=++=++=+=-,所以1,2a b ==-,故选B . [点评]本题考查复数的代数形式混合运算,考查计算能力.〔2〕[2016年##,理2,5分]已知集合{}{}22,,10x A y y x R B x x ==∈=-<,则AB =〔〕〔A 〕()1,1-〔B 〕()0,1〔C 〕()1,-+∞〔D 〕()0,+∞ [答案]C[解析]由题意()0,A =+∞,()1,1B =-,所以()1,AB =-+∞,故选C .[点评]本题考查并集与其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题. 〔3〕[2016年##,理3,5分]某高校调查了200名学生每周的自习时间〔单位:小时〕,制成了如图所示的频率分布直方图,其中自习时间的X 围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是〔〕 〔A 〕56〔B 〕60〔C 〕120〔D 〕140 [答案]D[解析]由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . [点评]本题考查的知识点是频率分布直方图,难度不大,属于基础题目.〔4〕[2016年##,理4,5分]若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是〔〕〔A 〕4〔B 〕9〔C 〕10〔D 〕12 [答案]C[解析]由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .[点评]本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题. 〔5〕[2016年##,理5,5分]有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为〔〕〔A 〕1233+π〔B 〕1233+π〔C 〕1236+π〔D 〕216+π[答案]C[解析]由三视图可知,半球的体积为26π,四棱锥的体积为13,所以该几何体的体积为1236+π,故选C .[点评]本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.〔6〕[2016年##,理6,5分]已知直线,a b 分别在两个不同的平面α,β内,则"直线a 和直线b 相交〞是"平面α和平面β相交〞的〔〕〔A 〕充分不必要条件〔B 〕必要不充分条件〔C 〕充要条件〔D 〕既不充分也不必要条件 [答案]A[解析]由直线a 和直线b 相交,可知平面αβ、有公共点,所以平面α和平面β相交.又如果平面α和平面β相交,直线a 和直线b 不一定相交,故选A .[点评]本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题. 〔7〕[2016年##,理7,5分]函数()()()3sin cos 3cos sin f x x xx x =+-的最小正周期是〔〕〔A 〕2π〔B 〕π〔C 〕32π〔D 〕2π[答案]B[解析]由()2sin cos 3cos 22sin 23f x x x x x π⎛⎫=+=+ ⎪⎝⎭,所以,最小正周期是π,故选B .[点评]本题考查的知识点是和差角与二倍角公式,三角函数的周期,难度中档.〔8〕[2016年##,理8,5分]已知非零向量,m n 满足143,cos ,3m n m n =<>=,若()n tm n ⊥+则实数t 的值为〔〕〔A 〕4〔B 〕4-〔C 〕94〔D 〕94-[答案]B[解析]因为21cos ,4nm m n m n n =⋅<>=,由()n tm n ⊥+,有()20n tm n tmn n +=+=,即2104t n ⎛⎫+= ⎪⎝⎭,4t =-,故选B .[点评]本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.〔9〕[2016年##,理9,5分]已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =〔〕〔A 〕2-〔B 〕1-〔C 〕0〔D 〕2 [答案]D[解析]由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .[点评]本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题. 〔10〕[2016年##,理10,5分]若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是〔〕〔A 〕sin y x =〔B 〕ln y x =〔C 〕x y e =〔D 〕3y x = [答案]A[解析]因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .[点评]本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷〔共100分〕二、填空题:本大题共5小题,每小题5分〔11〕[2016年##,理11,5分]执行右边的程序框图,若输入的的值分别为0和9,则输出i 的值为. [答案]3[解析]i 1=时,执行循环体后1,8a b ==,a b >不成立;i 2=时,执行循环体后3,6a b ==,a b >不成立;i 3=时,执行循环体后6,3a b ==,a b >成立;所以i 3=,故填 3.[点评]本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答. 〔12〕[2016年##,理12,5分]若521ax x ⎛⎫+ ⎪⎝⎭的展开式中5x 的系数是80-,则实数a =.[答案]2-[解析]由()23222355551C C 80ax a x x x ⎛⎫==- ⎪⎝⎭,得2a =-,所以应填2-.[点评]考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.〔13〕[2016年##,理13,5分]已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率为.[答案]2[解析]由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.[点评]本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.〔14〕[2016年##,理14,5分]在[]1,1-上随机的取一个数k ,则事件"直线y kx =与圆()2259x y -+=相交〞发生的概率为. [答案]34[解析]首先k 的取值空间的长度为2,由直线y kx =与圆22(5)9x y -+=相交,得事件发生时k 的取值空间为33,44⎡⎤-⎢⎥⎣⎦,其长度为32,所以所求概率为33224=. [点评]本题主要考查了几何概型的概率,以与直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.〔15〕[2016年##,理15,5分]在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值X 围是.[答案]()3,+∞[解析]因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. [点评]本题考查根的存在性与根的个数判断,数形结合思想的运用是关键,分析得到24m m m -<是难点,属于中档题.三、解答题:本大题共6题,共75分.〔16〕[2016年##,理16,12分]在ABC ∆中,角,,A B C 的对边分别为a,b,c ,已知()tan tan 2tan tan cos cos A BA B B A+=+. 〔1〕证明:2a b c +=; 〔2〕求cos C 的最小值.解:〔1〕由()tan tan 2tan tan cos cos A B A B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,2sin sin sin C B C =+, 由正弦定理,得2a b c +=.〔2〕由()222222cos 22a b ab ca b c C ab ab +--+-==222333111122222c c ab a b =-≥-=-=+⎛⎫⎪⎝⎭.所以cos C 的最小值为12. [点评]考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以与三角函数的诱导公式,正余弦定理,不等式222a b ab +≥的应用,不等式的性质.〔17〕[2016年##,理17,12分]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.〔1〕已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;〔2〕已知123,2EF FB AC AB BC ====,求二面角F BC A --的余弦值.解:〔1〕连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC ⊂平 面ABC ,MH ⊄平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH ⊂平面GHM ,所以//GH 平面ABC .〔2〕连结OB ,AB BC =OA OB ∴⊥,以为O 原点,分别以,,OA OB OO '为,,x y z 轴,建立空间直角坐标系.123,2EF FB AC AB BC ====,22()3OO BF BO FO '=--=,于是有()23,0,0A ,()23,0,0C -,()0,23,0B ,()0,3,3F ,可得平面FBC 中的向量()0,3,3BF =-, ()23,23,0CB =,于是得平面FBC 的一个法向量为()13,3,1n =-,又平面ABC 的一个法向量为()20,0,1n =,设二面角F BC A --为θ, 则121217cos 77n n n n θ⋅===⋅.二面角F BC A --的余弦值为77. [点评]本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.〔18〕[2016年##,理18,12分]已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.〔1〕求数列{}n b 的通项公式;〔2〕令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:〔1〕因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. 〔2〕由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅,两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅,两式相减,得2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.[点评]本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.〔19〕[2016年##,理19,12分]甲、乙两人组成"星队〞参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则"星队〞得3分;如果只有一人猜对,则"星队〞得1分;如果两人都没猜对,则"星队〞得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设"星队〞参加两轮活动,求: 〔1〕"星队〞至少猜对3个成语的概率;〔2〕"星队〞两轮得分之和X 的分布列和数学期望EX . 解:〔1〕"至少猜对3个成语〞包括"恰好猜对3个成语〞和"猜对4个成语〞.设"至少猜对3个成语〞为事件A ;"恰好猜对3个成语〞和"猜对4个成语〞分别为事件C B ,,则1122332131225()4433443312P B C C =⋅⋅⋅⋅+⋅⋅⋅⋅=;33221()44334P C =⋅⋅⋅=.所以512()()()1243P A P B P C =+=+=.〔2〕"星队〞两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ==⋅⋅⋅=;112212*********(1)4343434314472P X C C ==⋅⋅⋅+⋅⋅⋅==;1211223311132125(2)443344334433144P X C ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=;123211121(3)434314412P X C ==⋅⋅⋅==; 12321231605(4)()43434314412P X C ==⋅⋅⋅+⋅==;3232361(6)43431444P X ==⋅⋅⋅==; XX 的数学期望01234614472144121241446EX =⨯+⨯+⨯+⨯+⨯+⨯==. [点评]本题考查离散型随机变量的分布列和数学期望,属中档题.〔20〕[2016年##,理20,13分]已知221()(ln ),x f x a x x a R x-=-+∈.〔1〕讨论()f x 的单调性; 〔2〕当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈成立.解:〔1〕求导数3122()(1)x f x a x x'=---23(1)(2x ax x =--),当0a ≤时,x ∈(0,1),()0f x '>,()f x 单调递增,x +∞∈(1,),()0f x '<,()f x 单调递减当0a >时,()()()233112()a x x x x ax f x x x⎛--+ --⎝⎭⎝⎭'== ①当02a<<时,1,x ∈(0,1)或x ⎫+∞⎪⎪⎭∈,()0f x '>,()f x 单调递增,x ⎛ ⎝∈,()0f x '<,、()f x 单调递减;②当a =2时1,x ∈+∞(0,),()0f x '≥,()f x 单调递增, ③当a >2时,01<,x ⎛∈ ⎝或()x ∈+∞1,,()0f x '>,()f x 单调递增,x ⎫∈⎪⎪⎭1,()0f x '<, ()f x 单调递减.〔2〕当1a =时,221()ln x f x x x x=+--,2323(1)(212()1x x f x x x x x '==+--)2--, 于是2232112()()ln 1)x f x f x x x x x x x '=++-2---(--23312ln 1x x x x x =--++-,[1,2]x ∈令()g ln x x x =-,2332h()x x x x=-++-11,[1,2]x ∈,于是()()g(()f x f x x h x '-=+), 1g ()10x x x x-'=-=≥1,()g x 的最小值为()11g =;又22344326326()x x h x x x x x --+'=--+=, 设()2326x x x θ=--+,[1,2]x ∈,因为()11θ=,()210θ=-,所以必有0[1,2]x ∈,使得()00x θ=,且01x x <<时,()0x θ>,()h x 单调递增;02x x <<时,()0x θ<,()h x 单调递减;又()11h =,()122h =, 所以()h x 的最小值为()122h =.所以13()()g(()g(1(2)122f x f x x h x h '=+>+=+=))-. 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. [点评]本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.〔21〕[2016年##,理21,14分]平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率是,抛物线2:2E x y =的焦点F 是C 的一个顶点.〔1〕求椭圆C 的方程;〔2〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12SS 的最大值与取得最大值时点P 的坐标.解:〔1,有224a b =,又抛物线22x y =的焦点坐标为10,2F ⎛⎫⎪⎝⎭,所以12b =,于是1a =,所以椭圆C 的方程为2241x y +=.〔2〕〔i 〕设P 点坐标为()2,02m P m m ⎛⎫> ⎪⎝⎭,由22x y =得y x '=,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22m y mx =-,设()()1122,,,A x y B x y ,()00,D x y ,将22m y mx =-代入2241x y +=,得()223214410m x m x m +-+-=.于是3122414m x x m +=+,312022214x x m x m +==+, 又()220022214m m y mx m -=-=+,于是直线OD 的方程为14y x m =-. 联立方程14y x m =-与x m =,得M 的坐标为1,4M m ⎛⎫- ⎪⎝⎭.所以点M 在定直线14y =-上.〔ii 〕在切线l 的方程为22m y mx =-中,令0x =,得22m y =-,即点G 的坐标为20,2m G ⎛⎫- ⎪⎝⎭,又2,2m P m ⎛⎫ ⎪⎝⎭,10,2F ⎛⎫ ⎪⎝⎭,所以211(1)24m m S m GF +=⨯=;再由()32222,41241m m D m m ⎛⎫- ⎪ ⎪++⎝⎭,得 ()()22232222112122441841m m m m m S m m +++=⨯⨯=++于是有()()()221222241121m m S S m ++=+.令221t m =+, 得()12221211122t t S S t t t ⎛⎫-+ ⎪⎝⎭==+-,当112t =时,即2t =时,12S S 取得最大值94.此时212m =,m =所以P点的坐标为14P ⎫⎪⎪⎝⎭.所以12S S 的最大值为94,取得最大值时点P的坐标为14P ⎫⎪⎪⎝⎭. [点评]本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以与直线方程的运用,考查三角形的面积的计算,以与化简整理的运算能力,属于难题.。
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
北京市朝阳区高三年级第一次综合练习数学试卷(文史类)2015.4一、选择题:(1)已知全集{,,,}U a b c d =,集合{,},{,}A a b B b c ==,则()UA B 等于( )A .{}bB .{}dC .{,,}a c dD .{,,}a b c【难度】1【考点】集合的运算 【答案】B 【解析】 由题意得:{},,A B a b c =,所以{}()U A B d =故选B(2)已知命题:p x ∀∈R ,sin 1x ≤,则( )A .:p ⌝x ∀∈R ,sin 1x ≥B .:p ⌝x ∀∈R , sin 1x >C .:p ⌝0x ∃∈R , 0sin 1x ≥D .:p ⌝ 0x ∃∈R ,0sin 1x > 【难度】1【考点】全称量词与存在性量词 【答案】D 【解析】全称命题的否定是存在性命题,所以命题:p x ∀∈R ,sin 1x ≤的否定为::p ⌝ 0x ∃∈R ,0sin 1x >故选D(3)若抛物线22(0)y px p =>的焦点与双曲线222x y -=的右焦点重合,则p 的值为( )A B .2 C .4 D .【难度】1 【考点】抛物线 【答案】C 【解析】由题意得:抛物线22(0)y px p =>的焦点为(,0)2p双曲线222x y -=的右焦点为(2,0) 所以,4p = 故选C(4)如图所示的程序框图表示的算法功能是( )A .计算123456S =⨯⨯⨯⨯⨯的值B .计算12345S =⨯⨯⨯⨯的值C .计算1234S =⨯⨯⨯的值D .计算1357S =⨯⨯⨯的值 【难度】2【考点】算法和程序框图 【答案】B 【解析】程序执行过程如下:1,2S t ==,符合条件100S ≤,进入循环体; 122,3S t =⨯==,符合条件100S ≤,进入循环体; 236,4S t =⨯==,符合条件100S ≤,进入循环体; 6424,5S t =⨯==,符合条件100S ≤,进入循环体; 245120,6S t =⨯==,不符合条件100S ≤,跳出循环体;输出120S =;所以该程序是计算12345S =⨯⨯⨯⨯的值, 故选B (5)已知113log 2x =,1222x -=,3x 满足3331()log 3x x =,则( )A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x << 【难度】2【考点】零点与方程 【答案】A 【解析】 分别作出13log y x =,2x y =,1()3x y =,3log y x =的图象有图可知:110x -<<,201x <<,312x << 所以,123x x x << 故选A(6)函数ππ()2sin()cos()66f x x x =--图象的一条对称轴方程是( )A .π6x =B. π3x =C. 5π12x =D. 2π3x = 【难度】2【考点】三角函数的图像与性质 【答案】C 【解析】把选项依次代入函数ππ()2sin()cos()66f x x x=--只有C选项得到的值为1故选C(7)已知实数x,y满足20,20,0,x yx yy t+≥⎧⎪-≤⎨⎪≤≤⎩其中0t>.若3z x y=+的最大值为5,则z的最小值为()A.52B.1C.0D.1-【难度】2【考点】线性规划【答案】D【解析】作出可行域如下图:由题意可知当z取最大值时,目标函数为:35y x=-+联立235y xy x=⎧⎨=-+⎩得:(1,2);所以2t=联立22y xy=-⎧⎨=⎩得:(1,2)-,代入目标函数可求得:min1z=-故选D(8)已知边长为3的正方形ABCD与正方形CDEF所在的平面互相垂直,M为线段CD上的动点(不含端点),过M作//MH DE交CE于H,作//MG AD交BD于G,连结GH.设CM x=(03)x<<,则下面四个图象中大致描绘了三棱锥C GHM-的体积y与变量x变化关系的是()【难度】3 【考点】函数综合 【答案】A【解析】如图所示:由题意得:CM MH x ==,3DM GM x ==-;11(3)22GMH S GM MH x x ∆=⋅=-231111(3)(3)3326C MGH GMH V S CM x x x x x -∆=⋅=⋅-⋅=-1()(2)2V x x x '=-,所以x(0,2) 2 (2,3)3()f x '+-()f x(0)0f =单增单减(3)0f =故选A 二、填空题:(9)i 为虚数单位,计算1i1i+-= . 【难度】1【考点】复数综合运算 【答案】i【解析】1i (1i)(1+i)21i (1i)(1+i)2ii ++===-- 故答案为i(10)已知平面向量a ,b 满足1==a b ,a 与b 的夹角为60︒,则()⋅+=a a b . 【难度】1【考点】数量积的应用 【答案】32【解析】2()cos ,a a b a a b a a b a b ⋅+=+⋅=+⋅⋅<>1311122=+⨯⨯= 故答案为32(11)圆22:(2)(2)8C x y -+-=与y 轴相交于,A B 两点,则弦AB 所对的圆心角的大小为 . 【难度】2【考点】直线与圆的位置关系 【答案】90 【解析】由题意得:令0y =,解得:0x =或4x =即(0,0)A ,(4,0)B ,4AB =,又CA CB ==所以,ABC ∆为等腰直角三角形,其中90BCA ∠= 故答案为90(12)一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是 ,四棱锥侧面中最大侧面的面积是 .【难度】2【考点】空间几何体的三视图与直观图【答案】36;74【解析】由三视图可知,该几何体是一个四棱锥,直观图如下:其中底面是边长为1的正方形,高为32 PH=其体积为13311326V=⨯⨯⨯=;由直观图可知,四个侧面分别为:,,,PAB PBC PCD PDA∆∆∆∆这四个三角形均可看成以P为顶点的三角形,显然,PBC∆的高PE是四个三角形最长的高,所以2113711222PBCS BC PE∆⎛⎫==⨯+=⎪⎪⎝⎭37(13)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%) (2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%). 已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前...)为 元. 【难度】3 【考点】函数综合 【答案】2800 【解析】由题意得:设此人应得稿费(扣税前...)为x 元 先假设此人一份书稿稿费(扣税前...)符合条件(1),即4000x ≤ 则:280(800)20%(130%)x =-⨯⨯-, 解得:28004000x =≤,符合条件(1)再假设此人一份书稿稿费(扣税前...)符合条件(2),即4000x > 则:280(120%)20%(130%)x =⋅-⨯⨯-, 解得:25004000x =≤,不符合条件(2) 故答案为2800(14)记12x x -为区间12[,]x x 的长度.已知函数2xy =,x ∈[]2,a -(0a ≥),其值域为[],m n ,则区间[],m n 的长度的最小值是 . 【难度】3【考点】函数的定义域与值域 【答案】3 【解析】由题意得,函数2xy =的图像如图所示:当01a ≤≤时,函数2xy =的值域为[1,4],此时[],m n 的长度为3;当1a >时,函数2xy =的值域为[1,()]f a ,此时[],m n 的长度大于3;故答案为3 三、解答题:(15)在ABC ∆中,π3A =,6cos 3B =,6BC =. (Ⅰ)求AC 的长; (Ⅱ)求ABC ∆的面积. 【难度】3【考点】解斜三角形 【答案】见解析 【解析】(Ⅰ)因为6cos 3B =,(0,)B ∈π,又22sin cos 1B B +=, 所以3sin 3B =.由正弦定理得,sin sin AC BC B A =.33=. 所以4AC =.(Ⅱ)在ABC ∆中,sin sin(60)C B =+sin cos60cos sin 60B B =+13sin 2B B ==133623+32.所以1sin 2ABC S AC BC C ∆=⋅=1462⨯⨯⨯3+32=23+62. (16)某次考试结束后,为了解甲、乙两所学校学生的数学考试情况,随机抽取甲、乙两校各10名学生的考试成绩,得茎叶图如图所示(部分数据不清晰):(Ⅰ)请根据茎叶图判断哪个学校的数学成绩平均水平较高(直接写出结果);(Ⅱ)若在抽到的这20名学生中,分别从甲、乙两校随机各抽取1名成绩不低于90分的学生,求抽到的学生中, 甲校学生成绩高于乙校学生成绩的概率.【难度】3 【考点】概率综合 【答案】见解析 【解析】解:(Ⅰ)从茎叶图可以看出,乙校10名学生的考试成绩的平均分 高于甲校10名学生的考试成绩平均分,故乙校的数学成绩整体水平较高. (Ⅱ)设事件M :分别从甲、乙两校随机各抽取1名成绩不低于90分的同学, 抽到的学生中,甲校学生成绩高于乙校学生成绩. 由茎叶图可知,甲校成绩不低于90分的同学有2人,从小到大依次记为12,A A ;乙校成绩不低于90分的同学有5人, 从小到大依次记为12345,,,,B B B B B . 其中121234592,93,90,91,95,96,98.A A B B B B B分别从甲、乙两校各随机抽取1名成绩不低于90分的同学共有11121314152122232425,,,,,,,,,A B A B A B A B A B A B A B A B A B A B 这10种可能.其中满足“抽到的学生中,甲校学生成绩高于乙校学生成绩”共有11122122,,,A B A B A B A B 这4种可能.所以42()105P M ==. 即分别从甲、乙两校随机各抽取1名成绩不低于90分的同学, 抽到的学生中,甲校学生成绩高于乙校学生成绩的概率为25. (17)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点. (Ⅰ)求证:BD ⊥平面11A ACC ;(Ⅱ)求证:直线1AB ∥平面D BC 1;(Ⅲ)设M 为线段1BC 上任意一点,在D BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由.【难度】3【考点】立体几何综合【答案】见解析【解析】(Ⅰ)证明:因为三棱柱的侧面是正方形,所以11,CC BC CC AC ,BC AC C . 所以1CC 底面ABC . 因为BD 底面ABC ,所以1CC BD .由已知可得,底面ABC 为正三角形.因为D 是AC 中点,所以BDAC . 因为1AC CC C ,所以BD平面11ACC A . (Ⅱ)证明:如图,连接1B C 交1BC 于点O ,连接OD .显然点O 为1B C 的中点.因为D 是AC 中点, 所以1//AB OD .又因为OD平面1BC D ,1AB 平面1BC D , 所以直线1//AB 平面1BC D .(Ⅲ)在D BC 1内的平面区域(包括边界)存在一点E ,使CE ⊥DM .此时点E 是在线段1C D 上.证明如下:过C 作1CE C D ⊥交线段1C D 于E ,由(Ⅰ)可知BD平面11ACC A ,而CE ⊂平面11ACC A , 所以BD CE .又1CE C D ⊥,1BDC D D ,所以CE 平面D BC 1. 又DM ⊂平面D BC 1,所以CE ⊥DM .(18)设数列{}n a 的前n 项和为n S ,且14a =,1n n a S +=,n *∈N .(Ⅰ)写出2a ,3a ,4a 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)已知等差数列{}n b 中,有22b a =, 33b a =,求数列{}n n a b ⋅的前n 项和n T .【难度】3【考点】数列综合应用【答案】见解析【解析】(Ⅰ)解:因为14a =,1n n a S +=,所以2114a S a ===,3212448a S a a ==+=+=,4312344816a S a a a ==++=++=.(Ⅱ)当2n ≥时,11222n n n n n n a S S +-=-=-=.又当1n =时,114a S ==.所以4,1,2, 2.n n n a n =⎧=⎨≥⎩(Ⅲ)依题意,224b a ==,338b a ==.则由11428b d b d +=⎧⎨+=⎩得,10b =,4d =,则4(1)n b n =-. 所以20,1,(1)2, 2.n n n n a b n n +=⎧⋅=⎨-≥⎩所以2(1)2(*)n n n a b n n +⋅=-∈N .因为n T =1122334411...n n n n a b a b a b a b a b a b --++++++456120122232...(2)2(1)2n n n n ++=+⨯+⨯+⨯++-⨯+-⨯,所以567232122232...(2)2(1)2n n n T n n ++=⨯+⨯+⨯++-⨯+-⨯.所以4567232222...2(1)2n n n T n ++-=+++++--⨯41332(12)(1)216(2)212n n n n n -++-=--⨯=---⨯- . 所以316(2)2n n T n +=+-⨯.(19)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为12(2,0),(2,0)F F -2F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.【难度】4【考点】圆锥曲线综合【答案】见解析【解析】解:(Ⅰ)由题意可得2222,,3,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b =故椭圆的方程为22162x y +=. (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --, 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 所以21221213k x x k +=+. 因为121224(4)13k y y k x x k-+=+-=+, 所以AB 中点22262(,)1313k k D k k-++. 因此直线OD 方程为30x ky +=0k .由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=,即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=. 所以222(91)4013k k+-=+.解得k =.故直线l的方程为2)y x =-. (20)已知函数()()e xa f x x x =+,a ∈R .(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.【难度】4【考点】导数的综合运用【答案】见解析【解析】 解:函数()f x 定义域为{0}x x ≠,322()e x x x ax a f x x++-'=. (Ⅰ)当0a =时,()e x f x x =⋅,()f x '=(1)e x x +.所以(1)e,(1)2e f f '==.所以曲线()y f x =在点(1,(1))f 处的切线方程是e 2e(1)y x -=-,即2e e =0x y --.(Ⅱ) 当1a =-时,()f x '=3221e x x x x x +-+. 设()g x =321x x x +-+,则2()321(31)(1)g x x x x x '=+-=-+.令()(31)(1)0g x x x '=-+>得,13x >或1x <-,注意到0x >,所以13x >. 令()(31)(1)0g x x x '=-+<得,注意到0x >,得103x <<. 所以函数()g x 在1(0,)3上是减函数,在1(,)3+∞上是增函数. 所以函数()g x 在13x =时取得最小值,且122()0327g =>. 所以()g x 在(0,)+∞上恒大于零.于是,当(0,)x ∈+∞,()f x '=3221e 0x x x x x+-+>恒成立. 所以当1a =-时,函数()f x 在()0,+∞上为增函数.(Ⅱ)问另一方法提示:当1a =-时,()f x '=3221e x x x x x +-+. 由于3210x x x +-+>在()0,+∞上成立,即可证明函数()f x 在()0,+∞上为增函数.(Ⅲ)(Ⅱ)322()e ()xx x ax a f x x ++-'=. 设()h x =32x x ax a ++-,2()32h x x x a '=++.(1) 当0a >时,()0h x '>在(0,)+∞上恒成立,即函数()h x 在(0,)+∞上为增函数.而(0)0h a =-<,(1)20h =>,则函数()h x 在区间()0,1上有且只有一个零点0x , 使0()0f x '=,且在0(0,)x 上,()0f x ,在0,1x 上,()0f x ,故0x 为函数()f x 在区间()0,1上唯一的极小值点;(2)当0a =时,当x ()0,1时,2()320h x x x '=+>成立,函数()h x 在区间()0,1上为增函数,又此时(0)0h =,所以函数()0h x >在区间()0,1恒成立,即()0f x ,故函数()f x 在区间()0,1为单调递增函数,所以()f x 在区间()0,1上无极值;(3)当0a <时,()h x =3232(1)x x ax a x x a x ++-=++-. 当()0,1x ∈时,总有()0h x >成立,即()0f x '>成立, 故函数()f x 在区间()0,1上为单调递增函数,所以()f x 在区间()0,1上无极值.综上所述0a >.。
2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A. B. C. D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A. B.4 C. D.64.命题“使得”的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.已知,若,则a=,b=.13.设数列的前n,则=,=.14.如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.已知向量a,b,|a|=1,|b|=2,若对任意单位向量e,均有|a·e|+|b·e|,则a·b的最大值是.三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
16.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B += (Ⅰ)证明:2A B =(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.17.(本题满分15分)如图,在三棱台ABC DEF -中,已知平面BCFE 平面ABC ,90ACB ∠=︒,1BE EF EC ===,2BC =,3AC =,(Ⅰ)求证:ACFD BF ⊥平面 (Ⅱ)求二面角B-AD-C 的余弦值.18. (本题满分15分)设3a ≥,函数2()min{2|1|,242}F x x x ax a =--+-,其中(Ⅰ)求使得等式2()242F x x ax a =-+-成立的x 的取值范围 (Ⅱ)(i )求()F x 的最小值()m a(ii )求()F x 在[0,6]上的最大值()M a19.(本题满分15分)如图,设椭圆C:2221(1)x y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a,k 表示) (Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20、(本题满分15分)设数列满足1||12n n a a +-≤,(Ⅰ)求证:11||2(||2)(*)n n a a n N -≥-∈(Ⅱ)若3||()2n n a ≤,*n N ∈,证明:||2n a ≤,*n N ∈.2016年高考浙江卷数学(理)试题答案及解析一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{}{}213,4,P x x Q x x=∈≤≤=∈≥R R则()P Q⋃=RA.[2,3] B.( -2,3 ] C.[1,2) D.(,2][1,)-∞-⋃+∞【答案】B【解析】根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R RQ x x P Q.故选B.2. 已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C3. 在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域20340xx yx y-≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x+y-2=0上的投影构成的线段记为AB,则│AB│=A.22B.4 C.32D.6【答案】C【解析】如图∆PQR为线性区域,区域内的点在直线20x y+-=上的投影构成了线段''R Q,即AB,而''=R Q PQ,由340-+=⎧⎨+=⎩x yx y得(1,1)-Q,由2=⎧⎨+=⎩xx y得(2,2)-R,22(12)(12)32==--++=AB QR.故选C.4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N , 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211-=+m n ,即222=+m n ,2221222221111()(1)(1)-+=⋅=-+m n e e m n m n,代入222=+m n ,得212,()1>>m n e e .故选A . 8. 已知实数a ,b ,cA .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________. 【答案】2 1【解析】22cos sin 22sin(2)14x x x π+=++,所以2, 1.A b == 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 12. 已知a >b >1.若log a b +log b a =52,a b =b a ,则a = ,b = .【答案】4 2【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 12114. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC ∆中,因为2,120AB BC ABC ==∠=, 所以30BAD BCA ∠==.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以3AC =设AD x =,则023t <<23DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅2234x x =-+.故2234BD x x =-+在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅,所以30BPD ∠=.EDCBAP过P 作直线BD的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 即2112342sin 3022x x d x -+⨯=⋅, 解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-. 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-⋅-+ 21(23)6234x x x x -=-+.设22234(3)1t x x x =-+=-+,因为023x ≤≤,所以12t ≤≤.则2|3|1x t -=-.(2323x <≤2|331x x t ==- 故231x t =-此时,221(31)[23(31)]6t t V t+--+-=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 15. 已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤,即最大值为12三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. (本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【试题分析】(I )由正弦定理及两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小.(II )由24a S =得21sin C 24a ab =,故有1sin sin C sin 2sin cos 2B =B =B B ,因sin 0B ≠,得sinC cos =B .又B ,()C 0,π∈,所以C 2π=±B .当C 2πB +=时,2πA =; 当C 2π-B =时,4πA =.综上,2πA =或4πA =.17. (本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【试题分析】(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ =. 在Rt QF ∆B 中,313FQ =,F 3B =,得3cos QF ∠B =. 所以,二面角D F B-A -的平面角的余弦值为34.18. (本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p,q}=,>p p qq p q.≤⎧⎨⎩,,(I)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围;(II)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).【试题分析】(I)分别对1x≤和1x>两种情况讨论()F x,进而可得使得等式()2F242x x ax a=-+-成立的x的取值范围;(II)(i)先求函数()21f x x=-,()2242g x x ax a=-+-的最小值,再根据()F x的定义可得()F x的最小值()m a;(ii)分别对02x≤≤和26x≤≤两种情况讨论()F x的最大值,进而可得()F x在区间[]0,6上的最大值()aM.(II)(i)设函数()21f x x=-,()2242g x x ax a=-+-,则()()min10f x f==,()()2min42g x g a a a==-+-,所以,由()F x的定义知()()(){}min1,m a f g a=,即()20,32242,22am aa a a⎧≤≤+⎪=⎨-+->+⎪⎩(ii)当02x≤≤时,()()()(){}()F max0,22F2x f x f f≤≤==,当26x≤≤时,()()()(){}{}()(){}F max2,6max2,348max F2,F6x g x g g a≤≤=-=.所以,()348,342,4a aaa-≤<⎧M=⎨≥⎩.19. (本题满分15分)如图,设椭圆2221xya+=(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【试题解析】(I)设直线1y kx=+被椭圆截得的线段为AP,由22211y kxxya=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx++=,故1x=,222221a kxa k=-+.因此22212222111a kk x ka kAP=+-=++(II)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足QAP=A.记直线AP,QA的斜率分别为1k,2k,且1k,2k>,12k k≠.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n n a a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有。
(第6题图)北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2014.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)复数i(2+i)z =在复平面内对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)已知集合1{|(1}2x A x =<,集合{|lg 0}B x x =>,则A B =(A ){|0}x x > (B ){|1}x x > (C ) {|1}{|0}x x x x >< (D ) ∅ (3)已知平面向量a ,b 满足2==a b ,(2)()=2⋅--a +b a b ,则a 与b 的夹角为(A )6π (B ) 3π(C )32π (D ) 65π(4)如图,设区域{(,)01,01}D x y x y =≤≤≤≤,向区域D 内随机投一点,且投入到区域内任一点都是等可能的,则点落 入到阴影区域3{(,)01,0}M x y x y x =≤≤≤≤的概率为(A )14(B )13(C )25 (D ) 27(5)在ABC △中,π4A =,BC =“AC =是“π3B =”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)执行如图所示的程序框图,输出的S 值为(A )2 (B )2- (C )4 (D )4-(7)已知函数2sin ()1xf x x =+.下列命题: ①函数()f x 的图象关于原点对称; ②函数()f x 是周期函数; ③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是(A ) ①③ (B )②③ (C ) ①④ (D )②④(8)直线y x m =+与圆2216x y +=交于不同的两点M ,N ,且M N O N ≥+,其中O 是坐标原点,则实数m 的取值范围是(A )(- (B)(⎡--⎣(C ) [2,2]- (D )[-第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. (9)在各项均为正数的等比数列{}n a 中,12a =,2312a a +=,则该数列的前4项和为 .(10)在极坐标系中,A 为曲线2cos ρθ=上的点,B 为曲线cos 4ρθ=上的点,则线段AB 长度的最小值是 .(11)某三棱锥的三视图如图所示,则这个三棱锥的体积为 ;表面积为 .(12)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b = ;此双曲线的离心率为 .(13)有标号分别为1,2,3的红色卡片3张,标号分别为1,2,3的蓝色卡片3张,现将全部的6张卡片放在2行3列的格内 (如图).若颜色相同的卡片在同一行,则不同的放法种数 为 .(用数字作答)正视图俯视图(14)如图,在四棱锥S ABCD -中,SB ⊥底面ABCD .底面ABCD 为梯形,AB AD ⊥,AB ∥CD ,1,3AB AD ==,2CD =.若点E 是线段AD 上的动点,则满足90SEC ∠=︒的点E 的个数是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数22()2sin()cos sin cos f x x x x x =π-⋅+-,x ∈R . (Ⅰ)求()2f π的值及函数()f x 的最小正周期; (Ⅱ)求函数()f x 在[]0,π上的单调减区间.(16)(本小题满分13分)某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:例如,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为25. (I )求a ,b 的值;(II )从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;(III )从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列及其数学期望E ξ.BCDESA(17)(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧面PAD ⊥底面ABCD .PAD △为等腰直角三角形,且PA AD ⊥. E ,F 分别为底边AB 和侧棱PC 的中点.(Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:EF ⊥平面PCD ; (Ⅲ)求二面角E PD C --的余弦值.(18)(本小题满分13分)已知函数21()ln 2f x ax x =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[1,e]的最小值为1,求a 的值.(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.(20)(本小题满分13分)从1,2,3,,n 中这n 个数中取m (,m n *∈N ,3m n ≤≤)个数组成递增等差数列,所有可能的递增等差数列的个数记为(,)f n m .(Ⅰ)当5,3n m ==时,写出所有可能的递增等差数列及(5,3)f 的值; (Ⅱ)求(100,10)f ;(Ⅲ)求证:()(1)(,)2(1)n m n f n m m -+>-.A E BCDPF北京市朝阳区高三年级第一次综合练习数学答案(理工类) 2014.3三、解答题15. (本小题满分13分) 解: ()f x =sin 2cos2x x -)4x π=-.(Ⅰ)())12242f πππ=⋅-==.显然,函数()f x 的最小正周期为π. …………… 8分 (Ⅱ)令ππ3π2π22π242k x k +-+≤≤得 37ππππ88k x k ++≤≤,k ∈Z .又因为[]0,πx ∈,所以3π7π,88x ⎡⎤∈⎢⎥⎣⎦. 函数()f x 在[]0,π上的单调减区间为3π7π,88⎡⎤⎢⎥⎣⎦. …………… 13分 16. (本小题满分13分)解:(I )设事件A :从20位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.由题意可知,运动协调能力或逻辑思维能力优秀的学生共有(6)a +人. 则62()205a P A +==. 解得 2a =.所以4b =. …………… 4分(II )设事件B :从20人中任意抽取2人,至少有一位运动协调能力或逻辑思维能力优秀的学生.由题意可知,至少有一项能力测试优秀的学生共有8人.则21222062()1()195C P B P B C =-=-=. …………… 7分(III )ξ的可能取值为0,1,2.20位学生中运动协调能力或逻辑思维能力优秀的学生人数为8人.所以21222033(0)95C P C ξ===,1112822048(1)95C C P C ξ===,2822014(2)95C P C ξ===.所以ξ的分布列为所以,0E ξ=⨯33951+⨯48952+⨯1495764955==. …………… 13分 17. (本小题满分14分)(Ⅰ)证明:取PD 的中点G ,连接FG ,AG .因为F ,G 分别是PC ,PD 的中点, 所以FG 是△PCD 的中位线. 所以FG ∥CD ,且12FG CD =. 又因为E 是AB 的中点,且底面ABCD 为正方形,所以1122AE AB CD ==,且AE ∥CD . 所以AE ∥FG ,且AE FG =. 所以四边形AEFG 是平行四边形. 所以EF ∥AG .又EF ⊄平面PAD ,AG ⊂平面PAD ,AE BCDPFG所以EF 平面PAD . ……………4分 (Ⅱ)证明: 因为平面PAD ⊥平面ABCD ,PA AD ⊥,且平面PAD 平面ABCD AD =, 所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥.又因为ABCD 为正方形,所以AB AD ⊥, 所以,,AB AD AP 两两垂直.以点A 为原点,分别以, , AB AD AP 为, , x y z 轴, 建立空间直角坐标系(如图). 由题意易知AB AD AP ==, 设2AB AD AP ===,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(1,0,0)E ,(1,1,1)F . 因为(0,11)EF = ,,(022)PD =- ,,,(200)CD =- ,,, 且(0,11)(0,2,2)0EF PD ⋅=⋅-= ,,(0,11)(2,00)0EF CD ⋅=⋅-=,,所以EF PD ⊥,EF CD ⊥.又因为PD ,CD 相交于D ,所以EF ⊥平面PCD . …………… 9分(Ⅲ)易得(102)EP =- ,,,(0,22)PD =- ,.设平面EPD 的法向量为(, , )x y z =n ,则0,0.EP PD ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 20,220. x z y z -+=⎧⎨-=⎩即2,. x z y z =⎧⎨=⎩令1z =,则(2,1,1)=n .由(Ⅱ)可知平面PCD 的法向量是(0,11)EF =,,所以cos ,EF EF EF⋅〈〉===⋅n n n .由图可知,二面角E PD C --的大小为锐角,所以二面角E PD C --. ……………14分 18. (本小题满分13分)解:函数()f x 的定义域是(0,)+∞, 1()f x ax x'=-21ax x -=.(Ⅰ)(1)当0a =时,1()0f x x'=-<,故函数()f x 在(0,)+∞上单调递减. (2)当0a <时,()0f x '<恒成立,所以函数()f x 在(0,)+∞上单调递减.(3)当0a >时,令()0f x '=,又因为0x >,解得x =①当x ∈时,()0f x '<,所以函数()f x 在单调递减.②当)x ∈+∞时,()0f x '>,所以函数()f x 在)+∞单调递增. 综上所述,当0a ≤时,函数()f x 的单调减区间是(0,)+∞,当0a >时,函数()f x 的单调减区间是,单调增区间为)+∞.…7分 (Ⅱ)(1)当0a ≤时,由(Ⅰ)可知,()f x 在[1,e]上单调递减,所以()f x 的最小值为21(e)e 112f a =-=,解得240ea =>,舍去. (2)当0a >时,由(Ⅰ)可知,1,即1a ≥时,函数()f x 在[1,e]上单调递增, 所以函数()f x 的最小值为1(1)12f a ==,解得2a =.②当1e <<,即211ea <<时,函数()f x 在上单调递减,在上单调递增,所以函数()f x 的最小值为11ln 122f a =+=, 解得e a =,舍去.e ,即210ea <≤时,函数()f x 在[1,e]上单调递减, 所以函数()f x 的最小值为21(e)e 112f a =-=,得24ea =,舍去. 综上所述,2a =. ……………13分19. (本小题满分14分)解:(Ⅰ)由题意得221314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =. 所以椭圆C 的方程是2214x y +=. …………… 4分(Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=. 设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=恒成立.又因为1012(,)2y PN x x =- ,2022(,)2y QN x x =- , 所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=---- 恒成立. 又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++22414k k=+, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k-=+, 所以2222212000212212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x =.故以线段PQ 为直径的圆过x轴上的定点(. …………… 14分 20. (本小题满分13分) 解:(Ⅰ)符合要求的递增等差数列为1,2,3;2,3,4;3,4,5;1,3,5,共4个.所以(5,3)4f =. …………… 3分 (Ⅱ)设满足条件的一个等差数列首项为1a ,公差为d ,d *∈N .1019a a d =+,10110011199a a d --==≤,d 的可能取值为1,2,,11 . 对于给定的d ,11091009a a d d =--≤, 当1a 分别取1,2,3,,1009d - 时,可得递增等差数列1009d -个(如:1d =时,191a ≤,当1a 分别取1,2,3,,91 时,可得递增等差数列91个:1,2,3,,11 ;2,3,4,,12 ; ;91,92,93,,100 ,其它同理). 所以当d 取1,2,,11 时,可得符合要求的等差数列的个数为:(100,10)100119(1211)1100966506f =⋅-⋅+++=-⋅= .…………… 8分(Ⅲ)设等差数列首项为1a ,公差为d ,1(1)m a a m d =+-,1111m a a n d m m --=--≤,记11n m --的整数部分是t ,则11111n n t m m ---<--≤,即111n m n t m m --<--≤. d 的可能取值为1,2,,t ,对于给定的d ,1(1)(1)m a a m d n m d =----≤,当1a 分别取1,2,3,,(1)n m d -- 时,可得递增等差数列(1)n m d --个.所以当d 取1,2,,t 时,得符合要求的等差数列的个数2(1)121(,)(1)222t t m n m f n m nt m t t +--+=--⋅=-+ 22121(21)()22(1)8(1)m n m n m t m m --+-+=--+-- 易证21112(1)1n m n m n m m m --+-<---≤. 又因为211||12(1)2(1)n m n m m m m m --++-=---,2113||2(1)12(1)n m n m m m m -+---=---, 所以21211||||12(1)2(1)1n m n m n m n m m m m --+-+-->-----. 所以(1)(,)(1)2t t f n m nt m +=--⋅ (1)()(1)11(1)122(1)n m n m n m n m n m m n m m m --+--+-->⋅--⋅=--. 即()(1)(,)2(1)n m n f n m m -+>-. …………… 13分。
重庆市潼南柏梓中学2015届高三数学(理)模拟试题Word 版含答案(1)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数7412ii+=+ A .32i +B .32i -C .23i +D .23i -2.集合{}{}20,2A x x a B x x =-≥=<,若R C A B ⊆,则实数a 的取值范围是A .(],4-∞B .[]0,4C .(),4-∞D .()0,43.若随机变量()()~1,4,00.1X N P x ≤=,则()02P x <<= A .0.4 B .0.45 C .0.8 D .0.94.下列四个结论: ①若0x >,则sin x x >恒成立;②命题“若sin 0,0x x x -==则”的逆命题为“若0sin 0x x x ≠-≠,则”; ③“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件; ④命题“,ln 0x R x x ∀∈->”的否定是“000,ln 0x R x x ∃∈-≤”. 其中正确结论的个数是 A .1个 B .2个C .3个D .4个5.设01a <<,则函数11x y a =-的图象大致为6.已知某几何体的三视图,则该几何体的体积是A .12B .24C .36D .487.直线10x my ++=与不等式组30,20,20x y x y x +-≥⎧⎪-≥⎨⎪-≤⎩表示的平面区域有公共点,则实数m 的取值范围是A .14,33⎡⎤⎢⎥⎣⎦B .41,33⎡⎤--⎢⎥⎣⎦ C .3,34⎡⎤⎢⎥⎣⎦D .33,4⎡⎤--⎢⎥⎣⎦8.已知向量()()0,sin ,1,2cos a x b x ==,函数()()2237,22f x a bg x a b =⋅=+-,则()f x 的图象可由()g x 的图象经过怎样的变换得到A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度D .向右平移2π个单位长度9.已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是 A .221366x y -= B .221163x y -= C .221632x y -= D .221316x y -= 10.对于函数()xf x ae x =-,若存在实数,m n ,使得()0f x ≤的解集为[](),m n m n <,则实数a 的取值范围是A .()1,00,e ⎛⎫-∞⋃ ⎪⎝⎭B .()1,00,e ⎛⎤-∞⋃ ⎥⎝⎦ C .10,e⎛⎫ ⎪⎝⎭D .10,e⎛⎤ ⎥⎝⎦二、填空题11.为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图),据此可估计该校上学期200名教师中,使用多媒体辅助教学不少于30次的教师人数为_________.12.执行如图所示的程序,则输出的结果为________. 13.若函数()()2221fx x x a g x x x a=++=-++与有相同的最小值,则()1af x dx =⎰___________.14.已知C 点在⊙O 直径BE 的延长线上,CA 切⊙O 于A 点,若AC AB =,则ACBC =. 15.在直角坐标系xoy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为sin()104πρθ++=,曲线C 2的参数方程为⎩⎨⎧+-=+-=,,ϕϕsin 1cos 1y x (ϕ为参数,πϕ≤≤0),则C 1与C 2有 1 个不同公共点.16.已知函数()2123f x x x =++-,若关于x 的不等式()1f x a <-的解集非空,则实数a 的取值范围是CB三、解答题17.在△ABC 中,角C B A ,,所对的边分别为()()(),,,2sin cos sin a b c f x x A x B C =-++()x R ∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且sin sin B C +=,求△ABC 的面积.18.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.19.如图,在多面体111ABC A B C -中,四边形11ABB A 是正方形,1ACB ∆是等边三角形,11111,//,2AC AB B C BC BC B C ===. (1)求证:111//AB AC C 平面;(2)若点M 是边AB 上的一个动点(包括B A ,两端点),试确定点M 的位置,使得平面11CAC 和平面11MAC所成的角(锐角)的余弦值是320.已知函数()22,0,ln ,0,x x a x f x a x x ⎧++<=⎨>⎩其中是实数,设()()()()1122,,,A x f x B x f x 为该函数图象上的两点,且12x x <.(1)当0x <时,讨论函数()()()xg x f x f e =⋅的单调性;(2)若函数()f x 的图象在点A,B 处的切线重合,求a 的取值范围.21.已知圆22:0C x y x y +--=经过椭圆()2222:10x y E a b a b+=>>的右焦点F 和上顶点D .(1)求椭圆E 的方程;(2)过点()2,0P -作斜率不为零的直线l 与椭圆E 交于不同的两点B A ,,直线BF AF ,分别交椭圆E 于点H G ,,设),(,2121R ∈==λλλλ(i )求12λλ+的取值范围;(ii )是否存在直线l ,使得AF GF BF HF ⋅=⋅成立?若存在,求l 的方程;若不存在,请说明理由.22.已知数列{}n a 的首项为1,记1212()knn n k n n nf n a C a C a C a C =+++++(*N n ∈). (1)若{}n a 为常数列,求(4)f 的值;(2)若{}n a 为公比为2的等比数列,求()f n 的解析式;(3)是否存在等差数列{}n a ,使得()1(1)2nf n n -=-对一切*N n ∈都成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.BACCB ADBDC 11.90 12.36 13.328 14.33 15.1 16.53>-<a a 或22.解:(1)∵{}n a 为常数列,∴1n a =()n N +∈.∴12344444(4)15f C C C C =+++=……………4分(2)∵{}n a 为公比为2的等比数列,∴12n n a -=()n N +∈.……………6分∴1231()242n nn n n nf n C C C C -=++++, ∴1223312()12222n nn n n nf n C C C C +=+++++,(12)3n n +=……………8分 故31()2n f n -=. ……………10分(3)假设存在等差数列{}n a ,使得()1(1)2nf n n -=-对一切*N n ∈都成立,设公差为d ,则121121()kn nn n k n n n n nf n a C a C a C a C a C --=++++++ ……………12分 且121121()n n kn n n n k n n nf n a C a C a C a C a C --=++++++, 相加得 121112()2()()kn n n n n n n f n a a a C C C C --=+++++++,∴12111()()2k n n n n n n n a a f n a C C C C --+=++++++11(22)2nn n a a a -+=+-[]11(1)2(2)(21)n n d n d -=+-++--. ∴[]1()1(2)2(2)2n f n d n d --=-++-(1)2nn =-恒成立,即02)2)(2()2(1=--+--n n d d n N +∈恒成立,∴2d =.……………15分 故{}n a 能为等差数列,使得()1(1)2n f n n -=-对一切n N +∈都成立,它的通项公式为21n a n =-....................... 16分(也可先特殊猜想,后一般论证及其它方法相应给分)。
第八节 曲线与方程轨迹与轨迹方程了解方程的曲线与曲线的方程的对应关系.知识点 曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式.(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解.若此方程组无解,则两曲线无交点.易误提醒 (1)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).(2)求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.[自测练习]1.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:把点(-2,3)和点(2,3)的坐标代入方程(a -1)x -y +2a +1=0.验证知(-2,3)适合方程,而(2,3)不一定适合方程,故选A.答案:A2.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为____________.解析:AB →=⎝⎛⎭⎫2,-y 2,BC →=⎝⎛⎭⎫x ,y 2,由AB →⊥BC →,得AB →·BC →=0,即2x +⎝⎛⎭⎫-y 2·y 2=0,∴动点C 的轨迹方程为y 2=8x .答案:y 2=8x3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点). 答案:x 24+y 23=1(y ≠0)考点一 直接法求轨迹方程|1.(2016·津南一模)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.答案:A2.(2016·南昌模拟)方程(x 2+y 2-2x )x +y -3=0表示的曲线是( )A .一个圆和一条直线B .一个圆和一条射线C .一个圆D .一条直线解析:本题考查曲线与方程、数形结合思想.依题意,题中的方程等价于①x +y -3=0或②⎩⎪⎨⎪⎧x +y -3≥0,x 2+y 2-2x =0.注意到圆x 2+y 2-2x =0上的点均位于直线x +y -3=0的左下方区域,即圆x 2+y 2-2x =0上的点均不满足x +y -3≥0,②不表示任何图形,因此题中的方程表示的曲线是直线x +y -3=0,故选D.答案:D3.在直角坐标平面xOy 中,过定点(0,1)的直线l 与圆x 2+y 2=4交于A ,B 两点.若动点P (x ,y )满足OP →=OA →+OB →,则点P 的轨迹方程为________.解析:设AB 的中点为M ,则OM →=12OP →,M ⎝⎛⎭⎫x 2,y 2.又因为OM ⊥AB ,AB →的方向向量为⎝⎛⎭⎫x 2,y 2-1,OM →=⎝⎛⎭⎫x 2,y 2,所以⎝⎛⎭⎫x 2,y 2-1·⎝⎛⎭⎫x 2,y 2=0,x 2+y (y -2)=0,即x 2+(y -1)2=1. 答案:x 2+(y -1)2=1直接法求轨迹方程的常见类型(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.考点二 定义法求轨迹方程|已知点F (1,0),圆E :(x +1)2+y 2=8,点P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)若直线l 与圆O :x 2+y 2=1相切,并与(1)中轨迹Γ交于不同的两点A ,B ,当OA →·OB →=λ,且满足23≤λ≤34时,求△AOB 面积S 的取值范围.[解] (1)连接QF (图略).∵|QE |+|QF |=|QE |+|QP |=|PE |=22(22>|EF |=2),∴点Q 的轨迹是以E (-1,0),F (1,0)为焦点,长轴长2a =22的椭圆,即动点Q 的轨迹Γ的方程为x 22+y 2=1. (2)依题结合图形(图略)知直线l 的斜率不可能为零,所以设直线l 的方程为x =my +n (m ∈R ).∵直线l 即x -my -n =0与圆O :x 2+y 2=1相切,∴|n |m 2+1=1,得n 2=m 2+1. 又∵点A ,B 的坐标(x 1,y 1),(x 2,y 2)满足:⎩⎪⎨⎪⎧x =my +n ,x 2+2y 2-2=0, 消去x 并整理,得(m 2+2)y 2+2mny +n 2-2=0.由一元二次方程根与系数的关系,得y 1+y 2=-2mnm 2+2,y 1y 2=n 2-2m 2+2.其判别式Δ=4m 2n 2-4(m 2+2)(n 2-2)=8(m 2-n 2+2)=8, 又由求根公式得y 1,2=-2mn ±Δ2(m 2+2).∵λ=OA →·OB →=x 1x 2+y 1y 2=(my 1+n )(my 2+n )+y 1y 2=(m 2+1)y 1y 2+mn (y 1+y 2)+n 2=3n 2-2m 2-2m 2+2=m 2+1m 2+2.S △AOB =12|OA →||OB →|sin ∠AOB =12OA →2·OB →2-(OA →·OB →)2=12|x 1y 2-x 2y 1|=12|(my 1+n )y 2-(my 2+n )y 1|=12|n (y 2-y 1)|=12|n |·Δm 2+2=2·m 2+1(m 2+2)2=2·m 2+1m 2+2·1m 2+2∵m 2+1m 2+2+1m 2+2=1,且λ=m 2+1m 2+2∈⎣⎡⎦⎤23,34, ∴S △AOB =2·λ·(1-λ)∈⎣⎡⎦⎤64,23.定义法求轨迹方程的思路(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知轨迹是什么曲线,其方程是什么形式的方程的情况.利用条件把待定系数求出来,使问题得解.1.已知动圆过定点F (0,2),且与定直线l :y =-2相切. (1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过点F (0,2),分别以A ,B 为切点作轨迹C 的切线,设两切线交点为Q ,求证:AQ ⊥BQ .解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,l :y =-2为准线的抛物线,因为抛物线焦点到准线的距离等于4,所以圆心的轨迹方程是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直,设直线AB 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,得x 2-8kx -16=0. 所以x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x .所以过抛物线上A ,B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1·k 2=14x 1·14x 2=116x 1·x 2=-1.所以AQ ⊥BQ .考点三 代入法求轨迹方程|在圆O :x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.设M 为线段PD 的中点.(1)当点P 在圆O 上运动时,求点M 的轨迹E 的方程;(2)若圆O 在点P 处的切线与x 轴交于点N ,试判断直线MN 与轨迹E 的位置关系. [解] (1)设M (x ,y ),则P (x,2y ).∵点P 在圆x 2+y 2=4上,∴x 2+(2y )2=4,即点M 的轨迹E 的方程为x 24+y 2=1.(2)当直线PN 的斜率不存在时,直线MN 的方程为x =2或x =-2.显然与轨迹E 相切. 当直线PN 的斜率存在时,设PN 的方程为y =kx +t (k ≠0). ∵直线PN 与圆O 相切,∴|t |k 2+1=2,即t 2-4k 2-4=0. 又∵直线MN 的斜率为k 2,点N 的坐标为⎝⎛⎭⎫-t k ,0,∴直线MN 的方程为y =k2⎝⎛⎭⎫x +t k , 即y =12(kx +t ).由⎩⎨⎧y =12(kx +t ),x24+y 2=1,得(1+k 2)x 2+2ktx +t 2-4=0.∵Δ=(2kt )2-4(1+k 2)(t 2-4)=-4(t 2-4k 2-4)=0,∴直线MN 与轨迹E 相切. 综上可知,直线MN 与轨迹E 相切.代入法求轨迹方程的四个步骤(1)设出所求动点坐标P (x ,y ).(2)寻求与所求动点P (x ,y )与已知动点Q (x ′,y ′)的关系. (3)建立P ,Q 两坐标的关系表示出x ′,y ′. (4)将x ′,y ′代入已知曲线方程中化简求解.2.已知F 1,F 2分别为椭圆C :x 24+y 23=1的左,右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0)解析:依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎨⎧x =x 0-1+13,y =y 03.即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y .代入x 204+y 203=1得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).答案:C27.分类讨论思想在由方程讨论曲线类型中的应用【典例】 已知两个定点A 1(-2,0),A 2(2,0),动点M 满足直线MA 1与MA 2的斜率之积是定值m4(m ≠0).求动点M 的轨迹方程,并指出随m 变化时方程所表示的曲线C 的形状.[思路点拨] 依题直接写出方程后,结合方程结构特征分类判断曲线类型,注意分类标准的确定.[解] 设动点M (x ,y ),依题意有y x -2·y x +2=m4(m ≠0),整理得x 24-y 2m=1(x ≠±2),即为动点M 的轨迹方程.当m >0时,轨迹是焦点在x 轴上的双曲线;当m ∈(-4,0)时,轨迹是焦点在x 轴上的椭圆; 当m =-4时,轨迹是圆;当m ∈(-∞,-4)时,轨迹是焦点在y 轴上的椭圆.且点A 1(-2,0),A 2(2,0)不在曲线上.[方法点评] 由曲线方程讨论曲线类型时,常用到分类讨论思想,其分类的标准有两类: (1)二次项系数为0的值. (2)二次项系数相等的值.[跟踪练习] 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )解析:a >b >0得1b 2>1a 2>0,方程a 2x 2+b 2y 2=1,即x 21a 2+y 21b 2=1表示的是焦点在y 轴上的椭圆;方程ax +by 2=0,即y 2=-ab x 表示的是焦点在x 轴的负半轴上的抛物线上,结合各选项知,选D.答案:DA 组 考点能力演练1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程2x +y =0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件解析:点M 的坐标满足方程2x +y =0,则点M 在曲线y 2=4x 上,是必要条件;但当y >0时,点M 在曲线y 2=4x 上,点M 的坐标不满足方程2x +y =0,不是充分条件.2.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:∵PM →·PN →=0,∴PM ⊥PN . ∴点P 的轨迹是以线段MN 为直径的圆. 答案:A3.(2016·梅州质检)动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:双曲线x 2-y 23=1的左焦点F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .答案:B4.(2016·沈阳质检)已知点O (0,0),A (1,-2),动点P 满足|P A |=3|PO |,则P 点的轨迹方程是( )A .8x 2+8y 2+2x -4y -5=0B .8x 2+8y 2-2x -4y -5=0C .8x 2+8y 2+2x +4y -5=0D .8x 2+8y 2-2x +4y -5=0解析:设P 点的坐标为(x ,y ),则(x -1)2+(y +2)2=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0,故选A.答案:A5.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y解析:M 点的轨迹是双曲线x 216-y 29=1,依题意,是“好曲线”的曲线与M 点的轨迹必有公共点.四个选项中,只有圆x 2+y 2=9与M 点的轨迹没有公共点,其他三个曲线与M 点的轨迹都有公共点,所以圆x 2+y 2=9不是“好曲线”.6.(2016·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是_____________________________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是________.解析:本题考查曲线的方程.因为抛物线x 2=4y 的焦点F (0,1),设线段PF 的中点坐标是(x ,y ),则P (2x,2y -1)在抛物线x 2=4y 上,所以(2x )2=4(2y -1),化简得x 2=2y -1.答案:x 2=2y -18.已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).则动点P 的轨迹C 的方程为________.解析:由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ, 整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).答案:x 2-y 2λ=1(λ≠0,x ≠±1)9.在直角坐标系xOy 中,动点P 与定点F (1,0)的距离和它到定直线x =2的距离之比是22. (1)求动点P 的轨迹Γ的方程; (2)设曲线Γ上的三点A (x 1,y 1),B ⎝⎛⎭⎫1,22,C (x 2,y 2)与点F 的距离成等差数列,线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .解:(1)设P (x ,y ).由已知,得(x -1)2+y 2|x -2|=22,两边同时平方,化简得x 22+y 2=1,故动点P 的轨迹Γ的方程是x 22+y 2=1.(2)由已知得|AF |=22(2-x 1),|BF |=22×(2-1), |CF |=22(2-x 2),因为2|BF |=|AF |+|CF |,所以22(2-x 1)+22(2-x 2)=2×22×(2-1), 所以x 1+x 2=2.①故线段AC 的中点坐标为⎝⎛⎭⎫1,y 1+y 22,其垂直平分线的方程为y -y 1+y 22=-x 1-x 2y 1-y 2(x -1).②因为A ,C 在椭圆上,所以代入椭圆,两式相减, 把①代入化简,得-x 1-x 2y 1-y 2=y 1+y 2.③把③代入②,令y =0,得x =12,所以点T 的坐标为⎝⎛⎭⎫12,0.所以直线BT 的斜率k =22-01-12= 2.10.在平面直角坐标系xOy 中,动点P (x ,y )到F (0,1)的距离比到直线y =-2的距离小1.(1)求动点P 的轨迹W 的方程;(2)过点E (0,-4)的直线与轨迹W 交于两点A ,B ,点D 是点E 关于x 轴的对称点,点A 关于y 轴的对称点为A 1,证明:A 1,D ,B 三点共线.解:(1)由题意可得动点P (x ,y )到定点F (0,1)的距离和到定直线y =-1的距离相等,所以动点P 的轨迹是以F (0,1)为焦点,以y =-1为准线的抛物线.所以动点P 的轨迹W 的方程为x 2=4y .(2)证明:设直线l 的方程为y =kx -4,A (x 1,y 1),B (x 2,y 2),则A 1(-x 1,y 1).由⎩⎪⎨⎪⎧y =kx -4,x 2=4y ,消去y ,整理得x 2-4kx +16=0. 则Δ=16k 2-64>0,即|k |>2. x 1+x 2=4k ,x 1x 2=16.直线A 1B :y -y 2=y 2-y 1x 2+x 1(x -x 2),所以y =y 2-y 1x 2+x 1(x -x 2)+y 2,即y =x 22-x 214(x 1+x 2)(x -x 2)+14x 22,整理得y =x 2-x 14x -x 22-x 1x 24+14x 22,即y =x 2-x 14x +x 1x 24.直线A 1B 的方程为y =x 2-x 14x +4,显然直线A 1B 过点D (0,4).所以A 1,D ,B 三点共线. B 组 高考题型专练1.(2014·高考广东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)依题意知c =5,c a =53,∴a =3,b 2=a 2-c 2=4,∴椭圆C 的标准方程为x 29+y 24=1. (2)若过点P (x 0,y 0)的切线的斜率不存在或者斜率为零,则易知点P 的坐标为(3,2)或(3,-2)或(-3,2)或(-3,-2).若过点P (x 0,y 0)的切线的斜率存在且不为0,设切点分别为A (x 1,y 1),B (x 2,y 2),切线P A 的斜率为k ,∵P A ⊥PB ,则切线PB 的斜率为-1k. 切线P A 的方程为y -y 0=k (x -x 0),由⎩⎪⎨⎪⎧y -y 0=k (x -x 0)x 29+y 24=1得4x 2+9[k (x -x 0)+y 0]2=36,即(4+9k 2)x 2+18k (y 0-kx 0)x +9(y 0-kx 0)2-36=0,∵切线P A 与椭圆相切, ∴Δ=[18k (y 0-kx 0)]2-4(4+9k 2)[9(y 0-kx 0)2-36]=0,化简得4+9k 2-k 2x 20+2kx 0y 0-y 20=0.①同理,切线PB 的方程为y -y 0=-1k (x -x 0),与椭圆方程x 29+y 24=1联立可得,4+9k 2-x 20k 2-2x 0y 0k-y 20=0,即4k 2+9-x 20-2kx 0y 0-k 2y 20=0.② 由①+②得13(1+k 2)-(1+k 2)(x 20+y 20)=0,即(1+k 2)(x 20+y 20-13)=0,∵1+k 2≠0,∴x 20+y 20-13=0,即x 20+y 20=13.经检验可知点(3,2),(3,-2),(-3,2),(-3,-2)均满足x 20+y 20=13,故点P (x 0,y 0)的轨迹方程为x 2+y 2=13.2.(2015·高考广东卷)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解:(1)C 1:(x -3)2+y 2=4,圆心C 1(3,0).(2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝⎛⎭⎫x -322+y 2=94. 故线段AB 的中点M 的轨迹C 的方程是⎝⎛⎭⎫x -322+y 2=94在圆C 1:(x -3)2+y 2=4内部的部分,即⎝⎛⎭⎫x -322+y 2=94⎝⎛⎭⎫53<x ≤3. (3)联立⎩⎨⎧x =53,⎝⎛⎭⎫x -322+y 2=94,解得⎩⎨⎧ x =53,y =±253. 不妨设其交点为P 1⎝⎛⎭⎫53,253,P 2⎝⎛⎭⎫53,-253, 设直线L :y =k (x -4)所过定点为P (4,0), 则kPP 1=-257,kPP 2=257. 当直线L 与圆C 相切时,⎪⎪⎪⎪32-k -4k ||k 2+1=32,解得k =±34. 故当k ∈⎩⎨⎧⎭⎬⎫-34∪⎝⎛⎭⎫-257,257∪⎩⎨⎧⎭⎬⎫34时,直线L 与曲线C 只有一个交点.。
北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =B .()U M N =∅ ðC .M N U =D .()U M N ⊆ð 3.e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c 若222()tan a c b B +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或(第4题图)6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x yr +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是A .0r <B.0r <<C .0r <D .0r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答). 10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;月258(第7题图)正视图侧视图俯视图2610410n a a a a +++++= ______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界), 则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i = )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a = ,1212(,,,)B b b b = ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个 同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数21()sin 22x f x x ωω=+,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AAC C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11AC AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1AC //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;AMPCBA 1C 1B 1(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l 20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,21()sin 22x f x x =+1sin2x x = sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由21()sin 22x f x x ωω=+- 1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知, 13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分 17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A = , 所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B . 因为AP ⊂平面11AA B B , 所以11AC AP ⊥.…………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P . 易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,17⋅〈〉===⋅m n m n m n. 所以二面角P AM B --.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--= n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-.综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aag x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=, 112m y +=,222m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x-+-=======.因为12k k+=,所以PMN PNM∠=∠.所以PM PN=.………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)观察数列}{na的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{na是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b=,公比4q=,所以124nnb-=⋅.又31nn k nb a k==-,所以13124,nnk n-*-=⋅∈N,即11(241),3nnk n-*=⋅+∈N.再证n k为正整数.显然11k=为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。