2020年全国3卷文科数学
- 格式:docx
- 大小:382.90 KB
- 文档页数:10
2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。
2 B。
3 C。
4 D。
52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。
$1-i$ B。
$1+i$ C。
$-i$ D。
$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。
0.01 B。
1 C。
100 D。
4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。
当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。
60 B。
63 C。
66 D。
695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。
$\frac{3}{4}$ B。
$\frac{1}{4}$ C。
$-\frac{1}{4}$ D。
$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。
圆 B。
椭圆 C。
抛物线 D。
直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(5分)(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.(5分)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.(5分)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A .B.2+C .﹣2D.2﹣6.(5分)记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(5分)执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A .B .C .D .9.(5分)设O为坐标原点,直线x=a与双曲线C :﹣=1(a>0,b>0)的两条渐近线分别交于D,E 两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.(5分)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.(5分)已知△ABC 是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A .B .C.1D .12.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题目时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A. B.{–3,–2,2,3)C.{–2,0,2} D.{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】422222(1)[(1)](12)(2)4i i i i i .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C 【解析】【分析】根据原位大三和弦满足3,4k j j i ,原位小三和弦满足4,3k j j i 从1i 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i .∴1,5,8i j k ;2,6,9i j k ;3,7,10i j k ;4,8,11i j k ;5,9,12i j k .原位小三和弦满足:4,3k j j i .∴1,4,8i j k ;2,5,9i j k ;3,6,10i j k ;4,7,11i j k ;5,8,12i j k .故个数之和为10.故选:C .【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D 【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:11cos 601122a b a b .A :因为215(2)221022a b b a b b ,所以本选项不符合题意;B :因为21(2)221202a b b a b b ,所以本选项不符合题意;C :因213(2)221022a b b a b b ,所以本选项不符合题意;D:因为21(2)22102a b b a b b ,所以本选项符合题意.故选:D.【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1 B.2–21–n C.2–2n –1D.21–n –1【答案】B 【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.【详解】设等比数列的公比为q ,由536412,24a a a a 可得:421153111122124a q a q q a a q a q ,所以1111(1)122,21112n nn n n n n a q a a qS q ,因此1121222n n n n n S a .故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C 【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a 第1次循环,2011a ,011k ,210 为否第2次循环,2113a ,112k ,310 为否第3次循环,2317a ,213k ,710 为否第4次循环,27115a ,314k ,1510 为是退出循环输出4k .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考查了分析能力和计算能力,属于基础题.8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 的距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数331()f x x x,则()f x ()A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减【答案】A 【解析】【分析】根据函数的解析式可知函数的定义域为0x x ,利用定义可得出函数 f x 为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数 331f x x x定义域为 0x x ,其关于原点对称,而 f x f x ,所以函数 f x 为奇函数.又因为函数3y x 在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数 331f x x x在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.二、填空题目:本题共4小题,每小题5分,共20分.13.若2sin 3x ,则cos 2x __________.【答案】19【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】22281cos 212sin 12()1399x x .故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14.记n S 为等差数列 n a 的前n 项和.若1262,2a a a ,则10S __________.【答案】25【解析】【分析】因为 n a 是等差数列,根据已知条件262a a ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】∵ n a 是等差数列,且12a ,262a a 设 n a 等差数列的公差d根据等差数列通项公式: 11n a a n d 可得1152a d a d 即: 2252d d 整理可得:66d 解得:1d∵根据等差数列前n 项和公式:*1(1),2n n n S na d n N可得: 1010(101)1022045252S1025S .故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.15.若x ,y 满足约束条件1121,x y x y x y,,则2z x y 的最大值是__________.【答案】8【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x ,在平面区域内找到一点使得直线1122y x z在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x,当直线经过点A 时,直线1122y x z 在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y的解,解得:23x y,因此2z x y 的最大值为:2238 .故答案为:8.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若33b c a,证明:△ABC 是直角三角形.【答案】(1)3A;(2)证明见解析【解析】【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A可化为251cos cos 4A A,即可解出;(2)根据余弦定理可得222b c a bc ,将33b c a 代入可找到,,a b c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为25cos cos 24A A,所以25sin cos 4A A ,即251cos cos 4A A ,解得1cos 2A ,又0A ,所以3A;(2)因为3A ,所以2221cos 22b c a A bc ,即222b c a bc ①,又33b c a②,将②代入①得, 2223b c b c bc ,即222250b c bc ,而b c ,解得2b c ,所以3a c,故222b a c ,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix,2011200i iy,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()iii iii i x x yy r x x yy计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000 (2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()iii i i i i x x y y r x x y y(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y ,2C :28y x .【解析】【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB ,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx ,其中22c a b.不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b,所以当x c 时,有222221c y b y a b a ,因此,A B 的纵坐标分别为2b a ,2ba;又因为抛物线2C 的方程为24y cx ,所以当x c 时,有242y c c y c ,所以,C D 的纵坐标分别为2c ,2c ,故22||bAB a,||4CD c .由4||||3CD AB 得2843b c a,即2322()c c a a ,解得2c a (舍去),12c a .所以1C 的离心率为12.(2)由(1)知2a c ,3b c ,故22122:143x y C c c,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c ,(0,3)c ,(0,3)c ,2C 的准线为x c .由已知得312c c c c ,即2c .所以1C 的标准方程为2211612x y ,2C 的标准方程为28y x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V .【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB1//MN AA 在等边ABC 中,M 为BC 中点,则BC AM 又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMN EF ∵平面11EB C F 平面11EB C F 平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图∵//AO 平面11EB C FAO 平面1A AMN ,平面1A AMN 平面11EB C F NP//AO NP又∵//NO AP6AO NP ∵O 为111A B C △的中心.1111sin 606sin 60333ON A C故:3ON AP,则333AM AP ,∵平面11EB C F 平面1A AMN ,平面11EB C F 平面1A AMN NP ,MH 平面1A AMNMH 平面11EB C F又∵在等边ABC 中EF APBC AM即36233AP BC EF AM由(1)知,四边形11EB C F 为梯形四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP 四边形111113B EBC F EB C F V S h 四边形,h 为M 到PN 的距离23sin 603MH , 1243243V .【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a的单调性.【答案】(1)1c ;(2)()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间【解析】【分析】(1)不等式()2f x x c 转化为()20f x x c ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()g x 分子构成一个新函数()m x ,再求导得到()m x ,根据()m x 的正负,判断()m x 的单调性,进而确定()g x 的正负性,最后求出函数()g x 的单调性.【详解】(1)函数()f x 的定义域为:(0,)()2()202ln 120()f x x c f x x c x x c ,设()2ln 12(0)h x x x c x ,则有22(1)()2x h x x x,当1x 时,()0,()h x h x 单调递减,当01x 时,()0,()h x h x 单调递增,所以当1x 时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ,要想不等式() 在(0,) 上恒成立,只需max ()0101h x c c ;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a且)x a 因此22(ln ln )()()x a x x x a g x x x a ,设()2(ln ln )m x x a x x x a ,则有()2(ln ln )m x a x ,当x a 时,ln ln x a ,所以()0m x ,()m x 单调递减,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减;当0x a 时,ln ln x a ,所以()0m x ,()m x 单调递增,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数f(x)=cos(ωx+π6)在[−π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4−a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共82.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.20.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ−16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│−2│x−1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}【答案】D【解析】【分析】本题主要考查集合的交集运算和解一元二次不等式,属于基础题.【解答】解:由不等式x2−3x−4<0,解得−1<x<4,所以A∩B={1,3},故选D.24.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 2【答案】C【解析】【分析】本题主要考查复数的运算,求复数的模,属于基础题.【解答】解:z=1+2i−i=1+i,则|z|=√12+12=√2,故选C.25.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+12【答案】C【解析】【分析】根据题意列出a,ℎ′,ℎ的关系式,化简即可得到答案.本题考查了立体几何中的比例关系,属于基础题.【解析】如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为ℎ′,则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a)2−2(ℎ′a)−1=0,解得ℎ′a =√5+14.故答案选C.26.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 45【答案】A【解析】【分析】本题主要考查概率的知识,属于基础题.【解答】解:如图,从5点中随机选取3个点,共有10种情况,其中三点共线的有两种情况:AOC和BOD,则p=210=15.故选A.27.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx 【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.故答案选D.28.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查圆的方程、直线方程以及求弦长,属于较易题.【解答】解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3−1)2+(0−2)2=√8弦长,故选B.29.设函数f(x)=cos(ωx+π6)在[−π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π2【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用f(−4π9)=0得到w =−3+9k 4(k ∈Z),由T <2π<2T ,可得,由w =−3+9k 4(k ∈Z)可得k 的值,w 的值可得,即可求解.【解析】 解:由图可知f(−4π9)=cos(−4π9w +π6)=0,所以−4π9w +π6=π2+kπ(k ∈Z),化简可得w =−3+9k 4(k ∈Z),又因为T <2π<2T ,即2π|w |<2π<4π|w |,所以,当且仅当k =−1时,所以w =32,最小正周期T =2π|w |=4π3.故答案选C .30. 设alog 34=2,则4−a =( )A. 116B. 19C. 18D. 16【答案】B【解析】【分析】本题主要考查指对数的运算,属于基础题. 【解答】解:由alog 34=log 34a =2,可得4a =32=9, ∴4−a =(4a )−1=9−1=19, 故选B .31. 执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】本题以程序框图为载体,考查了等差数列求和,属于中档题.【解答】解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.故选C.32.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 32【答案】D【解析】【分析】本题主要考查等比数列的通项公式,属基础题.根据a1+a2+a3=1,a2+a3+a4=2,结合等比数列的通项公式可求得等比数列的公比q,因为a6+a7+a8=q5(a1+a2+a3),从而得到答案.【解答】解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,故选D33.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 2【答案】B【解析】【分析】本题主要考查双曲线的定义、双曲线的简单几何性质、圆的性质,属一般题.根据双曲线的标准方程得到其焦点坐标,结合|OP|=2,可确定点P在以F1F2为直径的圆上,得到|PF1|2+|PF2|2=16,结合双曲线的定义可得|PF1|⋅|PF2|的值,从而得到答案.【解答】解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(−2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|−|PF2||=2a=2,所以||PF1|−|PF2||2=|PF1|2+|PF2|2−2|PF1|⋅|PF2|= 4,所以|PF1|⋅|PF2|=6,所以三角形PF1F2面积为3,故选B.34.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.二、填空题(本大题共4小题,共20.0分)35.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.36.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.【答案】5【解析】【分析】本题主要考查平面向量垂直的充要条件,平面向量数量积的坐标运算,属基础题.由a⃗⊥b⃗ 可得a⃗⋅b⃗ =0,再把两向量坐标代入运算可得答案.【解答】解:∵a⃗⊥b⃗ ,所以a⃗⋅b⃗ =0,因为a⃗=(1,−1),b⃗ =(m+1,2m−4),所以m+1−(2m−4)=0,故m=5.故答案为:537.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.【答案】2x−y=0【解析】【分析】本题主要考查导数的几何意义,属基础题.根据导数的几何意义确定切点坐标,再根据直线的点斜式得到切线方程.【解答】+1解:∵y=lnx+x+1,∴y′=1x+1=2,故x0=1,设切点坐标为(x0,y0),因为切线斜率为2,所以1x此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y−2=2(x−1)所以切线方程为2x−y=0.故答案为:2x−y=0.38.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题.对n取偶数,再结合条件可求得前16项中所有奇数项的和,对n取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n=3n−1,当n=2,6,10,14时,a2+a4=5,a6+a8= 17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540−(5+17+29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2−a n=3n−1,所以a3−a1=2,a5−a3=8,a7−a5=14⋯a n+2−a n=3n−1,累加得an+2−a1=2+8+14+⋯3n−1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13= 102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.故答案为7.三、解答题(本大题共7小题,共82.0分)39.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?【答案】解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90−25)+0.2×(50−25)+0.2×(20−25)+0.2×(−50−25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90−20)+0.17×(50−20)+0.34×(20−20)+0.21×(−50−20)=10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.【解析】本题主要考查频率的算法,平均数的概念及其意义,属基础题.(1)根据图表信息可得甲乙分厂的频数,从而得到答案.(2)根据图表信息可得甲乙分厂的四个等级的频率,再根据平均数的定义求得答案,比较两厂的平均数得到最终答案即可.40.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得b2=a2+c2−2accosB,即28=3c2+c2−2√3c2cos150∘,解得c=4,所以a=4√3,所以S△ABC=12acsinB=12×4√3×4×12=4√3.(2)因为A=180∘−B−C=30∘−C,所以sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(30∘+C)=√22,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.41.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.【答案】解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32−1=√22,所以三棱锥P−ABC的体积V=13SΔABC⋅PO=13×12×√3×√3×√32×√22=√68.【解析】【解析】本题考查线面位置关系的判定,圆锥的侧面积公式,棱锥的体积公式的应用,考查空间想象能力与运算能力,属于中档题.(1)由题意证得PB⊥PA,PB⊥PC,从而得到PB⊥平面PAC,根据面面垂直的判定定理即可证明;(2)由圆锥的性质可求得底面半径与母线长,从而可求得△ABC的边长,从而可求得三棱锥P−ABC的高,从而可求得体积.42.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【答案】解:(1)当a=1时,f(x)=e x−(x+2),则f′(x)=e x−1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(−∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x−a(x+2)=0,显然x≠−2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<−2或−2<x<−1时,g′(x)<0,g(x)单调递减;当x>−1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(−1)=1e,当x <−2时,g(x)<0,当x >−2时,g(x)>0, 所以当a >1e 时,y =a 与g(x)的图象有两个交点, 所以a 的取值范围为(1e ,+∞). 【解析】【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,有一定难度. (1)先求导,可直接得出函数的单调性;(2)先分离参数得a =e x x+2,再构造函数,利用导数研究函数的性质,即可得出a 的取值范围.43. 已知A ,B 分别为椭圆E:+=1(a >1)的左、右顶点,G 为E 的上顶点,=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D , (1)求E 的方程;(2)证明:直线CD 过定点. 【答案】解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ), 则直线PA 的方程为y =m 9(x +3),联立{y=m9(x+3)x29+y2=1⇒(9+m2)x2+6m2x+9m2−81=0,由韦达定理−3x C=9m2−819+m2⇒x C=−3m2+279+m2,代入直线PA的方程y=m9(x+3)得,y C=6m9+m2,即C(−3m2+279+m2,6m9+m2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m 1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.44.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ−16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.【答案】【答案】(1)当k =1时,曲线C 1的参数方程为{x =costy =sint ,化为直角坐标方程为x 2+y 2=1, 表示以原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4ty =sin 4t ,化为直角坐标方程为√x +√y =1,曲线C 2化为直角坐标方程为4x −16y +3=0,联立{√x +√y =14x −16y +3=0,解得{x =14y =14, 所以曲线C 1与曲线C 2的公共点的直角坐标为(14,14).【解析】本题考查简单曲线的参数方程、极坐标方程,参数方程、极坐标方程与直角坐标方程的互化等知识,考查运算求解能力,难度一般.45. [选修4—5:不等式选讲]已知函数f(x)=│3x +1│−2│x −1│.(1)画出y =f(x)的图像;(2)求不等式f(x)>f(x +1)的解集.【答案】(1)函数f(x)=|3x +1|−2|x −1|={x +3,x >15x −1,−13≤x ≤1−x −3,x <−13,图象如图所示:第21页,共21页(2)函数f(x +1)的图象即将函数f(x)的图象向左平移一个单位所得,如图,联立{y =−x −3y =5x +4可得交点横坐标为x =−76, 所以f(x)>f(x +1)的解集为{x|x <−76}.【解析】本题考查解绝对值不等式,考查了运算求解能力及数形结合的思想,难度一般.。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅲ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1235711A =,,,,,,{}|315B x x =<<,则A B 中元素的个数为 ( )A .2B .3C .4D .52.若()1i 1i z +=-,则z = A .1i -B .1i +C .i -D .i3.设一组样本数据1x ,2x ,…,n x 的方差为0.01,则数据110x ,210x ,…,10n x 的方差为( )A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln193≈)( ) A .60B .63C .66D .69 5.已知πsin sin 13θθ⎛⎫++= ⎪⎝⎭,则πsin 6θ⎛⎫+=⎪⎝⎭( )A .12BC .23D.2 6.在平面内,A ,B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线2x =与抛物线()2:20C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭, C .()10,D .()20,8.点()01-,到直线()1y k x =+距离的最大值为( )A .1BCD .2 9.下图为某几何体的三视图,则该几何体的表面积是( )A. B.C.D.10.设3log 2a =,5log 3b =,23c =,则( )A .a c b <<B .a b c <<C .b c a <<D .c a b << 11.在ABC △中,2cos 3C =,4AC =,3BC =,则tan B =( )AB. C.D.12.已知函数()1sin sin f x x x=+,则( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线πx =对称D .()f x 的图像关于直线π2x =对称毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0201x y x y x +⎧⎪-⎨⎪⎩≥,≥,≤,则32z x y =+的最大值为________.14.设双曲线2222:1x y C a b-=()00a b >,>的一条渐近线为y =,则C 的离心率为________. 15.设函数()xe f x x a =+,若()14ef '=,则a =________. 16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表面积为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设等比数列{}n a 满足124a a +=,318a a -=. (1)求{}n a 的通项公式;(2)记n S 为数列{}3log n a 的前n 项和.若13m m m S S S +++=,求m .18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天空气质量不好附:()()()()2n ad bc a b c d a c K b d -=++++,.19.(12分)如图,在长方体1111ABCD A B C D -中,在E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =,证明:数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.20.(12分)已知函数()32f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.21.(12分)已知椭圆()222:10525x y C m m+=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,求APQ △的面积.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为()222123x t tt t y t t ⎧=--⎪≠⎨=-+⎪⎩为参数且,C 与坐标轴交于A ,B 两点. (1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.23.[选修4—5:不等式选讲](10分) 设a ,b ,c ∈R ,0a b c ++=,1abc =. (1)证明:0ab bc ca ++<;(2)用{}max a b c ,,表示a ,b ,c 中的最大值,证明:{}max a b c ,,毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2020年普通高等学校招生全国统一考试·全国Ⅲ卷文科数学答案解析一、选择题 1.【答案】B【解析】采用列举法列举出AB 中元素的即可.由题意,{}5711AB =,,,故AB 中元素的个数为3. 故选:B【考点】集合的交集运算 2.【答案】D【解析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.因为()()()21i 1i 2ii 1i 1i 1i 2z ---====-++-,所以i z =.故选:D . 【考点】复数的除法运算,共轭复数的概念 3.【答案】C【解析】根据新数据与原数据关系确定方差关系,即得结果.因为数据i ax b +,()12i n =,,…,的方差是数据i x ,()12i n =,,…,的方差的2a 倍,所以所求数据方差为2100.011⨯=,故选:C . 【考点】方差 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI tK e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈. 故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.由题意可 得:1sin sin 12θθθ+=,则:3sin 12θθ=1cos 2θθ+,从而有:sin coscos sin663ππθθ+=,即πsin 6θ⎛⎫+= ⎪⎝⎭.故选:B .【考点】两角和与差的正余弦公式及其应用 6.【答案】A【解析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()0A a -,,()0B a ,,设()C x y ,,可得:()AC x a y →=+,,()BC x a y →=-,,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB .故选:A .【考点】平面向量及其数量积的坐标运算,轨迹方程的求解 7.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以数学试卷 第9页(共20页) 数学试卷 第10页(共20页)()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B . 【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 8.【答案】B【解析】首先根据直线方程判断出直线过定点()10P -,,设()01A -,,当直线()1y k x =+与AP 垂直时,点A 到直线()1y k x =+距离最大,即可求得结果.由()1y k x =+可知直线过定点()10P -,,设()01A -,,当直线()1y k x =+与AP 垂直时,点A 到直线()1y k x =+距离最大,即为AP =.故选:B . 【考点】解析几何初步的问题,直线过定点,利用几何性质 9.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===∴ADB △是边长为(2°11sin 6022ADB S AB AD =⋅⋅==△,∴该几何体的表面积是:632⨯++故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 10.【答案】A【解析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.因为333112log 2log 9333a c ===<,355112log 3log 25333b c ===>,所以a c b <<.故选:A .【考点】对数式大小的比较 11.【答案】C【解析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan B .设AB c =,BC a =,CA b =,22222cos 91623493c a b ab C =+-=+-⨯⨯⨯=,3c ∴=,2221cos9a c bB +-==,sinB ∴=tan B ∴=.故选:C . 【考点】余弦定理,同角三角函数关系 12.【答案】D【解析】根据基本不等式使用条件可判断A ;根据奇偶性可判断B ;根据对称性判断C ,D .sin x 可以为负,所以A 错;sin 0x ≠,()x k k π∴≠∈Z ,()()1sin sin f x x f x x-=--=-,()f x ∴关于原点对称;()()12sin sin f x x f x x π-=--≠,()()1sin sin f x x f x xπ-=+=,故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对.故选:D .【考点】函数定义域与最值,奇偶性,对称性 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y=-,当322x zy =-+经过A点时截距最大,此时数学试卷 第11页(共20页) 数学试卷 第12页(共20页)z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,线性目标函数的最大值【解析】根据已知可得a=结合双曲线中a ,b ,c 的关系,即可求解.由双曲线方程22221x y a b -=可得 其焦点在x 轴上,因为其一条渐近线为y=,所以ba=c e a ===故【考点】双曲线性质 15.【答案】1【解析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值.由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aeea =+,整理可得:2210a a -+=,解得:1a =.故答案为:1.【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r,则: ()11113322222ABC AOB BOC AOCS S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△,解得:r =,其体积:343Vr π==.. 三、解答题17.【答案】(1)13n n a -= (2)6m =数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式.设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=-=⎧⎨⎩,解得113a q =⎧⎨=⎩,所以13n n a -=.(2)由(1)求出{}3log n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.令313log log 31n n n b a n -===-,所以()()01122n n n n n S +--==,根据13m m m S S S +++=,可得()()()()1123222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =.【考点】比数列通项公式基本量的计算,等差数列求和公式的应用18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350锻炼的人次与该市 当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结()21003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市 当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)因为长方体1111ABCD A B C D -,所以1BB ABCD ⊥平面,1AC BB ∴⊥,因为长方体1111ABCD A B C D -,AB BC =,所以四边形ABCD 为正方形,AC BD ∴⊥.因为1BB BD B =,111BB BD BB D D ⊂、平面,因此11AC BB D D ⊥平面,因为11EF BB D D ⊂平面,所以AC EF ⊥.(2)在1CC 上取点M 使得12CM MC =,连DM ,MF ,因为12D E ED =,11DD CC ∥,11DD CC =,所以1ED MC =,1ED MC ∥,所以四边形1DMC E 为平行四边形,1DM EC ∴∥.因为MF DA ∥,MF DA =,所以四边形MFAD 为平行四边形,DM AF ∴∥,1EC AF ∴∥,因此1C 在平面AEF 内. 【解析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证数学试卷 第15页(共20页) 数学试卷 第16页(共20页)11AC BB D D ⊥平面,即得结果.因为长方体1111ABCD A B C D -,所以1BB ABCD ⊥平面,1AC BB ∴⊥,因为长方体1111ABCD A B C D -,AB BC =,所以四边形ABCD 为正方形,AC BD ∴⊥.因为1BB BD B =,111BB BD BB D D ⊂、平面,因此11AC BB D D ⊥平面,因为11EF BB D D ⊂平面,所以AC EF ⊥.(2)只需证明1EC AF ∥即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.在1CC 上取点M 使得12CM MC =,连DM ,MF ,因为12D E ED =,11DD CC ∥,11DD CC =,所以1ED MC =,1ED MC ∥,所以四边形1DMC E 为平行四边形,1DM EC ∴∥.因为MF DA ∥,MF DA =,所以四边形MFAD 为平行四边形,DM AF ∴∥,1EC AF ∴∥,因此1C 在平面AEF 内.【考点】线面垂直判定定理,线线平行判定20.【答案】(1)由题,()23f x x k '=-,当0k ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递 增;当0k >时,令()0f x '=,得x =,令()0f x '<,得x ,令()0f x '>,得x -<x 所以()f x在⎛上单调递减,在⎛-∞ ,,⎫+∞⎪⎪上单调递增. 【解析】(1)()23f x x k '=-,对k 分0k ≤和0k >两种情况讨论即可.由题,()23f x x k '=-,当0k ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增;当0k >时,令()0f x '=,得x =,令()0f x'<, 得x ,令()0f x '>,得x -<x ()f x在⎛ ⎝上单调递减,在⎛-∞⎝,⎫+∞⎪⎪⎭上单调递增. (2)()f x 有三个零点,由(1)知0k >,且00ff ⎧⎛⎪ ⎪⎝⎨⎪⎪⎩><,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.由(1)知,()f x 有三个零点,则0k >,且00f f ⎧⎛⎪ ⎪⎝⎨⎪⎪⎩><,即22203203k k ⎧+⎪⎪⎨⎪-⎪⎩,解 得4027k <<,当4027k <<且20fk =>,所以()f x 在上有唯一一个零 点,同理1k --<()()23110f k k k --=--+<,所以()f x 在1k ⎛--⎝,上有唯一一个零点,又()f x 在⎛ ⎝上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范数学试卷 第17页(共20页) 数学试卷 第18页(共20页)围为4027⎛⎫ ⎪⎝⎭,.【解析】(1)因为()2:10525x yC m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m+=<<,5a ∴=,b m =,根据离心率c e a ====解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100xy -+=,根据点到直线距离公式可得P 到 直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =APQ ∴△面积为:15252⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,, 画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P数学试卷 第19页(共20页) 数学试卷 第20页(共20页)到直线AQ 的距离为:d ===根据两点间距离公式可得:AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52.【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--, 则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程 为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <.a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,0b c ,<,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bca a a bcbcbc++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用。
2020年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .52.若)(11z i i +=-,则z =( ) A .1−iB .1+iC .−iD .i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et K I t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A .60B .63C .66D .695.已知πsin sin =3θθ++()1,则πsin =6θ+()( )A .12BC .23D6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :()220y px p =>交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A .(14,0)B .(12,0) C .(1,0) D .(2,0)8.点(0)1-,到直线()1y k x =+距离的最大值为( ) A .1BC D .29.如图为某几何体的三视图,则该几何体的表面积是( )A .B .C .D .10.设a =log 32,b =log 53,c =23,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b11.在△ABC 中,2cos 3C =,AC =4,BC =3,则tan B =( ) AB .C .D .12.已知函数1()sin sin f x x x=+,则( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件0201x y x y x ⎧⎪⎨⎪+≥-≤⎩≥,则z =3x +2y 的最大值为_________.14.设双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线为yx ,则C 的离心率为_________.15.设函数e ()xf x x a=+.若e (1)4f '=,则a =_________. 16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)设等比数列{a n }满足124a a +=,138a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:2()()()()()n ad bc K a b c d a c b d -=++++,如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.20.(12分)已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程] (10分)在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t⎪=--=-⎧⎪⎨⎩+ (t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.23.[选修4-5:不等式选讲] (10分)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用}m x{a a b c ,,表示a ,b ,c 中的最大值,证明:m x{}a a b c ≥,,.2020年普通高等学校招生全国统一考试文科数学试题参考答案选择题答案 一、选择题 1.B 2.D 3.C 4.C 5.B 6.A 7.B 8.B 9.C 10.A11.C12.D非选择题答案 二、填空题 13.7 1415.1 16三、解答题17.解:(1)设{}n a 的公比为q ,则11n n a a q -=.由已知得1121148a a q a q a +=⎧⎪⎨-=⎪⎩, 解得11,3a q ==.所以{}n a 的通项公式为1=3n n a -. (2)由(1)知3log 1.n a n =- 故(1).2n n n S -=由13m m m S S S +++=得(1)(1)(3)(2)m m m m m m -++=++,即2560m m --=. 解得1m =-(舍去),6m =.18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 20.解:(1)2()3f x x k '=-.当k =0时,3()f x x =,故()f x 在()-∞+∞,单调递增; 当k <0时,2()30f x x k '=->,故()f x 在()-∞+∞,单调递增.当k >0时,令()0f x '=,得x =.当(,x ∈-∞时,()0f x '>;当(x ∈时,()0f x '<;当)x ∈+∞时,()0f x '>.故()f x在(,-∞,)+∞单调递增,在(单调递减. (2)由(1)知,当0k ≤时,()f x 在()-∞+∞,单调递增,()f x 不可能有三个零点. 当k>0时,=x ()f x的极大值点,x 为()f x 的极小值点.此时,11k k --<<+且(1)0f k --<,(1)0f k +>,(0f >. 根据()f x 的单调性,当且仅当0f <,即20k -<时,()f x 有三个零点,解得427k <.因此k 的取值范围为(0)427,. 21.解:(1=22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为22AP Q △的面积为1522=.综上,APQ △的面积为52. 22.[选修4—4:坐标系与参数方程]解:(1)因为t ≠1,由220t t --=得2t =-,所以C 与y 轴的交点为(0,12); 由2230t t -+=得t =2,所以C 与x 轴的交点为(4,0)-.故||AB =(2)由(1)可知,直线AB 的直角坐标方程为1412x y+=-,将cos sin x y ρθθ==,代入,得直线AB 的极坐标方程3cos sin 120ρθρθ-+=. 23.[选修4—5:不等式选讲]解:(1)由题设可知,a ,b ,c 均不为零,所以22221[()()]2ab bc ca a b c a b c ++=++-++2221()2a b c =-++0<.(2)不妨设max{a ,b ,c }=a ,因为1,()abc a b c ==-+,所以a >0,b <0,c <0.由2()4b c bc +≤,可得34a abc ≤,故a ≥,所以max{,,}abc ≥.。