广东广州市天河区2018届高考数学复习精选试题:圆锥曲线与方程(解答题)
- 格式:doc
- 大小:288.00 KB
- 文档页数:7
文数解析几何1.已知椭圆L:x2a2+y2b2=1(a>b>0)的一个焦点于抛物线y2=8x的焦点重合,点(2,2)在L上.(Ⅰ)求L的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.【答案】解:(Ⅰ)抛物线y2=8x的焦点为(2,0),由题意可得c=2,即a2−b2=4,又点(2,在L上,可得4a+2b=1,解得a=22,b=2,即有椭圆L:x28+y24=1;(Ⅱ)证明:设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),将直线y=kx+b代入椭圆方程x28+y24=1,可得(1+2k2)x2+4kbx+2b2−8=0,x1+x2=−4kb1+2k2,即有AB的中点M的横坐标为−2kb1+2k,纵坐标为−k⋅2kb1+2k+b=b1+2k,直线OM的斜率为k OM=y M xM=−12⋅1k,即有k OM⋅k=−12.则OM的斜率与直线l的斜率的乘积为定值.【解析】(Ⅰ)求得抛物线的焦点,可得c=2,再由点满足椭圆方程,结合a,b,c的关系,解方程可得椭圆的方程;(Ⅱ)设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),代入椭圆方程,运用韦达定理和中点坐标公式可得M的坐标,可得直线OM的斜率,进而得到证明.本题考查椭圆的方程的求法,注意运用点满足椭圆方程和a,b,c的关系,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,以及直线的斜率公式,考查化简整理的运算能力,属于中档题.2.设椭圆C:x2a+y2b=1(a>b>0),过点Q(2,1),右焦点F(2,0),(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k(x−1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若CN=MD,求k值,并求出弦长|MN|.【答案】解:(Ⅰ)椭圆过点Q(1),可得2a+1b=1,由题意可得c=2,即a2−b2=2,解得a=2,b=2,即有椭圆C的方程为x24+y22=1;(Ⅱ)直线l:y=k(x−1)与x轴交点C(1,0),y轴交点D(0,−k),联立y=k(x−1)x2+2y2=4,消y得,(1+2k2)x2−4k2x+2k2−4=0,①设M(x1,y1),N(x2,y2),则x1+x2=4k21+2k2,CN=(x2−1,y2),MD=(−x1,−k−y1),由CN=MD,得:x1+x2=4k21+2k2=1,解得k=±22.由k>0得k=22代入①得2x2−2x−3=0,x1+x2=1,x1x2=−32,可得|MN|=2⋅(x1+x2)2−4x1x2=32⋅1+6=422.【解析】(Ⅰ)将Q的坐标代入椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)求出直线l与x,y轴的交点,代入椭圆方程,运用韦达定理,以及向量共线的坐标表示,可得k的值,运用弦长公式可得弦长|MN|.本题考查椭圆方程的求法,注意运用点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和向量相等的条件,同时考查弦长公式的运用,以及运算能力,属于中档题.3.在平面直角坐标系xOy中,已知椭圆x2a +y2b=1(a>b>0)的焦距为2,离心率为22,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(2,−2)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【答案】解:(1)由题意可知:椭圆x2a +y2b=1(a>b>0),焦点在x轴上,2c=2,c=1,椭圆的离心率e=ca =22,则a=,b2=a2−c2=1,则椭圆的标准方程:x22+y2=1;(2)证明:设P(x1,y1),Q(x2,y2),A(2,0),当直线PQ不存在时,不符合题意。
圆锥曲线011.设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,双曲线两条渐近线分别为12,l l ,过F 作直线1l 的垂线,分别交12,l l 于A 、B 两点,且向量BF u u u r 与FA u u u r同向.若||,||,||OA AB OB 成等差数列,则双曲线离心率e 的大小为A .2BCD 【答案】D【解析】设OA =m −d ,AB =m ,OB =m +d ,由勾股定理,得 (m −d )2+m 2=(m +d )2.解得m =4d .设∠AOF =α,则cos2α=35OA OB=.cos α=,所以,离心率e =1cos α.选D.2.已知直线221259x y x t =+=与椭圆交于P ,Q 两点,若点F 为该椭圆的左焦点,则FP FQ ⋅u u u r u u u r 取最小值的t 值为A .—10017B .—5017C .5017D .10017【答案】B【解析】椭圆的左焦点(4,0)F -,根据对称性可设(,)P t y ,(,)Q t y -,则(4,)FP t y =+u u u r,(4,)FQ t y =+-u u u r ,所以22(4,)(4,)(4)FP FQ t y t y t y =++-=+-u u u r u u u rg g ,又因为22299(1)92525t y t =-=-,所以22229(4)816925FP FQ t y t t t =+-=++-+u u u r u u u r g2348725t t =++,所以当50217b t a =-=-时,FP FQ u u u r u u u r g 取值最小,选B. 3.抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为【答案】D【解析】抛物线212y x =-的准线为3x =,双曲线22193x y -=的两渐近线为3y x =和3y x =-,令3x =,分别解得12y y =,(=高为3,所以三角形的面积为132⨯=,选D. 4.已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是A .1422=-y x B .1422=-y x C .13222=-y x D .12322=-y x 【答案】B【解析】由双曲线的焦点可知c =PF 1的中点坐标为(0,2),所以设右焦点为2F ,则有2PF x ⊥,且24PF =,点P 在双曲线右支上。
2018年高考数学试题分类汇编之圆锥曲线(解析版)一、选择题1.(浙江卷)(2)双曲线221 3=x y -的焦点坐标是A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)解:∵双曲线方程可得双曲线的焦点在x 轴上,且a 2=3,b 2=1, 由此可得222=+=b a c ∴该双曲线的焦点坐标为(±2,0)故选:B2.(天津文)(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:A3.(天津理)(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -= B221124x y -= C 22139x y -= D 22193x y -=解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:C4.(全国卷一文)(4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 解:椭圆的一个焦点为(2,0),可得a 2-4=4,解得22=a ,故选:C5.(全国卷一理)(8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8解:抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0联立直线与抛物线C :y 2=4x ,消去x 可得:y 2-6y+8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),FM =(0,2), FN =(3,4).则 FM ∙FN =(0,2)•(3,4)=8. 故选:D6.(全国卷一理)(11)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .4故选:B7.(全国卷二文)(6)双曲线22221(0,0)x y a b a b-=>>A.y =B.y =C.y = D .y = 解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A.8.(全国卷二文)(11)已知1F ,2F 是椭圆C 的两个焦点,P 是C上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为 A.1 B.2C D 1-解:F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°, 可得椭圆的焦点坐标F 2(c ,0),所以P(c 23,21故选:D9.(全国卷二理)(5)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A .10.(全国卷二理)(12)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14解:由题意可知:A (-a ,0),F 1(-c ,0),F 2(c ,0),直线AP 的方程为:)(a x y +=63,故选:D11.(全国卷三文)(10)已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为AB .2CD .故选:D12.(全国卷三理)(11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为A B .2 C D在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2|•|F 1F 2|COS ∠PF 2O ,故选:C二、填空题1.(北京文)(10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.解:∵直线l 过点(1,0)且垂直于x 轴,∴x=1,代入到y 2=4ax ,可得y 2=4a ,显然a >0,∴y=±∴抛物线的焦点坐标为(1,0), 故答案为:(1,0)2.(北京文)(12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.解:双曲线的离心率为245422=+a a ,解得a=4. 故答案为:43.(北京理)(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.解:若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,4.(江苏卷)(8)在平面直角坐标系xOy中,若双曲线22221(0,0)x ya ba b-=>>的右焦点(,0)F c到一条渐近,则其离心率的值是.,故答案为:25.(浙江卷)(17)已知点P(0,1),椭圆24x+y2=m(m>1)上两点A,B满足AP=2PB,则当m=_______时,点B横坐标的绝对值最大.解:设A(x1,y1),B(x2,y2),由P(0,1),AP=2PB,可得-x 1=2x2,1-y1=2(y2-1),即有x1=-2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①-②得(y1-2y2)(y1+2y2)=-3m,可得y1-2y2=-m,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大.故答案为:5.6.(全国卷三理)(16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.解:∵抛物线C :y 2=4x 的焦点F (1,0),∴过A ,B 两点的直线方程为y=k (x-1),联立⎩⎨⎧-==)1(42x k y xy 可得,k 2x 2-2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,∵M (-1,1),∴ MA =(x 1+1,y 1-1), MB =(x 2+1,y 2-1), ∵∠AMB=90°=0,∴MA *MB =0∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0,∴即k 2-4k+4=0, ∴k=2. 故答案为:2三、解答题1.(北京文)(20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D和点71(,)42Q -共线,求k .解析(Ⅰ)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-=,易得当20m =时,max ||AB =||AB(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.2.(北京理)(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,μλ==,,求证:μλ11+为定值.解析:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2). 由(I )知12224k x x k -+=-,1221x x k =. 直线P A 的方程为y –2=1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由μλ==,得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=211(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.3.(江苏卷)(18)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+4.(天津文)(19)(本小题满分14分) 设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.解析:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==从而3,2a b ==. 所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 5.(天津理)(19)(本小题满分14分) 设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B .,点A 的坐标为(,0)b ,且FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQAOQ PQ =∠(O 为原点) ,求k 的值. 解析(Ⅰ):设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB,由FB AB ⋅=ab =6,从而a =3,b =2. 所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ.由AQ AOQ PQ =∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =.易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221k y k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k 的值为111228或. 6.(浙江卷)(21)(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.解析(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是7.(全国一卷文)(20)(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .8.(全国一卷理)(19)(12分) 设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为或(1,. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<,直线MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得 121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.9.(全国二卷文)(20)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.10.(全国卷二理)(19)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.11.(全国卷三文)(20)(12分) 已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA =-uu r .同理2||=22x FB -uu r . 所以1214()32FA FB x x +=-+=u u r u u r .故2||=||+||FP FA FB u u r u u r u u r . 12.(全国卷三理)(20)(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得 1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是 1||(22x FA x ==-. 同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则 1212||||||||||2FB FA x x d =-=-=②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.或。
广东省2018届高三数学理专题突破训练--圆锥曲线一、选择、填空题 1、(2014广东高考)实数k满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等2、(2013广东高考)已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x = B.22145x y -= C .22125x y -= D .2212x =3、(2010广东高考)若圆心在x O 位于y轴左侧,且与直线x y +=相切,则圆O的方程是 .4、(2009广东高考)巳知椭圆G 的中心在坐标原点,长轴在x且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .5、(广州市第六中学2018届高三上学期第一次质量检测)直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A.B. 12C. D. 236、(广州市海珠区2018届高三摸底考试).已知抛物线24y x=与双曲线()222210,0x y a b a b-=>>有相同的焦点F,点A 是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为A2 B .1 C .1 D7、(广州市执信中学2018届高三上学期期中考试)如图,在平面直角坐标系xoy 中,点A 为椭圆E :22221(0)x y a b a b +=>>的左顶点,B 、C 在椭圆上,若四边形OABC 为平行四边形,且∠OAB =30°,则椭圆E 的离心率等于 .8、(惠州市2018届高三第二次调研考试)双曲线2228x y -=的实轴长是( )A .2B .2 2C .4D .4 29、(惠州市2018届高三第一次调研考试)以抛物线x y 42=的焦点为顶点,顶点为中心,离心率为2的双曲线方程是 .10、(江门市普通高中2018届高三调研测试)在同一直角坐标系中,直线=1与圆x 2+y 2+2x ﹣4y ﹣4=0的位置关系是( )A .直线经过圆心B . 相交但不经过圆心C .相切D . 相离11、(韶关市十校2018届高三10月联考)已知椭圆1822=+y x 的左、右焦点分别为1F 、2F ,点P 在椭圆上,则21PF PF ⋅的最大值是( )A. 8;B .22;C.10;D. 2412、(湛江市2018届高中毕业班调研测试)抛物线y 2=16x 的焦点到双曲线﹣=1的一条渐近线的距离为( ) A . 2B .4 C .D . 213、(广东省阳东一中、广雅中学2018届高三第一次联考)已知点P 是抛物线24x y =上的一个动点,则点P 到点(2,0)M 的距离与点P 到该抛物线准线的距离之和的最小值为( )AB C . D .92二、解答题 1、(2014广东高考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3, (1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2、(2013广东高考)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF⋅的最小值.3、(2012广东高考)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.4、(2011广东高考)设圆C 与两圆22(4x y +=,22(4x y +=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点M ,F ,且P 为L 上动点,求MP FP - 的最大值及此时点P 的坐标.5、(广州市第六中学2018届高三上学期第一次质量检测)已知点F 是椭圆)0(11222>=++a y ax 的右焦点,点(,0)M m 、(0,)N n 分别是x 轴、y轴上的动点,且满足=⋅NF MN .若点P满足PO ON OM +=2.(1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹交于A 、B 两点,直线OA 、OB 与直线a x -=分别交于点S 、T(O 为坐标原点),试判断FS FT ⋅ 是否为定值?若是,求出这个定值;若不是,请说明理由.6、(广州市海珠区2018届高三摸底考试)在平面直角坐标系xOy 中,动点P 到两点(0),0)的距离之和等于4,设点P的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点. (1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.7、(广州市执信中学2018届高三上学期期中考试)已知椭圆1:C 22221(0)x y a b a b +=>>的离心率为e =1C 的左焦点1F 的直线:20l x y -+=被圆2222:(3)(3)(0)C x y r r -+-=>截得的弦长为(Ⅰ)求椭圆1C 的方程;(Ⅱ)设1C 的右焦点为2F ,在圆2C 上是否存在点P ,满足2122a PF PF b=,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.8、(惠州市2018届高三第二次调研考试)如图,已知椭圆C :22221x y a b+=,其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记△1GF D 的面积为1S ,△OED (O 为原点)的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.9、(惠州市2018届高三第一次调研考试)椭圆2222:1x y C a b+=(0)a b >>的离心率为12,其左焦点到点(2,1)P 的距离为(1) 求椭圆C 的标准方程;(2) 若直线:l y kx m =+与椭圆C 相交于A B 、两点(A B 、不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.10、(江门市普通高中2018届高三调研测试)在平面直角坐标系xoy 中,点A ,B 的坐标分别是(0,﹣3),(0,3)直线AM ,BM 相交于点M ,且它们的斜率之积是﹣. (1)求点M 的轨迹L 的方程;(2)若直线L 经过点P (4,1),与轨迹L 有且仅有一个公共点,求直线L 的方程.11、(韶关市十校2018届高三10月联考)如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N在CM上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E .(I )求曲线E 的方程;(II )若过定点)2,0(F 的直线交曲线E 于不同的两点,G H (点G 在点,F H 之间),且满足λ=,求λ的取值范围.12、(湛江市2018届高中毕业班调研测试)如图,点F 是椭圆+=1(a >b >0)的左焦点,定点P 的坐标为(﹣8,0),线段MN 为椭圆的长轴,已知|MN|=8,且该椭圆的离心率为. (1)求椭圆的标准方程;(2)过点P 的直线与椭圆相交于两点A 、B ,求证:∠AFM=∠BFN; (3)记△ABF 的面积为S ,求S 的最大值.13、(广东省阳东一中、广雅中学2018届高三第一次联考)如图,已知椭圆222:1(1)x C y a a +=>的上顶点为A ,离心率为不过点A 的动直线l 与椭圆C 相交于P 、Q(1)求椭圆C 的方程;(2)求证:直线l 过定点,并求出该定点N参考答案一、选择、填空题1、【解析】D.考查双曲线,注意到两条双曲线的22234c a b k=+=-相等,故而选D.2、B3、22(2)2x y++=4、221 369x y+=5、【答案】C解析:因为直线220x y-+=与两坐标轴的交点分别为()()2,0,0,1,所以c=2,b=1,a==则离心率为ca=,所以选C .6、【答案解析】D 解析:根据题意得:()1,0,F从而()1,2A±所以22221141a ba b⎧+=⎪⎨-=⎪⎩解得23a=±22a c<,所以23a=-1a=,所以1cea===.故选:D.7、【答案】【解析】322解析:∵AO是与X轴重合的,且四边形OABC为平行四边形,∴BC∥OA,B、C两点的纵坐标相等,B、C的横坐标互为相反数,∴B、C两点是关于Y轴对称的.由题知:OA=a,四边形OABC为平行四边形,所以BC=OA=a可设a aB yC y22-(,)(,)代入椭圆方程解得:y b,设D 为椭圆的右顶点,因为∠OAB=30°,四边形OABC 为平行四边形,所以∠COD=30° 对C点:2tan30a 2?=a=3b ,根据:222a c b =+得:222a a c 9=+,28e ,e 93==,故答案为:3.8、C 【解析】本题考查双曲线方程及其简单几何性质。
圆锥曲线031.(本小题满分12分)已知点()0,1F ,直线l :1y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且FQ FP QF QP ⋅=⋅.(1)求动点P 的轨迹C 的方程;(2)已知圆M 过定点()0,2D ,圆心M 在轨迹C 上运动,且圆M 与x 轴交于A 、B 两点,设1DA l =,2DB l =,求1221l l l l +的最大值。
【答案】(1)设(),P x y ,则(),1Q x -,∵QP QF FP FQ =u u u r u u u r u u u r u u u rgg , ∴()()()()0,1,2,1,2y x x y x +-=--g g . 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹C 的方程24x y =.(2)解:设圆M 的圆心坐标为(),M a b ,则24a b =. ①圆M 的半径为MD =圆M 的方程为()()()22222x a y b a b -+-=+-.令0y =,则()()22222x a b a b -+=+-,整理得,22440x ax b -+-=. ② 由①、②解得,2x a =±. 不妨设()2,0A a -,()2,0B a +,∴1l =2l =.∴22212122112l l l l l l l l ++==== ③ 当0a ≠时,由③得,1221l l l l +==当且仅当a =± 当0a =时,由③得,12212l l l l +=. 故当a =±1221l ll l +的最大值为 2.(本小题满分12分)已知椭圆22221(0)x y a b a b+=>>的焦距为4,设右焦点为1F ,离心率为e .(1)若2e =,求椭圆的方程; (2)设A 、B 为椭圆上关于原点对称的两点,1AF 的中点为M ,1BF 的中点为N ,若原点O 在以线段MN 为直径的圆上. ①证明点A 在定圆上;②设直线AB的斜率为k ,若k ≥e 的取值范围.【答案】解:(Ⅰ)由e =,c =2,得a =b =2 , 所求椭圆方程为22184x y +=. …………………………………………(4分)(Ⅱ)设00(,)A x y ,则00(,)B x y --, 故00+222x y M ⎛⎫ ⎪⎝⎭,,00222x y N -⎛⎫- ⎪⎝⎭,.① 由题意,得0OM ON =u u u u r u u u rg. 化简,得2204x y +=,所以点A 在以原点为圆心,2为半径的圆上. ……………(8分) ② 设00(,)A x y ,则002222200220022222222220000,1,111,(1)444y kx x k x x y k k a ba b a b x kx x y =⎧⎧⎪+=⎪⎪+=⇒⇒+=+⎨⎨⎪⎪+=⎩⎪+=⎩.将2c e a a ==,222244b a c e=-=-,代入上式整理, 得2242(21)2 1.k e e e -=-+因为42210e e -+>,k 2>0,所以2210e ->,所以 422221321e e k e -+=-≥.化简,得422840,210.e e e ⎧-+⎪⎨->⎪⎩≥解之,得2142e <-≤1,e <故离心率的取值范围是1⎤⎥⎝⎦. …………………(12分)3.(本小题满分13分)已知椭圆M 的对称轴为坐标轴,离心率为,2且抛物线2y =的焦点是椭圆M 的一个焦点. (Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中点P 在椭圆M 上,O 为坐标原点. 求点O 到直线l 的距离的最小值.【答案】解:(I)由已知抛物线的焦点为0),故设椭圆方程为22221(0)x y a b a b+=>>,则22, 2.c e a b ====由得所以椭圆M 的方程为22 1.42x y +=……5分 (II )当直线l 斜率存在时,设直线方程为y kx m =+,则由22,1.42y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(12)4240k x kmx m +++-=, …………………6分222222164(12)(24)8(24)0k m k m k m ∆=-+-=+->, ①…………7分 设A B P 、、点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则: 012012122242,()21212km mx x x y y y k x x m k k =+=-=+=++=++,…………8分由于点P在椭圆M上,所以2200142x y+=. ……… 9分从而2222222421(12)(12)k m mk k+=++,化简得22212m k=+,经检验满足①式.………10分又点O到直线l的距离为:2d===≥=………11分当且仅当0k=时等号成立………12分当直线l无斜率时,由对称性知,点P一定在x轴上,从而点P的坐标为(2,0)(2,0)-或,直线l的方程为1x=±,所以点O到直线l的距离为1 . 所以点O到直线l的距离最小值为2. ………13分4.(本小题满分14分)已知点A是椭圆()22:109x yC tt+=>的左顶点,直线:1()l x my m=+∈R与椭圆C相交于,E F两点,与x轴相交于点B.且当0m=时,△AEF 的面积为163.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线AE,AF与直线3x=分别交于M,N两点,试判断以MN为直径的圆是否经过点B?并请说明理由.【答案】解:(Ⅰ)当0m=时,直线l的方程为1x=,设点E在x轴上方,由221,91x ytx⎧+=⎪⎨⎪=⎩解得(1,(1,33E F-,所以3EF=.因为△AEF的面积为1164233⨯⨯=,解得2t=.所以椭圆C的方程为22192x y+=. …………………………………………………4分(Ⅱ)由221,921x y x my ⎧+=⎪⎨⎪=+⎩得22(29)4160m y my ++-=,显然m ∈R .…………………5分 设1122(,),(,)E x y F x y , 则121222416,2929m y y y y m m --+==++,………………………………………………6分 111x my =+,221x my =+.又直线AE 的方程为11(3)3y y x x =++,由11(3),33y y x x x ⎧=+⎪+⎨⎪=⎩解得116(3,)3y M x +,同理得226(3,)3y N x +.所以121266(2,),(2,)33y y BM BN x x ==++u u u u r u u u r ,……………………9分 又因为121266(2,)(2,)33y y BM BN x x ⋅=⋅++u u u u r u u u r12121212363644(3)(3)(4)(4)y y y y x x my my =+=+++++1212212124(4)(4)364()16my my y y m y y m y y +++=+++2222216(436)164164(29)3216(29)m m m m m -+-⨯+⨯+=-++22264576641285769m m m ---++=0=.…………………………13分所以BM BN ⊥u u u u r u u u r,所以以MN 为直径的圆过点B . …………………………………14分5.本小题共13分)在平面直角坐标系xOy 中,动点P到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点. (Ⅰ)求曲线C 的轨迹方程;(Ⅱ)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.【答案】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C是以(0),0)为焦点,长半轴长为2 的椭圆.……………………………………………………………………………3分故曲线C 的方程为2214x y +=. …………………………………………………5分 (Ⅱ)存在△AOB 面积的最大值. …………………………………………………6分 因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得 22(4)230m y my +--=.…………………………………7分 由22(2)12(4)0m m ∆=++>. 设1122()()A x y B x y ,,,.解得124m y m +=+,224m y m -=+.则21||y y -=因为1212AOB S OE y y ∆=⋅-21==. ………………………10分 设1()g t t t=+,t =t ≥.则()g t在区间)+∞上为增函数.所以()g t ≥.所以2AOB S ∆≤,当且仅当0m =时取等号,即max ()2AOB S ∆=.所以AOB S ∆的最大值为2.………………………………………………………………13分以下同。
2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
2018年数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1),P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y yk kx x--+=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 2016年数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
圆锥曲线与方程01第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是( ) A .19B .125C .15D .13【答案】A2.在椭圆)0(12222>>=-b a by a x 中,F ,A ,B 分别为其左焦点,右顶点,上顶点,O 为坐标原点,M 为线段OB 的中点,若FMA 为直角三角形,则该椭圆的离心率为( )A .25-B .215- C .552 D .55 【答案】A3.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A . 2<k<5 B . k>5 C . k<2或k>5 D . 以上答案均不对【答案】C4.若圆224x y +=上每个点的横坐标不变,纵坐标缩短为原来的13,则所得曲线的方程是( )A .221412xy+=B .221436xy+=C .229144xy +=D . 221364xy+=【答案】C5.已知椭圆1532222=+n y m x 和双曲线222232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A .x =±y 215 B .y =±x 215 C .x =±y 43 D .y =±x 43【答案】D6.椭圆x y 22+=14的离心率是( ) A .B .C .34D .12【答案】A7.已知直线01=+-y mx 交抛物线2x y =于A 、B 两点,则△AOB ( ) A 为直角三角形 B 为锐角三角形C 为钝角三角形D 前三种形状都有可能 【答案】A8.设双曲线222:1,(0,1),10x M y C x y a-=-+=点若直线交双曲线的两渐近线于点A 、B ,且2BC AC =,则双曲线的离心率为( )A.2B.3CD【答案】B9.双曲线22221(0,0)x y a b a b-=>>的右焦点是抛物线28y x =的焦点,两曲线的一个公共点为P ,且|PF|=5,则该双曲线的离心率为( )A.B .C . 2D .【答案】C10.已知直线y =kx -2(k >0)与抛物线C :x 2=8y 相交于A ,B 两点,F 为C 的焦点,若|FA|=4|FB|,则k =( )A .3B .54C .34D .322【答案】B11.若直线l 过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( ) A .1条 B .2条C .3条D .4条【答案】C12.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫ ⎝⎛1,21C .()2,1D .()2,2【答案】D二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知椭圆1162522=+y x 的焦点为F 1、F 2,直线CD 过焦点F 1,则∆F 2CD 的周长为_______【答案】2014.已知A 、B 是椭圆22221(0)x y a b a b +=>>和双曲线 22221(0,0)x y a b a b-=>>的公共顶点。
2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3. 2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5. (1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围.4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.6.(2021•甲卷)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切. (1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.10.(2021•乙卷)已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 11.(2021•上海)(1)团队在O 点西侧、东侧20千米处设有A 、B 两站点,测量距离发现一点P 满足|P A |﹣|PB |=20千米,可知P 在A 、B 为焦点的双曲线上,以O 点为原点,东侧为x 轴正半轴,北侧为y 轴正半轴,建立平面直角坐标系,P 在北偏东60°处,求双曲线标准方程和P 点坐标.(2)团队又在南侧、北侧15千米处设有C 、D 两站点,测量距离发现|QA |﹣|QB |=30千米,|QC |﹣|QD |=10千米,求|OQ |(精确到1米)和Q 点位置(精确到1米,1°) 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(Ⅰ)若p =116,求抛物线C 2的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.17.(2020•海南)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.18.(2020•山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且过点A (2,1). (1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.19.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 20.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 21.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 22.(2020•新课标Ⅲ)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为√154,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积. 23.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E的方程;(2)证明:直线CD过定点.24.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.25.(2019•全国)已知点A1(﹣2,0),A2(2,0),动点P满足P A1与P A2的斜率之积等于−14,记P的轨迹为C.(1)求C的方程;(2)设过坐标原点的直线l与C交于M,N两点,且四边形MA1NA2的面积为2√2,求l的方程.26.(2019•江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.27.(2019•上海)已知椭圆x28+y24=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y 轴于M ,直线BF 1交y 轴于N ,是否存在直线l ,使得S△F 1AB=S△F 1MN ,若存在,求出直线l 的方程;若不存在,请说明理由.28.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知√3|OA |=2|OB |(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程. 29.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为√55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 30.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.31.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.32.(2019•浙江)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2. (Ⅰ)求p 的值及抛物线的准线方程; (Ⅱ)求S 1S 2的最小值及此时点G 的坐标.33.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.34.(2019•北京)已知抛物线C :x 2=﹣2py 经过点(2,﹣1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =﹣1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.35.(2019•北京)已知椭圆C :x 2a 2+y 2b 2=1的右焦点为(1,0),且经过点A (0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |•|ON |=2,求证:直线l 经过定点. 36.(2019•江苏)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(﹣1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x ﹣1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.37.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.38.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.39.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.40.(2019•上海)已知抛物线方程y 2=4x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:d(P)=|PF||FQ|. (1)当P(−1,−83)时,求d (P );(2)证明:存在常数a ,使得2d (P )=|PF |+a ;(3)P 1,P 2,P 3为抛物线准线上三点,且|P 1P 2|=|P 2P 3|,判断d (P 1)+d (P 3)与2d (P 2)的关系.41.(2018•全国)双曲线x 212−y 24=1,F 1、F 2为其左右焦点,C 是以F 2为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足F 1M →=2MP →,求M 的轨迹方程.42.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.43.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.44.(2018•江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点(√3,12),焦点F 1(−√3,0),F 2(√3,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为2√67,求直线l 的方程.45.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 46.(2018•上海)设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 47.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为√53,|AB |=√13. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,直线l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值. 48.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为√53,点A 的坐标为(b ,0),且|FB |•|AB |=6√2. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ||PQ|=5√24sin ∠AOQ (O 为原点),求k 的值. 49.(2018•北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程; (Ⅱ)若k =1,求|AB |的最大值;(Ⅲ)设P (﹣2,0),直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点Q (−74,14)共线,求k .50.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .51.(2018•北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.52.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.53.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .54.(2018•上海)已知a ∈R ,双曲线Γ:x 2a2−y 2=1(1)若点(2,1)在Γ上,求Γ的焦点坐标(2)若a =1,直线y =kx +1与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值55.(2018•上海)利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射灯的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米(1)求抛物线的焦点到准线的距离(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°)2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3.【解答】(Ⅰ)解:由题意可得,椭圆的离心率ca =√63,又c =√2, 所以a =√3,则b 2=a 2﹣c 2=1, 故椭圆的标准方程为x 23+y 2=1;(Ⅱ)证明:先证明必要性,若M ,N ,F 三点共线时,设直线MN 的方程为x =my +√2, 则圆心O (0,0)到直线MN 的距离为d =√2√m +1=1,解得m 2=1,联立方程组{x =my +√2x 23+y 2=1,可得(m 2+3)y 2+2√2my −1=0,即4y 2+2√2my −1=0, 所以|MN|=√1+m 2⋅√8m 2+164=√2×√244=√3;所以必要性成立; 下面证明充分性,当|MN |=√3时,设直线MN 的方程为x =ty +m , 此时圆心O (0,0)到直线MN 的距离d =√t +1=1,则m 2﹣t 2=1,联立方程组{x =ty +mx 23+y 2=1,可得(t 2+3)y 2+2tmy +m 2﹣3=0, 则△=4t 2m 2﹣4(t 2+3)(m 2﹣3)=12(t 2﹣m 2+3)=24, 因为|MN|=√1+t 2⋅√24t 2+3=√3,所以t 2=1,m 2=2,因为直线MN 与曲线x 2+y 2=b 2(x >0)相切, 所以m >0,则m =√2,则直线MN 的方程为x =ty +√2恒过焦点F (√2,0), 故M ,N ,F 三点共线, 所以充分性得证.综上所述,M ,N ,F 三点共线的充要条件是|MN |=√3.2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 【解答】解:(1)因为Г的方程:x 22+y 2=1,所以a 2=2,b 2=1, 所以c 2=a 2﹣b 2=1,所以F 1(﹣1,0),F 2(1,0), 若B 为Г的上顶点,则B (0,1), 所以|BF 1|=√1+1=√2,|PF 1|=﹣1﹣m , 又|BF 1|=|PF 1|, 所以m =−1−√2;(2)设点A (√2cos θ,sin θ),则F 1A →⋅F 2A →=(√2cosθ+1)(√2cosθ−1)+sin 2θ=2cos 2θ−1+sin 2θ=13, 因为A 在线段BP 上,横坐标小于0,解得cosθ=−√33,故A(−√63,√63),设直线l 的方程为y =kx +√63k +√63(k >0), 由原点O 到直线l 的距离为4√1515, 则d =|√63k+√63|√1+k =4√1515,化简可得3k 2﹣10k +3=0,解得k =3或k =13, 故直线l 的方程为y =13x +4√69或y =3x +4√63(舍去,无法满足m <−√2), 所以直线l 的方程为y =13x +4√69;(3)联立方程组{y =kx −kmx 22+y 2=1,可得(1+2k 2)x 2﹣4k 2mx +2k 2m 2﹣2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 2m 1+2k2,x 1x 2=2k 2m 2−21+2k2,因为F 1A →∥F 2B →,所以(x 2﹣1)y 1=(x 1+1)y 2,又y =kx ﹣km , 故化简为x 1−x 2=−21+2k2,又|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√16k 2−8k 2m 2+81+2k2=|−21+2k2|,两边同时平方可得,4k 2﹣2k 2m 2+1=0, 整理可得k 2=−14−2m 2,当m <−√2时,k 2=−14−2m 2>0,因为点A ,B 在x 轴上方, 所以k 有且仅有一个解,故对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围. 【解答】解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),则b =2,又因为以四个顶点围成的四边形面积为4√5, 所以12×2a ×2b =4√5,解得a =√5,故椭圆E 的标准方程为x 25+y 24=1;(2)由题意,设直线l 的方程为y ﹣(﹣3)=k (x ﹣0),即y =kx ﹣3, 当k =0时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C , 所以k ≠0,设B (x 1,y 1),C (x 2,y 2),联立方程组{y =kx −3x 25+y 24=1,可得(4+5k 2)x 2﹣30kx +25=0, 则△=(﹣30k )2﹣4×25(4+5k 2)>0,解得|k |>1, 所以x 1+x 2=30k 4+5k2,x 1x 2=254+5k2,则y 1y 2=(kx 1﹣3)(kx 2﹣3)=k 2x 1x 2﹣3k (x 1+x 2)+9=−20k 2+364+5k2,y 1+y 2=(kx 1﹣3)+(kx 2﹣3)=k (x 1+x 2)﹣6=−244+5k2,直线AB 的方程为y ﹣(﹣2)=y 1−(−2)x 1−0(x −0),即y =y 1+2x 1x −2,直线AC 的方程为y ﹣(﹣2)=y 2−(−2)x 2−0(x −0),即y =y 2+2x 2x −2,因为直线AB 交y =﹣3于点M , 所以令y =﹣3,则x M =−x 1y 1+2, 故M(−x 1y 1+2,−3), 同理可得N(−x2y 2+2,−3),注意到x 1x 2=254+5k2>0,所以x 1,x 2同号,因为y 1+2>0,y 2+2>0,所以x M ,x N 同号, 故|PM |+|PN |=|x M |+|x N |=|x M +x N |,则|PM |+|PN |=|x 1y 1+2+x2y 2+2|=|x 1(y 2+2)+x 2(y 1+2)(y 1+2)(y 2+2)| =|x 1(kx 2−3)+x 2(kx 1−3)+2(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2kx 1x 2−(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2k⋅254+5k 2−30k 4+5k2−20k 2+364+5k 2−484+5k2+4|=5|k |,故|PM |+|PN |=5|k |,又|PM |+|PN |≤15,即5|k |≤15,即|k |≤3,又|k |>1, 所以1<|k |≤3,故k 的取值范围为[﹣3,﹣1)∪(1,3]. 4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程. 【解答】解:(1)因为离心率e =2√55,|BF |=√5所以{c a =2√55a =√5a 2=b 2+c 2,解得a =√5,c =2,b =1,所以椭圆的方程为x 25+y 2=1.(2)设M (x 0,y 0), 则切线MN 的方程为x 0x 5+y 0y =1,令x =0,得y N =1y 0,因为PN ⊥BF , 所以k PN •k BF =﹣1,所以k PN •(−12)=﹣1,解得k NP =2,设P (x 1,0),则k NP =1y 00−x 1=2,即x 1=−12y 0,因为MP ∥BF , 所以k MP =k BF , 所以y 0x 0+12y 0=−12,即﹣2y 0=x 0+12y 0, 所以x 0=﹣2y 0−12y 0, 又因为x 025+y 02=1,所以4y 025+25+120y 02+y 02=1,解得y 0=±√66,因为y N >0, 所以y 0>0,所以y 0=√66,x 0=−√63−3√6=−5√66,所以−5√66x 5+√66y =1,即x ﹣y +√6=0.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.【解答】解:(Ⅰ)依题意,p =2,故抛物线的方程为y 2=4x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线AB :y =k (x ﹣1), 将直线AB 方程代入抛物线方程可得,k 2x 2﹣(2k 2+4)x +k 2=0, 则由韦达定理有,x A +x B =2+4k2,x A x B=1,则y A y B =﹣4,设直线AM :y =k 1(x +1),其中k 1=yA x A+1,设直线BM :y =k 2(x +1),其中k 2=yB x B +1,则k 1+k 2=y A x A+1+yBx B +1=y A x B +y A +y B x A +y B(x A +1)(x B +1)=k(x A −1)x B +k(x A −1)+k(x B −1)x A +k(x B −1)(x A +1)(x B +1)=0(x A +1)(x B +1)=0, k 1k 2=y A y B (x A +1)(x B +1)=−41+2+4k 2+1=−k21+k 2,设直线l :y =2(x ﹣t ),联立{y =2(x −t)y =k(x −1),可得x R =k−2t k−2,则|x R −t|=|k−2t k−2−t|=|k−kt k−2|,联立{y =2(x −t)y =k 1(x +1),可得x P =k 1+2t 2−k 1,则|x P −t|=|k 1+2t 2−k 1−t|=|k 1+k 1t 2−k 1|,同理可得,x Q =k 2+2t 2−k 2,|x Q −t|=|k 2+k 2t2−k 2|,又|RN |2=|PN |•|QN |,∴|k−kt k−2|2=|k 1+k 1t 2−k 1⋅k 2+k 2t 2−k 2|,即(k−kt k−2)2=k 2(1+t)23k 2+4,∴(1+t)2(t−1)2=3k2+4(k−2)2=3(k−2)2+12(k−2)+16(k−2)2=16(k−2)2+12k−2+3=(4k−2+32)2+3 4≥34(t≠1),∴4(t2+2t+1)≥3(t2﹣2t+1),即t2+14t+1≥0,解得t≥4√3−7或t≤−7−4√3(t≠1);当直线AB的斜率不存在时,则直线AB:x=1,A(1,2),B(1,﹣2),M(﹣1,0),∴直线MA的方程为y=x+1,直线MB的方程为y=﹣x﹣1,设直线l:y=2(x﹣t),则P(1+2t,2+2t),Q(2t−13,−2t+23),R(1,2﹣2t),N(t,0),又|RN|2=|PN|•|QN|,故(1−t)2+(2−2t)2=√(1+t)2+(2+2t)2⋅√(2t−13−t)2+(−2t+23)2,解得t满足(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).∴直线l在x轴上截距的取值范围为(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).6.(2021•甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切.(1)求C,⊙M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.【解答】解:(1)因为x=1与抛物线有两个不同的交点,故可设抛物线C的方程为:y2=2px(p>0),令x=1,则y=±√2p,根据抛物线的对称性,不妨设P在x轴上方,Q在X轴下方,故P(1,√2p),Q(1,−√2p),因为OP⊥OQ,故1+√2p×(−√2p)=0⇒p=1 2,抛物线C的方程为:y2=x,因为⊙M与l相切,故其半径为1,故⊙M:(x﹣2)2+y2=1.(2)设A1(x1,y1),A2(x2,y2),A3(x3,y3).当A1,A2,A3其中某一个为坐标原点时(假设A1为坐标原点时),设直线A1A2方程为kx﹣y=0,根据点M(2,0)到直线距离为1可得√1+k2=1,解得k=±√33,联立直线A 1A 2与抛物线方程可得x =3, 此时直线A 2A 3与⊙M 的位置关系为相切,当A 1,A 2,A 3都不是坐标原点时,即x 1≠x 2≠x 3,直线A 1A 2的方程为x −(y 1+y 2)y +y 1y 2=0, 此时有,12√1+(y 1+y 2)2=1,即(y 12−1)y 22+2y 1y 2+3−y 12=0,同理,由对称性可得,(y 12−1)y 32+2y 1y 3+3−y 12=0, 所以y 2,y 3是方程(y 12−1)t 2+2y 1t +3−y 12=0 的两根,依题意有,直线A 2A 3的方程为x −(y 2+y 3)y +y 2y 3=0,令M 到直线A 2A 3的距离为d ,则有d 2=(2+y 2y 3)21+(y 2+y 3)2=(2+3−y 12y 12−1)21+(−2y 1y 12−1)2=1,此时直线A 2A 3与⊙M 的位置关系也为相切, 综上,直线A 2A 3与⊙M 相切.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.【解答】解:(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为x 2a 2−y 2b 2=1(a >0,b >0),x ≥1,根据题意{c =√172a =2c 2=a 2+b 2,解得{a =1b =4c =√17,∴C 的方程为x 2−y 216=1(x ≥1); (2)(法一)设T(12,m),直线AB 的参数方程为{x =12+tcosθy =m +tsinθ,将其代入C 的方程并整理可得,(16cos 2θ﹣sin 2θ)t 2+(16cos θ﹣2m sin θ)t ﹣(m 2+12)=0,由参数的几何意义可知,|TA |=t 1,|TB |=t 2,则t 1t 2=m 2+12sin 2θ−16cos 2θ=m 2+121−17cos 2θ,设直线PQ 的参数方程为{x =12+λcosβy =m +λsinβ,|TP |=λ1,|TQ |=λ2,同理可得,λ1λ2=m 2+121−17cos 2β,依题意,m 2+121−17cos 2θ=m 2+121−17cos 2β,则cos 2θ=cos 2β,又θ≠β,故cos θ=﹣cos β,则cos θ+cos β=0,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设T(12,t),直线AB 的方程为y =k 1(x −12)+t ,A (x 1,y 1),B (x 2,y 2),设12<x 1<x 2,将直线AB 方程代入C 的方程化简并整理可得,(16−k 12)x 2+(k 12−2tk 1)x −14k 12+k 1t −t 2−16=0,由韦达定理有,x 1+x 2=k 12−2k 1t k 12−16,x 1x 2=−14k 12+k 1t−t 2−1616−k 12, 又由A(x 1,k 1x 1−12k 1+t),T(12,t)可得|AT|=√1+k 12(x 1−12), 同理可得|BT|=√1+k 12(x 2−12),∴|AT||BT|=(1+k 12)(x 1−12)(x 2−12)=(1+k 12)(t 2+12)k 12−16, 设直线PQ 的方程为y =k 2(x −12)+t ,P(x 3,y 3),Q(x 4,y 4),设12<x 3<x 4,同理可得|PT||QT|=(1+k 22)(t 2+12)k 22−16,又|AT ||BT |=|PT ||QT |,则1+k 12k 12−16=1+k 22k 22−16,化简可得k 12=k 22,又k 1≠k 2,则k 1=﹣k 2,即k 1+k 2=0,即直线AB 的斜率与直线PQ 的斜率之和为0. 8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 【解答】(1)解:由题意知,p =2, ∴y 2=4x .(2)由(1)知,抛物线C :y 2=4x ,F (1,0), 设点Q 的坐标为(m ,n ),则QF →=(1﹣m ,﹣n ), PQ →=9QF →=(9−9m ,−9n) ∴P 点坐标为(10m ﹣9,10n ), 将点P 代入C 得100n 2=40m ﹣36, 整理得m =100n 2+3640=25n 2+910, ∴K =nm =10n25n 2+9=1025n+9n≤13,当n =35时取最大值. 故答案为:13.9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.【解答】解:(1)由极坐标方程为ρ=2√2cos θ,得ρ2=2√2ρcos θ, 化为直角坐标方程是x 2+y 2=2√2x ,即(x −√2)2+y 2=2,表示圆心为C (√2,0),半径为√2的圆. (2)设点P 的直角坐标为(x ,y ),M (x 1,y 1),因为A (1,0), 所以AP →=(x ﹣1,y ),AM →=(x 1﹣1,y 1), 由AP →=√2AM →, 即{x −1=√2(x 1−1)y =√2y 1,解得{x 1=√22(x −1)+1y 1=√22x ,所以M (√22(x ﹣1)+1,√22y ),代入C 的方程得[√22(x −1)+1−√2]2+(√22y)2=2,化简得点P 的轨迹方程是(x −3+√2)2+y 2=4,表示圆心为C 1(3−√2,0),半径为2 的圆;化为参数方程是{x =3−√2+2cosθy =2sinθ,θ为参数;计算|CC 1|=|(3−√2)−√2|=3﹣2√2<2−√2,所以圆C与圆C1内含,没有公共点.10.(2021•乙卷)已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,P A,PB为C的两条切线,A,B是切点,求△P AB面积的最大值.【解答】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2﹣4kx﹣4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=﹣4b,∴P(2k,﹣b),∵|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅√16k2+16b,d p→AB=|2k2+2b|√k+1,∴S△PAB=12|AB|d=4(k2+b)32①,又点P(2k,﹣b)在圆M:x2+(y+4)2=1上,故k2=1−(b−4)24,代入①得,S△PAB=4(−b 2+12b−154)32,而y p=﹣b∈[﹣5,﹣3],∴当b=5时,(S△PAB)max=20√5.11.(2021•上海)(1)团队在O点西侧、东侧20千米处设有A、B两站点,测量距离发现一点P满足|P A|﹣|PB|=20千米,可知P在A、B为焦点的双曲线上,以O点为原点,东侧为x轴正半轴,北侧为y轴正半轴,建立平面直角坐标系,P在北偏东60°处,求双曲线标准方程和P点坐标.(2)团队又在南侧、北侧15千米处设有C、D两站点,测量距离发现|QA|﹣|QB|=30千米,|QC|﹣|QD|=10千米,求|OQ|(精确到1米)和Q点位置(精确到1米,1°)【解答】解:(1)由题意可得a=10,c=20,所以b2=300,所以双曲线的标准方程为x 2100−y 2300=1,直线OP :y =√33x ,联立双曲线方程,可得x =15√22,y =5√62, 即点P 的坐标为(15√22,5√62).(2)①|QA |﹣|QB |=30,则a =15,c =20,所以b 2=175, 双曲线方程为x 2225−y 2175=1;②|QC |﹣|QD |=10,则a =5,c =15,所以b 2=200, 所以双曲线方程为y 225−x 2200=1,两双曲线方程联立,得Q (√1440047,√297547),所以|OQ |≈19米,Q 点位置北偏东66°. 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解答】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3, 由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2﹣12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k 2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,﹣3), ∴点P 的坐标为(6k2k 2+1,−32k 2+1),由3OC →=OF →,可得点C 的坐标为(1,0),故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k •32k 2−6k+1=−1,整理可得2k 2﹣3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x ﹣3或y =x ﹣3. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.【解答】解:(Ⅰ)椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b ,则{4a 2+1b 2=1a =2b,解得b 2=2,a 2=8,∴椭圆方程为x 28+y 22=1,(Ⅱ)由题意可得直线l 的斜率存在,设直线方程为y =k (x +4), 由{y =k(x +4)x 28+y 22=1,消y 整理可得(1+4k 2)x 2+32k 2x +64k 2﹣8=0, ∴△=﹣32(4k 2﹣1)>0, 解得−12<k <12,设M (x 1,y 1),N (x 2,y 2), ∴x 1+x 2=−32k21+4k2,x 1x 2=64k 2−81+4k2,则直线AM 的方程为y +1=y 1+1x 1+2(x +2),直线AN 的方程为y +1=y 2+1x 2+2(x +2),分别令x =﹣4, 可得y P =−2(y 1+1)x 1+2−1=−(2k+1)x 1+(8k+4)x 1+2,y Q =−(2k+1)x 2+(8k+4)x 2+2∴|PB |=|y P |=|(2k+1)x 1+(8k+4)x 1+2|,QB |=|y Q |=|(2k+1)x 2+(8k+4)x 2+2|,∴|PB||BQ|=|[(2k+1)x 1+(8k+4)](x 2+2)[(2k+1)x 2+(8k+4)](x 1+2)|=|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|∵(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)=32k 2(2k+1)1+4k2,∴|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|=|(2k+1)(32k 24k 2+1+2x 2)(2k+1)(32k 24k 2+1+2x 1)|=|−(x 1+x 2)+2x 2−(x 1+x 2)+2x 1|=1,故|PB||BQ|=1.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.【解答】解:(1)由x A =√6,点A 为曲线Γ1与曲线Γ2的交点,联立{x A 24−y A 2b2=1x A 2+y A 2=4+b 2,解得y A =√2,b =2;(2)由题意可得F 1,F 2为曲线Γ1的两个焦点,由双曲线的定义可得|PF 1|﹣|PF 2|=2a ,又|PF 1|=8,2a =4,所以|PF 2|=8﹣4=4,因为b =√5,则c =√4+5=3, 所以|F 1F 2|=6,在△PF 1F 2中,由余弦定理可得cos ∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|⋅|PF 2|=64+16−362×8×4=1116,由0<∠F 1PF 2<π,可得∠F 1PF 2=arccos1116;(3)设直线l :y =−b2x +4+b22,可得原点O 到直线l 的距离d =|4+b 22|√1+b4=√4+b 2,所以直线l 是圆的切线,设切点为M ,所以k OM =2b ,并设OM :y =2bx 与圆x 2+y 2=4+b 2联立,可得x 2+4b2x 2=4+b 2, 可得x =b ,y =2,即M (b ,2),注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当y A >2时,直线l 才能与曲线Γ有两个交点,由{x A 24−y A 2b2=1x A 2+y A 2=4+b2,可得y A 2=b4a+b2,所以有4<b44+b2,解得b 2>2+2√5或b 2<2﹣2√5(舍去),因为OM →为ON →在OM →上的投影可得,OM →•ON →=4+b 2, 所以OM →•ON →=4+b 2>6+2√5, 则OM →•ON →∈(6+2√5,+∞).15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【解答】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2﹣b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设P (t ,0),则直线AP 方程为y =321−t (x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q (4,32•4−t 1−t),OP →•QP →=(t ,0)•(t ﹣4,0−32•4−t1−t)=t 2﹣4t =(t ﹣2)2﹣4≥﹣4, 当t =2时,(OP →⋅QP →)min =﹣4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB |×d 2=12×|AB |×d 1,即d 2=3d 1,A (1,32),F 1(﹣1,0),可得直线AB 方程为y =34(x +1),即3x ﹣4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x ﹣4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =﹣6或12,当m =﹣6时,直线l 为3x ﹣4y ﹣6=0,即y =34(x ﹣2),联立{y =34(x −2)x 24+y 23=1,可得(x ﹣2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127,所以M (2,0)或(−27,−127).当m =12时,直线l 为3x ﹣4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36﹣56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127). 16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ). (Ⅰ)若p =116,求抛物线C 2的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解答】解:(Ⅰ)p =116,则p 2=132,则抛物线C 2的焦点坐标(132,0), (Ⅱ)直线l 与x 轴垂直时,此时点M 与点A 或点B 重合,不满足题意, 设直线l 的方程为y =kx +t ,A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由{x 22+y 2=1y =kx +t,消y 可得(2k 2+1)x 2+4ktx +2t 2﹣2=0, ∴△=16k 2t 2﹣4(2k 2+1)(2t 2﹣2)>0,即t 2<1+2k 2, ∴x 1+x 2=−4kt 1+2k2,∴x 0=12(x 1+x 2)=−2kt 1+2k 2,∴y 0=kx 0+t =t 1+2k2,∴M (−2kt 1+2k2,t1+2k 2),∵点M 在抛物线C 2上,∴y 2=2px ,∴p =y 22x =t 2(1+2k 2)22⋅−2kt 1+2k2=t −4k(1+2k 2), 联立{y 2=2px y =kx +t ,解得x 1=t(1+2k 2)−2k 3,y 1=t −2k2, 代入椭圆方程可得t 2(1+2k 2)28k 6+t 24k 4=1,解得t 2=8k6(1+2k 2)2+2k2。
圆锥曲线与方程02
解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
1.若直线l :0=++c my x 与抛物线x y 22=交于A 、B 两点,O 点是坐标原点。
(1)当m=-1,c=-2时,求证:OA ⊥OB ;
(2)若OA ⊥OB ,求证:直线l 恒过定点;并求出这个定点坐标。
(3)当OA ⊥OB 时,试问△OAB 的外接圆与抛物线的准线位置关系如何?证明你的结论。
【答案】设A(x 1,y 1)、B(x 2,y 2),由⎩⎨⎧==++
202x y c my x 得0222=++c my y 可知y 1+y 2=-2m y 1y 2=2c ∴x 1+x 2=2m 2—2c x 1x 2= c 2,
(1) 当m=-1,c=-2时,x 1x 2 +y 1y 2=0 所以OA ⊥OB.
(2) 当OA ⊥OB 时,x 1x 2 +y 1y 2=0 于是c 2+2c=0 ∴c=-2(c=0不合题意),此时,直
线l :02=-+my x 过定点(2,0).
(3) 由题意AB 的中点D(就是△OAB 外接圆圆心)到原点的距离就是外接圆的半径。
),(2m c m D --而(m 2—c+21)2-[(m 2—c)2+m 2 ]=c -4
1 由(2)知c=-
2 ∴圆心到准线的距离大于半径,故△OAB 的外接圆与抛物线的准线相离。
2. 如图,,A B 是椭圆C :22
221(0)x y a b a b
+=>>的左、右顶点,M 是椭圆上异于,A B 的任意一点,已知椭圆的离心率为e ,右准线l 的方程为x m =.
(1)若12
e =,4m =,求椭圆C 的方程;
(2)设直线AM 交l 于点P ,以MP 为直径的圆交MB 于Q ,若直线PQ 恰过原点,求e .
【答案】(1)由题意:2222124c a a c a b c ⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩
,解得2a b =⎧⎪⎨=⎪⎩ ∴椭圆C 的方程为22
143
x y +=. (2)设2
(,),(,)a M x y P c
β,因为,,A M P 三点共线, 所以22(),a y a y c a x a x a
a c ββ+=⇒=+++ 22222()()1()()OP BM a cy a y y a c c k k a x a x a a x a ++∴-==⋅=+--2222233()()()0
b a
c a c a c c ac a a a
+-+==⇒+-=-- 210e e ∴+-=,
解得e =
3.已知椭圆E :22221(0)x y a b a b
+=>>的左顶点为A ,左、右焦点分别为F 1、F 2,且圆C :
22360x y y +--=过A ,F 2两点.
(1)求椭圆E 的方程;
(2)设直线PF 2的倾斜角为α,直线PF 1的倾斜角为β,当β-α=
2π3时,证明:点
P 在一定圆上.
【答案】(1
)圆22360x y y +--=与x
轴交点坐标为(A -
,2F ,。