二项式定理的应用——证明不等式
- 格式:ppt
- 大小:853.50 KB
- 文档页数:5
一、引言幂函数作为高中数学中重要的一部分,其性质与应用十分广泛。
在研究幂函数的性质时,我们常常会用到二项式定理,通过二项式定理证明幂不等式的六种情形,可以帮助我们更好地理解幂函数的性质,同时也为我们的数学学习提供了一个深入的例子。
本文将通过六种情形列举幂不等式的证明过程,帮助读者更好地理解幂函数的性质。
二、二项式定理的基本概念1. 二项式定理的表述二项式定理是指对于任意实数a、b和自然数n,都有以下恒等式成立:$$(a+b)^n = C_{n}^{0}a^{n}b^{0} + C_{n}^{1}a^{n-1}b^{1} +C_{n}^{2}a^{n-2}b^{2} + ... + C_{n}^{n-1}a^{1}b^{n-1} +C_{n}^{n}a^{0}b^{n}$$其中,$C_{n}^{k}$表示组合数。
2. 二项式定理的推广应用二项式定理不仅适用于自然数指数的情况,对于任意实数指数的幂函数都成立。
这为我们在研究幂函数的性质时提供了一个有力的工具。
三、幂不等式的六种情形及证明1. |a^n| <= |b^n|当a、b为实数,且0 <= |a| <= |b|时,对任意自然数n,有|a^n|<= |b^n|成立。
证明:我们可以将a、b表示为参数形式,即a=r·cosθ,b=r·sinθ,其中r≥0,θ为实数。
则有|a^n| = (r·cosθ)^n = r^n·cos^nθ,|b^n| = (r·sinθ)^n = r^n·sin^nθ。
其中,0 ≤ cos^2θ ≤ sin^2θ ≤ 1。
当0 ≤ |a| ≤ |b|时,可以得出|a^n| ≤ |b^n|成立。
2. (a^n+b^n)/2 >= ((a+b)/2)^n当a、b为正实数,且a≠b时,对任意自然数n,有(a^n+b^n)/2 >= ((a+b)/2)^n成立。
二项式定理应用常见类型及其解题方法一、知识点回顾: 1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意准确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,按降幂排列。
b 的指数从0逐项减到n ,按升幂排列。
各项的次数和等于n .④系数:注意准确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数,包含符号)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==-0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
《中学生数理他》特别奉献编者的话:高考是一种竞技,考验的是平时的努力。
要想在高考中取得优异成绩,贵在 平时的训练,平日从严,高考坦然。
练习就是高考,高考就是练习!面对即将到来的高考, 在明确命题规律的基础上,平时的训练要有针对性,要学会总结。
理殆常g 理2^8一、求幕指数的值例1若(加-弓"展开式中含*项的系数与含+项的系数之比为-5,求"的值。
点评:利用二项展开式的通项公式求壽指数 n,主要是体现了方程思想在二项展开式中的应 用,我们只要根据题目条件建立关于"的方程, 即可使问题得到解决。
答案:”=6。
五、近似计算问题例5求0.998。
的近似值,使误差小于0. 001。
点评:因为0.9986=(1-0.002)6=1+6(-0.002)+ 15(-0.002)2+-+(-0.002)6,所以可以用二项式定 理计算。
T 3= 15(-0.002)2=0.00006<0.001,从第3项 起,以后各项可以忽略不计,即0.9986= 1+6(-0.002) =0.988。
(1+*)"=1+C 浪+C 怎2+...+c :w"(nWN+),当力 的绝对值与1相比很小且n 足够大时*2、/、d 等 项在精确度允许的范围之内可以忽略不计。
二、求展开式的某一项或指定项的系数例2如果在的展开式中,前三2 v x项系数成等差数列,求展开式中的有理项。
点评:求展开式中某一特定的项或指定项的 系数,常用待定系数法先确定r 的值,本题要注意 展开式中的有理项与系数是有理数的项是两个不同的概念。
答案:生普九八=十6。
六、确定展开式中系数的最大(小)项例6已知&+3Q)"的展开式中,各项系数和比 它的二项式系数和大992。
(1)求展开式中二项式 系数最大的项;(2)求展开式中系数最大的项。
点评:如果展开式中各项都是正数时,根据 “系数最大的项的系数既不小于其前一项的系数 又不小于其后一项的系数”列出不等式组求解; 如果展开式中各项系数有正有负时,则系数最大 项的系数必是正数,比较相邻几个正数得解。
不等式证明一、不等式证明的方法与技巧 不等式证明的基础是对于任意实数a ,0≥a .常用方法有:比较法(作差比较、作商比较) 、分析法、综合法、放缩法、反证法、换元法、数学归纳法等等,证明方法因题而异,一题可以多种方法,能够显示选手的思维能力.例1 设a ,b ,c 是正实数,求证:))()(b (bc c b a b a c a c a -+-+-+≥.分析与解 设a ,b ,c 中a 最大,若a ≤+c b ,则不等式显然成立.若a c >+b ,则可以应用二元均值不等式))((b c a c b a -+-+[]ab c a c b a =-++-+≤)()(21同理ba cbc a b ≤-+-+))((,cb ac a b c ≤-+-+))((.以上三式相乘,即证.例2已知+∈Rd c b a ,,,,且4=+++d c b a .求证:42222≤+++bc d da c da b bc a .证明bc d da c da b bc a 2222+++)()(bd ac cd bd ac ab +++=))((bd ac cd ab ++=2)2(bd ac cd ab +++≤[]4))((2c bd a ++=4)2(41d c b a +++≤4=.例3 设a ,b ,c 为正实数,且1=++c b a ,证明:cabc ab bb ca a a bc c c ab ++≥++++++++1221221221222.证明 因1=++c b a 及abb a 222≥+,所以2)(ca bc ab ++abc ca b bc a a c c b b a 222222222222+++++=)(2)(22222c b a abc b a c b a +++++=abcb a abc 22222++≥.因此22)(221ca bc ab abc c ab ++≥++,同理 22)(221ca bc ab bca a bc ++≥++,22)(221ca bc ab cab b ca ++≥++,以上三式相加即证. 例4 若,0,0>>>z y x ,且1=xyz ,求证:21111111<+++++<zy x . 证明 任取0>a ,令by c ax b ==,,由1=xyz 得,,,caz b c y a b x ===从而有 z y x +++++111111ca cc b b b a a +++++=c b a c c b a b c b a a ++++++++>1=,又 c a c c b b b a a +++++2a =+++++++++++<cb c b c b a b a c b a c a ,所以 21111111<+++++<zy x . 例5 设cb a ,,是正实数,并且1=abc ,证明:1555555≤++++++++caa c cabc c b bc ab b a ab .分析与解 注意条件不等式的证明,充分利用abc=1,观察不等式左边各式特征,找到一个放缩式,由)(2255b a b a b a +-+))((3322≥--=b a b a有)(2255b a b a b a +≥+,所以cb a b a cb a ab b a ab 22552255++=++cb a b a b a cb a 222222)(++≤cb a c++=.以下略.例6 设c b a ,,是三角形三边,求证:)()()(222222b ac a c b c b a +++++abcc b a 2333+++>.证法一 作差变形,因式分解,注意到0>-+c b a ,>-+a c b ,>-+b c a .证法二 欲证不等式等价于acbc a bc c a b 22222222-++-+12222>-++abc b a⇔1cos cos cos >++C B A .这里C B A ,,分别为题设三角形三边 c b a ,,所对应的内角,应用三角变换,则可证.证法三 由B cC b a cos cos ⋅+⋅=,A c C a b cos cos ⋅+⋅=,于是)cos (cos cos )(B A c C b a b a +⋅++=+,即有 b a B A c C +++=)cos (cos cos 1,ba BA c C ++=-cos cos cos 1,1cos 1cos cos >+=-+cba C B A ,也即1cos cos cos >++C B A ,化归为解法二的最后不等式.C B A cos cos cos ++)cos(cos cos B A B A +-+=12cos 22cos 2cos 22++--+=B A B A B A)2cos 2(cos 2cos 21BA B A B A +--++= ⎥⎦⎤⎢⎣⎡--+=)2sin(2sin 22sin 21B A C12sin 2sin 2sin 41>+=CB A .例7 △ABC 的三边c b a ,,满足条件1=++c b a ,证明:3718)(5222≥+++abc c b a .证明 因为)(2)(2222ca bc ab c b a c b a ++-++=++)(21ca bc ab ++-=,所以,欲证的不等式等价于 274)(95≤-++abc ca bc ab .构造一个辅助函数)(c x b x a x x f ---=))(()(.一方面xca bc ab x c b a x x f )()()(23+++++-= abc-,所以)(95)95()95()95(23ca bc ab f +++-=abc-;另一方面 因c b a ,,是三角形的三条边长,所以21,,0<<c b a ,cb a ---95,95,95 均为正数,利用平均不等式, 有)95)(95)(95()95(c b a f ---=7298)95()95()95(2713=⎥⎦⎤⎢⎣⎡-+-+-≤c b a ,所以23)95)(()95(c b a ++-729895)(≤-+++abc ca bc ab ,即274)(95<-++abc ca bc ab .本题我们巧妙地构造了一个辅助函数)(x f ,通过从两个方面来考察)95(f ,使问题得到了证明.构造辅助函数是数学中经常使用的方法,主要是通过构造函数,把问题转化、进而对所作函数的性质进行研究,从而达到目的. 二、平均值不等式n i a i ,,2,1,0 =>, na a a A nn +++=21,n nn a a a G 21=,nn a a a n H 11121+++=,na a a Q nn 22221+++=,则nn n n Q A G H ≤≤≤.不等式中等号成立成立的条件是na a a === 21.例8 以知,,>c b a ,且1=++c b a ,求证:34113113113=+++++c b a .证明 应用 33222cb ac b a ++≤++.略. 例9 已知0,,>c b a ,且1111=+++++cc b b a a ,求证:12111222≥++cb a .证明 由已知,得 1111111111=+++++c b a ,令cz by ax 111,111,111+=+=+=,则1=++z y x ,由111-=x a ,111-=y b ,111-=zc ,得zz y y x x abc -⋅-⋅-=1111zyx y z x x z y +⋅+⋅+=32222=⋅⋅≥zxy y xz x yz ,从而32-≤abc ,得1231113222222≥≥++cb a cb a .例10 已知0,,>c b a ,且1=++c b a ,求证:427)1(1)1(1)1(1≥+++++a c c b b a .分析与解31===c b a 时,不等式中等号成立.此时49)311(311)1(1=+=+b a ,由二元均值不等式可得2916)1(81)1(1≥+++b a b a , 2916)1(81)1(1≥+++c b c b ,2916)1(81)1(1≥+++a c a c ,以上三式相加,整理可得)(1681227ab ca bc c b a +++++-≥左)1(1681227ab ca bc +++-=,而 31)(312=++≥++c b a ab ca bc ,所以427)311(1681227=+-≥左.例11 已知)2,0(πα∈N n ∈,求证: ααα12sin1)sin 1(sin )12(+-<-+n n n .分析与解 只须证αααnn n sin )12(sin 1sin 112+>--+.αααn22sin sin sin 1++++= 左,应用均值不等式即可证.例121>n ,Nn ∈,证明:nn n nn n n C C C 1212-⋅≥+++ .分析与解 由二项式定理知1221-=+++nn nn n C C C ,又12121222221210-=--=++++-n nn ,应用Gn A n ≥即可证.例13 若n S n 1211+++= ,证明:(1)n nS n n n +<+1)1(;(2)nn S n nn -<---11)1(.分析与解nn n n n n n S n n 1342321211++++=+++=+n n n 134232+⋅⋅⋅⋅>nnn n 111)(+=+=,以下略.三、柯西不等式 设n i R b R a i i ,,2,1,, =∈∈,则22211)(n n b a b a b a +++))((2222122221n n b b b a a a ++++++≤ ,等号当且仅当i i b a λ=,(λ为常数,n i ,,2,1 =)时成立.例14 设0,,>c b a 且 1=abc ,试证:23)(1)(1)(1333≥+++++b a c c a b c b a .证法一 应用柯西不等式推论由1=abc ,得 ac ab cb c b a +=+223)(1,从而原不等式等价于23222222≥+++++ab ca b a ba bc a c ac ab c b , )()()()(左cb ca ba bc ac ab ab ca bc +++++++≥2232)(3)(2132=⋅≥++=abc ab ca bc .证法二 (平均值不等式)由xy y x 4422≥+,有42y x y x -≥ )0(>y ,得)(13c b a +))(12ac ab a +=b c a bc a 11(41111)1(2+-≥+=. 同理)11(411)(13ca b a c b +-≥+,)11(411)(13ba cb ac +-≥+,三式相加得23123)111(213=≥++≥abc c b a 左.例15 已知N n ∈,且2≥n ,求证:22n 211-n 21413121174<-++-+-< .证明 先变形n 211-n 214131211-++-+-⎪⎭⎫ ⎝⎛+++-+++=n 2141212)n 21211( )n 1211()n 2131211(+++-+++= n 212111++++= n n ,所以不等式等价于22n 21211174<++++< n n .由柯西不等式推论有nn n n n n 2)2()1(n 2121112+++++>++++ 74132≥+=n,又由柯西不等式有2)n 212111(+++++ n n⎥⎦⎤⎢⎣⎡++++++++<222222)2(1)2(1)1(1)111(n n n ⎥⎦⎤⎢⎣⎡⋅-++++++<n n n n n n n 2)12(1)2)(1(1)1(121)211(=-=n n n ,22212111<+++++∴n n n ,故原不等式成立.例16 设n 是大于1的自然数,求证:3121221nC n C C n n nn n -<⋅++⋅+⋅ .证明 当n=2时,有22<, 当n=3时,有31<,所以下面证明中可设n ≥4. 联想到柯西不等式n nnnCn C C ⋅++⋅+⋅ 2121212121222)(21n nnn C C C n ++++++≤ )(2121)12(6)12)(1(-⋅⎥⎦⎤⎢⎣⎡++=n n n n .于是若能证得312)12(6)12)(1(nn n n n n ⋅<-⋅++- ①即可,而①式等价于nn n n n 23)12)(132(22⋅<-++ ②,因为n ≥4,故1323,13,32222++>+≥>n n n n n n n ,所以②成立,n=2,3时已检验原不等式成立. 所以对1>n 的自然数有3121221nC n C C n n nnn⋅<⋅++⋅+⋅- .例17 设n x x x ,,2 为正实数,证明:n x x x x x x x x nn <+++++++++22122212211111 .证明 由柯西不等式知∑∑==+++≤+++ni i ini iix x x n x x x 12221221221)1()1( ,而对+∈Nk ,均有22212)1(k kx x x +++)1)(1(2212121212k k k kx x x x x x +++++++≤--2212121211111kk k x x x x x ++++-+++=-- .于是∑∑=-=+++-+++≤+++n i ii ni i i x x x x n x x x 1221212121221)1111()1( 1111221<+++-=nx x . 所以,由①知nx x x ni ii∑=<+++12211 .例18 已知正实数c b a ,,满足1=++ca bc ab ,证明:2143131211222<+++++c b a .证明 设2tan ,2tan ,2tan Cc B b A a === ),,0(π<<C B A .由条件式1=++ca bc ab ,有12tan 2tan 2tan 2tan 2tan 2tan =⋅+⋅+⋅A C C B B Aπ=++C B A ,于是23cos cos cos ≤++C B A .利用柯西不等式有2cos32cos 22cos 131211222CB A c b a ++=+++++)2cos 2cos 2)(cos 321(222222C B A ++++≤)2cos cos cos 3(14CB A +++=2143)2233(14=+≤.因为第一个不等式等号成立的条件是32cos22cos 12cos C B A ==,第二个不等式等号成立的条件是3π===C B A ,所以两个等号不可能同时成立,故2143131211222<+++++c b a .例19 设+∈Rd c b a ,,,,证明:3232323232≥+++++++++++c b a d b a d c a d c b d c b a .证明∑∑∑∑++≥++=++=)32()()32(3222d c b a a d c b a ad c b a 左32424)(22=+==∑∑∑∑∑ababa aba ,所以,原不等式成立. 此题推广 设+∈R x i),,2,1(n i =,且i i n x x =+)1(i n i -≤≤),则12)(20121-≥-+++∑=-+++n x i n x x x n i n i i i i .说明:柯西不等式的灵活应用,不仅在于如何找出两组符合条件的数组,它们能符合公式中的项数、次数、系数和元素等对应的特征,更重要的是对于它的几种常见的变形的理解,以及它与其他不等式的结论的联合应用.四、综合例子例20 设+∈R z y x ,,,且1=++z y x ,证明:∑≥-81)1(24y y x .证明)1()1()1(242424x x zz z y y y x -+-+-=左 )1()1()1()(2222222x x z z y y z y x -+-+-++≥)()()3(33322z y x z y x z y x ++-++⎥⎦⎤⎢⎣⎡++≥)(191333z y x ++-=.又 zzy y x x z y x 444333++=++22222222)()(z y x zy x z y x ++=++++≥ 913)(22=⎥⎦⎤⎢⎣⎡++≥z y x .所以 8191191=-≥左边.原不等式得证. 例21 已知c b a ,,是正实数,求证:cb a b ac b a a c c b b a ++-+++≥++2222)(4.证明 由2222)(bab a b a +-=-,则b b a b a b a 22)(2-+-=, c c b c b c b 22)(2-+-=, aa c a c a c 22)(2-+-=, 原不等式等价于cb a b a a ac c c b b b a ++-≥-+-+-2222)(4)()()( ①.为证明不等式①,应用柯西不等式推论cb a b ac b a c cb a b ac b a c ++-+-+-≥++-+-+-≥22)()(左cb a b ac b a b a ++-=++-=22)(4)2(.例22 设0,,>c b a 且 8=abc ,证明:34)1)(1()1)(1()1)(1(332332332≥++++++++a c cc b bb a a①.证明 注意到22211)1)(1(12223+=+++-≤++-=+t t t t t t t t ,如果能证明不等式31)2)(2()2)(2()2)(2(222222222≥++++++++a c c c b b b a a ②成立,就可得到待证的不等式. 令2ax =,2by =,2cz =,且使64=xyz ,则不等式②变为31)2)(2()2)(2()2)(2(≥++++++++x z z z y y y x x ③,去分母,展开并化简,得72)()(2≥+++++zx yz xy z y x ④,应用A-G 不等式即可证④.例23 设c b a ,,为三角形的三边长,证明:cabc ab b c a c a c b a c b b c b a c b a a b c a ++≥-+-++-+-++-+-+)()()()()()(444.证明 设x b c a =-+,y c b a =-+,z a c b =-+,则2y x a +=,2z y b +=,2x z c +=,z y x c b a ++=++,于是,所求证的不等式左边等价于)(2)(2)(2444x z x z z y z y y x y x K +++++=,由柯西不等式推论得)(2)(22222222z y x z y x K ++++≥, cabc ab c b a z y x z y x K ++≥++=++≥++≥3)(3)(22222.例24 已知正实数dc b a ,,,满足1=+++d c b a ,证明:81)()(622223333++++≥+++d c b a d c b a .证法一 结论不等式等价于))((8)(4822223333d c b a d c b a d c b a ++++++≥+++3)(d c b a ++++.整理, 得)(393333d c b a +++)(dab cda bcd abc +++≥6[])()(1122222222da cd bc ab a d d c c b b a ++++++++)(2222b d a c d b c a ++++.由均值不等式,得abc c b a ≥++3333, bcddc b ≥++3333,acd d c a ≥++3333, abddb a ≥++3333.以上四式相加,得)(dab cda bcd abc d c b a +++≥+++6)(63333.于是, 只须证明)(333333d c b a +++[])()(1122222222da cd bc ab a d d c c b b a +++++++≥)(2222b d a c d b c a ++++,不妨设d c b a ≥≥≥,则由排序不等式即可证出,其中等号成立,当且仅当41====d c b a .证法二 根据幂平均不等式得6414433333=+++≥+++)()(d c b a d c b a则81)(23333≥+++d c b a ①由均值不等式得41)(4122222=+++≥+++d c b a d c b a ②由柯西不等式 得3333dc b a +++))((3333d c b a d c b a ++++++=22222)(d c b a +++≥.结合②)(412222d c b a +++≥ ③结合①,③,即得所证不等式. 证法三 显然)1,0(,,,∈d c b a ,下面证明8156)(23-≥-=x x x x f )10(<<x .经整理,知上式等价于01584823≥+--x x x )10(<<x .精品资料 欢迎下载而 0)13()14(15848223≥+-=+--x x x x x , 所以上式成立.于是81848)(5)()()()(=-+++≥+++d c b a d f c f b f a f . 结论得证.例25 m 个互不相同的正偶数和n 个互不相同的正奇数的总和为1987,对于所有的这样的m 与n,问3m+4n 的最大值是多少?证明你的结论.分析 先根据题设条件求得3m+4n 的一个上界,然后举例说明此上界可以达到,从而得到3m+4n 的最大值.解 设m a a a ,,2,1 是m 个互不相同的正偶数,n b b b ,,2,1 是互不相同的正奇数,使得 19872121=+++++++n m b b b a a a ① 这时分别有)1(24221+=+++≥+++m m m a a a m ② 221)12(31nn b b b n =-+++≥+++ ③ 由①,②,③得198722≤++n m m , 因而有 4119875)21(434)21(32222+≤++⋅+≤++n m n m , 即 7949254233≤++n m 由于n m 43+为整数,所以 22143≤+n m .另一方面,当m=27,n=35时198122=++n m m ,且22143=+n m ,故3m+4n 的最大值为221.。
【热点聚焦】二项展开式定理的问题是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数);(2)考查各项系数和和各项的二项式系数和; (3)二项式定理的应用.【重点知识回眸】1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r rn C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点 (1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,nn C . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值. 当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012r nn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,(4)常用结论①0n C =1;②1nn C =;③m n m n n C C -=;④11m m m n n n C C C -+=+.4.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题; (4)近似计算.当x 充分小时,我们常用下列公式估计近似值: ①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【典型考题解析】热点一 二项式展开式的通项公式的应用【典例1】(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).【典例2】(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【典例3】(2022·山西·高三阶段练习)二项式()4x ay +的展开式中含22x y 项的系数为24,则=a ______.【典例4】(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答). 【总结提升】1.二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b )n 的展开式的通项公式T r +1=C r n an -r b r (r =0,1,2,…,n )求通项. ②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.2.已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.3.求解形如()()nma b c d ++的展开式问题的思路 (1)若n ,m 中一个比较小,可考虑把它展开得到多个,如222()()()(2)m m a b c d a ab b c d ++=+++,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如5752252()()[()()11]()11111()()x x x x x x x +-=+--=--;(3)分别得到(),()nma b c d ++的通项公式,综合考虑.4.求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 热点二 形如()na b c ++的展开式问题【典例5】(2021·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .11520【典例6】(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是( ) A .120B .-120C .60D .30【典例7(2022·山东济南·模拟预测)()3221x x -+的展开式中,含3x 项的系数为______(用数字作答). 【规律方法】求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量. 热点三 二项式系数的和与各项的系数和问题【典例8】(2022·全国·高三专题练习)已知012233C 2C 2C 2C 2C 243n nn n n n n +++++=,则123C C C C nn n n n ++++=( )A .31B .32C .15D .16【典例9】(2023·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-【典例10】(2022·北京四中高三开学考试)设多项式51010910910(1)(1)x x a x a x a x a ++-=++++,则9a =___________,0246810a a a a a a +++++=___________. 【规律方法】赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=.②偶数项系数之和为a 1+a 3+a 5+…=.热点四 二项式系数的性质【典例11】(2023·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .10【典例12】(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是( )A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1 B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240xC .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32【典例13】(2022·浙江·三模)在二项式4(2)+x 的展开式中,常数项是__________,二项式系数最大的项的系数是__________. 【规律方法】1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.2.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式(1)(1)2f f +-(1)(1)2f f --组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值. 热点五 二项式定理应用【典例14】(2022·全国·高三专题练习)“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .222234510C C C C 165++++=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【典例15】(2023·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.【典例16】(2021·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.【规律方法】1.二项式定理应用的常见题型及求解策略(1)逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.(3) 近似计算要首先观察精确度,然后选取展开式中若干项. 2.特别提醒: (1)分清是第项,而不是第项.(2)在通项公式中,含有、、、、、这六个参数,只有、、、是独立的,在未知、的情况下,用通项公式解题,一般都需要首先将通式转rn rr n C ab -1r +r 1r n r r r n T C a b -+=1r T +rn C a b n r a b n r n r化为方程(组)求出、,然后代入通项公式求解.(3)求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出,再求所需的某项;有时则需先求,计算时要注意和的取值范围以及 它们之间的大小关系.(4)在中,就是该项的二项式系数,它与,的值无关;而项的系数是指化简后字母外的数.(5)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要与确定,该项就随之确定; ②是展开式中的第项,而不是第项;③公式中,,的指数和为且,不能随便颠倒位置; ④对二项式展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.【精选精练】一、单选题1.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .160 B .120 C .90D .602.(2022·全国·高三专题练习)()()52x y x y +-的展开式中的33x y 项系数为( ) A .30B .10C .-30D .-103.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( )A .454B .458-C .358D .74.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为( ) A .0B .120-C .120D .160-5.(2022·全国·高三专题练习)设()011nn n x a a x a x +=++⋅⋅⋅+,若1263n a a a ++⋅⋅⋅+=,则展开式中系数最大的项是( ) A .315xB .320xC .321xD .335x6.(2023·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )n r r n n r 1r n r r r n T C a b -+=rn C a b 1r T +n r 1r T +1r +r a b n a b ()na b -A .5B .-5C .15D .-15二、多选题7.(2023·全国·高三专题练习)62⎛⎫+ ⎪⎝⎭x x 的展开式中,下列结论正确的是( ) A .展开式共6项 B .常数项为160C .所有项的系数之和为729D .所有项的二项式系数之和为648.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则( )A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++9.(2022·河北张家口·三模)已知52(1)(0)b ax x b x ⎛⎫-+> ⎪⎝⎭的展开式中x 项的系数为30,1x 项的系数为M ,则下列结论正确的是( ) A .0a > B .323ab b -=C .M 有最大值10D .M 有最小值10-三、填空题10.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.11.(2022·河北·三河市第三中学高三阶段练习)在3nx x ⎛⎫+ ⎪⎝⎭的展开式中,所有二项式系数的和是16,则展开式中的常数项为 ____.12.(2022·全国·高三专题练习)(1)已知()31nx -的展开式中第2项与第5项的二项式系数相等,则n =__________.(2)1921C C n nn n --+=__________.13.(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.(2022·浙江省春晖中学模拟预测)二项式3nx x ⎫⎝的展开式中共有11项,则n =___________,常数项的值为___________.15.(2022·全国·高三专题练习)在()413x +的展开式中,二项式系数之和为_________;各项系数之和为_________.(用数字作答) 四、解答题16.(2019·江苏·高考真题)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =. (1)求n 的值;(2)设(13)3n a =+*,a b ∈N ,求223a b -的值.。
用二项式定理证明幂不等式的六种情形当我们需要比较两个数字的大小时,我们可以使用幂不等式来进行推导和证明。
幂不等式是一组有关指数的不等式,可以用二项式定理进行证明。
以下将介绍六种常见的幂不等式情况。
1.当a > 1时,对于任何正整数n,有a^n > a^(n-1)。
证明如下:我们可以使用二项式定理来证明这个不等式。
根据二项式定理,我们可以将a^n展开为(a-1+a)^n。
根据展开式,我们可以看到除了a^n这一项,其他所有的项都包含a^(n-1)。
例如,当n = 2时,展开式为(a-1)^2 = a^2 - 2a + 1。
我们可以看到a^2这一项大于a次幂的所有其他项。
同样地,当n = 3时,展开式为(a-1)^3 = a^3 - 3a^2 + 3a - 1。
在这种情况下,a^3项大于其他所有项。
通过以上证明,我们可以得出结论:对于任何大于1的正整数a,a^n大于a^(n-1)。
2.当0 < a < 1时,对于任何正整数n,有a^n < a^(n-1)。
证明如下:与前一种情况类似,我们可以使用二项式定理来证明这个不等式。
根据二项式定理,我们可以将a^n展开为(1+a)^n。
根据展开式,我们可以看到除了a^n这一项,其他所有的项都包含a^(n-1)。
例如,当n = 2时,展开式为(1+a)^2 = 1 + 2a + a^2。
我们可以看到a^2这一项小于a次幂的其他所有项。
同样地,当n = 3时,展开式为(1+a)^3 = 1 + 3a + 3a^2 + a^3。
在这种情况下,a^3项小于其他所有项。
通过以上证明,我们可以得出结论:对于任何小于1的正实数a,a^n小于a^(n-1)。
3.当a > 1且b > 1时,对于任何正整数n,有(ab)^n > a^n。
证明如下:我们可以使用二项式定理来证明这个不等式。
根据二项式定理,我们可以将(ab)^n展开为(a+b)^n。
利用二项式定理放缩证明数列不等式下面就几道例题剖析如何用利用二项式定理进行展开,取部分项然后放缩为可以求和的式子。
例1. 已知112111,(1).2n n n a a a n n +==+++证明2n a e < 解析: ⇒-+-+≤+)1(1))1(11(1n n a n n a n n ⇒+-+≤++)1)()1(11(11n n a n n a .)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n 111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例2.设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a 解析: 引入一个结论:若0>>ab 则)()1(11a b b n a bn n n -+<-++(证略)整理上式得].)1[(1nb a n b a n n -+>+(⊗)以nb n a 11,111+=++=代入(⊗)式得>+++1)111(n n .)11(n n+即}{n a 单调递增。
以n b a 211,1+==代入(⊗)式得.4)211(21)211(12<+⇒⋅+>n n n n 此式对一切正整数n 都成立,即对一切偶数有4)11(<+n n ,又因为数列}{n a 单调递增,所以对一切正整数n 有4)11(<+n n。
注:①上述不等式可加强为.3)11(2<+≤n n简证如下: 利用二项展开式进行部分放缩:.1111)11(221n n n n n n n n C n C n C n a ++⋅+⋅+=+= 只取前两项有.2111=⋅+≥n C a n n 对通项作如下放缩:.212211!111!111-=⋅≤<+-⋅-⋅⋅=k k k n k n k n n n n n k nC 故有.32/11)2/1(121221212111112<--⋅+=+++++<--n n n a ②上述数列}{n a 的极限存在,为无理数e ;同时是下述试题的背景:已知n m i ,,是正整数,且.1n m i <≤<(1)证明i ni i m i A m A n <;(2)证明.)1()1(m n n m +>+ 简析 对第(2)问:用n /1代替n 得数列n n n n b b 1)1(:}{+=是递减数列;借鉴此结论可有如下简捷证法:数列})1{(1n n +递减,且,1n m i <≤<故,)1()1(11n m n m +>+即m n n m )1()1(+>+。
二项式定理的应用1.利用赋值法进行求有关系数和。
二项式定理表示一个恒等式,对于任意的a,b,该等式都成立。
利用赋值法(即通过对a、b取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。
设(1)令x=0,则(2)令x=1,则(3)令x=-1,则(4)(5)2.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。
①;②;()如:求证:1. 若,则_________.(用数字作答)【解析】令,则,,即.2.求证:对任何非负整数n,33n-26n-1可被676整除。
【思路点拨】注意到262=676,33n=27n=(26+1)n,用二项展开式去证明.当n=0时,原式=0,可被676整除.当n=1时,原式=0,也可被676整除.当n≥2时,原式.每一项都含262这个因数,故可被262=676整除综上所述,对一切非负整数n,33n-26n-1可被676整除.【总结升华】证明的关键在于将被除式进行恰当的变形,使其能写成二项式的形式,展开后的每一项中都会有除式这个因式,就可证得整除或求出余数.3.求证:3n>(n+2)·2n-1(n∈N+,且n>2).【思路点拨】利用二项式定理3n=(2+1)n展开证明.【解析】因为n∈N+,且n>2,所以3n=(2+1)n展开至少有四项.,所以3n>(n+2)·2n-1.概率要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a.试验可以在相同的情形下重复进行.b.试验的所有可能结果是明确可知的,并且不止一个.c.每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。