对数的概念及运算法则
- 格式:ppt
- 大小:1.25 MB
- 文档页数:26
对数函数专题对数及对数运算【要点梳理】要点一、对数概念 1.对数的概念如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R . 2.对数()log 0a N a >≠,且a 1具有下列性质:(1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作. 4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则 已知()log log 010a a M N a a M N >≠>,且,、 (1)正因数的积的对数等于同一底数各个因数的对数的和; ()log log log a a a MN M N =+ 推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、(2)两个正数的商的对数等于被除数的对数减去除数的对数;log log log a a a M M N N=-(3)正数的幂的对数等于幂的底数的对数乘以幂指数; log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N )=log a M ±log a N , log a (M ·N )=log a M ·log a N ,log a N M N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a N a N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有:(1))(log log R n M M n a a n ∈=令 log a M=b , 则有a b =M , (a b )n =M n ,即n b n M a =)(, 即n a M b n log =,即:n a a M M n log log =.(2))1,0(log log log ≠>=c c aMM c c a ,令log a M=b , 则有a b =M , 则有)1,0(log log ≠>=c c M a c b c即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围: (1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求.(2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三:【变式1】函数21log (2)x y x -=+的定义域为 .【答案】1|12x x x ⎧⎫>≠⎨⎬⎩⎭且类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(33x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-.【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =- (2)log 86x = (3)lg1000=x (4)2-2ln e x =【答案】(1)14;(2;(3)3;(4)-4.【解析】将对数式化为指数式,再利用指数幂的运算性质求出x .(1)1112()212221(16)(4)444x --⋅--=====;(2)111166366628()(8)(2)2x x x ======,所以 (3)10x =1000=103,于是x=3;(4)由22222ln ln 42x x e x e e e x --=-===-,得,即所以.例3.(2014 广东湛江期中)不用计算器计算:7log 203log lg25lg47(9.8)+++- 【答案】132【解析】原式323log 3lg(254)21=+⨯++23lg1032=++3132322=++=【总结升华】对数恒等式log a N a N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c N a ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0) 【答案】N【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.log log log log log log log log log ()()c a b c a b b c c Nb c N b cc N N a a b c N ⋅⋅⎡⎤====⎣⎦类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z 【解析】(1)log log log log aa a a xyx y z z=+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z yz ==--;(4)log a211log ()log 2log log log 23a a a a a x y x y z -=+-.(有错误) 【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三: 【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2【答案】(1)22;(2)1;(3)2. 【解析】(1)1log 864log 325log 21025-+.220184082log 35log 26225=-+=⨯-+⋅=(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 类型五、换底公式的运用例5.已知18log 9,185b a ==,求36log 45.【答案】2a ba+- 【解析】解法一:18log 9,185b a ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.(3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用. 【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;【解析】(1))2log 2)(log 3log 3(log 9384++452log 233log 65)22log 2)(log 33log 23log ()9log 2log 2)(log 8log 3log 4log 3log (3233223332222=⋅⋅=++=++=类型六、对数运算法则的应用例6.求值(1)91log 81log 251log 32log 53264⋅⋅⋅(2)7lg142lg lg 7lg183-+-【解析】(1)原式=103log 2log 5log 2log 253322526-=---(2)原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--=举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++【解析】(1)原式=()22lg52lg 2lg5(2lg 2lg5)lg 2++++=22lg10(lg 5lg 2)++=2+1=3;【巩固练习】一、选择题1. 有以下四个结论:①lg (lg10)=0;②ln (lne )=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2,其中正确的是( )A .①③B .②④C .①②D .③④ 【答案】C【解析】由log 1,log 10a a a ==知①②正确.2. 下列等式成立的有( )①1lg 2100=-;②33log 2=;③2log 525=;④ln 1e e =;⑤lg 333=;A .①②B .①②③C .②③④D .①②③④⑤ 【答案】B【解析】21lg lg102100-==-;3. 对数式2log (5)a a b --=中,实数a 的取值范围是( )A .(),5-∞B . ()2,5C .()()2,33,5D .()2,+∞【答案】C【解析】由对数的定义可知50,20,21,a a a ->⎧⎪->⎨⎪-≠⎩所以25a <<且3a ≠,故选C .4. 若0,1a a >≠,则下列说法正确的是( )①若M N =,则log log a a M N =;②log log a a M N =,则M N =; ③22log log a a M N =,则M N =;④若M N =,则22log log a a M N =. A .①③ B .②④ C .② D .①②③④ 【答案】C【解析】注意使log log a a M N =成立的条件是M 、N 必须为正数,所以①③④不正确,而②是正确的,故选C .5. 若56789log 6log 7log 8log 9log 10y =⋅⋅⋅⋅,则( )A .(0,1)y ∈B .(1,2)y ∈C .(2,3)y ∈D .(3,4)y ∈ 【答案】B 【解析】55lg 6lg 7lg8lg9lg10log 101log 2lg5lg 6lg 7lg8lg9y =⨯⨯⨯⨯==+,因为50log 21<<,所以12y <<,故选B .6. (2014江西三县月考)计算662log 3log 4+的结果是()A .6log 2B . 2C . 6log 3D . 3【答案】B【解析】666662log 3log 4log 9log 4log 362+=+==.故选:B . 二、填空题1. 若312log 19x-=,则x = .【答案】-13【解析】 由指数式与对数式互化,可得1239x-=,解得13x =-. 2. 若2log 2,log 3,m n a a m n a +=== ;【答案】12【解析】 2log 2log 3log 4log 34312a a a a a a a +=⋅=⨯=.3. 若2510a b ==,则11a b+= .【答案】1【解析】因为210,a =所以21log 10lg 2a ==,又因为510,b =所以51log 10lg 5b ==,所以原式=lg 2lg51+=.。
对数与对数运算法则对数是数学中一个重要的概念,在很多领域中都有广泛的应用,比如数学、物理、工程等。
它能够简化大数值的运算和计算复杂问题,也有助于解决各种类型的方程和不等式。
本文将探讨对数的含义,以及对数运算的法则。
1.对数的含义:对数最基本的定义是,对于一个正数a,如果b是一个正数且满足a 的b次方等于另一个正数x,那么b就是以a为底x的对数,记为log_a(x)。
其中a被称为对数的底数,x被称为真数,b被称为对数。
用数学语言描述对数,可以写作a^b=x,等价于log_a(x)=b。
2.对数运算的法则:对数运算有一系列的基本法则,可以简化对数的运算和推导。
2.1对数的互换性:如果a>0且a≠1,且m、n是正数,那么log_a(m×n)=log_a(m)+log_a(n)。
这条法则允许我们将乘法变成加法。
2.2对数的逆运算性:如果a>0且a≠1,那么对于正数m和任意正数b,有:a^(log_a(m))=m。
换句话说,当对数与指数运算发生时,可以互相抵消。
2.3对数的对换性:如果a>0且a≠1,且m、n是正数,那么log_a(m/n)=log_a(m)-log_a(n)。
这条法则允许我们将除法变成减法。
2.4对数的幂次性:如果a>0且a≠1,那么对任意正数m和正数b,有:log_a(m^b)=b×log_a(m)。
换句话说,可以通过幂次运算将对数与指数运算进行交换。
2.5对数的换底公式:对于任意正数a、b和c,有:log_a(b)=log_c(b)/log_c(a)。
这条法则允许我们将对数底数的换成任意值,并以其他常见的底数来计算。
3.对数运算的应用:3.1科学计数法:对数可以简化大数值的表示。
通过对数运算,我们可以将一个很大或很小的数字表示为以10为底的对数形式。
例如,1,000,000可以写成log_10(1,000,000)=63.2方程的求解:对数可以帮助解决一些涉及指数和幂函数的方程。
对数的运算法则及公式是什么在数学中,对数是指一个数以另一个数为底的指数。
对数的运算法则和公式是数学中对数运算的基本准则和表达方式。
本文将重点介绍对数的运算法则及公式。
一、对数的定义和符号对数是指数的逆运算,主要用于求指数运算的未知数。
以底数为a,对数为n的运算表达为:a^n = x,其中n为指数,a为底数,x为真数。
对数的符号为log。
例如,对于底数为2的对数运算:2^3 = 8,可以表示为log2(8)=3。
其中,2为底数,3为指数,8为真数。
二、对数运算法则1. 对数的基本运算法则(1) 乘法法则:loga(M*N) = loga(M) + loga(N)。
(2) 除法法则:loga(M/N) = loga(M) - loga(N)。
(3) 幂运算法则:loga(M^k) = k*loga(M)。
(4) 开方法则:loga√M = 1/2 * loga(M)。
2. 对数换底公式对数换底公式是指当底数不同时,如何在不同底数之间进行换算。
常用的对数换底公式有以下两种形式:(1) loga(M) = logc(M) / logc(a),其中c为任意常数。
(2) loga(M) = ln(M) / ln(a),其中ln表示自然对数。
三、对数公式1. 对数幂的对数公式对数幂的对数公式是指对数运算中底数为幂的情况,常用的对数幂的对数公式有以下两种形式:(1) loga(a^k) = k,其中k为任意常数。
(2) loga(1) = 0。
2. 对数的乘法公式对数的乘法公式是指对数运算中底数相同,真数相乘的情况。
常用的对数的乘法公式有以下两种形式:(1) loga(M*N) = loga(M) + loga(N)。
(2) loga(a) = 1。
3. 对数的除法公式对数的除法公式是指对数运算中底数相同,真数相除的情况。
常用的对数的除法公式有以下两种形式:(1) loga(M/N) = loga(M) - loga(N)。
对数的概念及运算法则对数是数学中的一个概念,它表示一个数相对于一些给定的底数的幂。
在日常生活中,对数经常被用来解释指数增长或减少的情况。
首先,对数的定义是:对于给定的正数a(a ≠ 1),将正数x表达为底数a的幂的等式,即x = a^m (m为任意实数),称m为x的以a为底的对数,记作m =log[底数a](x),即m = loga(x)。
对数有以下几个重要特点:1.底数必须是一个正数,并且不能等于12.对数函数中x的取值范围为正实数,因为负数和0的对数不存在。
3.对数的结果m可以是任意实数,包括正数、负数和零。
对数具有一些重要的性质和运算法则,下面介绍其中的一些:1.换底公式:对于任意给定的x和任意的正数a、b(a、b≠1),有以下等式成立:loga(x) = logb(x) / logb(a)换底公式可以将一个对数用另一个底数的对数表示,这样在计算和比较对数时更加方便。
2.加减法法则:对于任意给定的正数a、b和任意的正数x、y,有以下等式成立:loga(x * y) = loga(x) + loga(y)loga(x / y) = loga(x) - loga(y)加减法法则可以将对数的乘法和除法分解为对数的加法和减法,简化对数运算。
3.乘方法则:对于任意给定的正数a和任意的正数x和正整数n,有以下等式成立:loga(x^n) = n * loga(x)乘方法则可以将对数中的指数化简为对数本身的乘法。
4.对数的乘法和除法法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:loga(x^b) = b * loga(x)loga(b^x) = x * loga(b)乘法和除法法则可以将指数中的对数化简为对数本身的乘法或除法。
5.对数的幂次法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:a^(loga(x)) = x如果a ≠ 1,则loga(a^x) = x幂次法则可以将对数中的幂次化简为原指数。
对数的运算法则及公式对数是数学中的一个重要概念,它在科学计算、工程技术、经济金融等领域中都有广泛的应用。
对数的运算法则能够帮助我们简化计算并解决一些复杂的问题。
在本文中,我们将讨论对数的运算法则及公式,包括基本法则和常用公式。
一、对数的基本法则1.对数的定义对任意正数a和正数b,以a为底,b为真数的对数记作loga b,其中a被称为底数,b被称为真数。
公式的意义是以a为底,对数值得到b。
例如,如果2^3 = 8,那么log2 8 = 32.对数的换底公式对数的换底公式是loga b = logc b / logc a,其中a、b、c为正数,且a、b不等于1、这个公式可以用来将对数的底数从一个常用的底数转换为另一个常用的底数。
例如,要计算log2 16,可以使用换底公式将其转换为log10 16 / log10 23.对数的乘法法则对数的乘法法则是loga (b * c) = loga b + loga c,其中a、b、c为正数,且a、b不等于1、这个法则说明,对数中的乘法可以转换为对数的加法。
4.对数的除法法则对数的除法法则是loga (b / c) = loga b - loga c,其中a、b、c为正数,且a、b不等于1、这个法则说明,对数中的除法可以转换为对数的减法。
5.对数的幂法法则对数的幂法法则是loga (bn) = n * loga b,其中a、b为正数,且a、b不等于1,n为任意实数。
这个法则说明,对数中的幂运算可以转换为对数的乘法。
6.对数的倒数法则对数的倒数法则是loga (1/b) = -loga b,其中a、b为正数,且a、b不等于1、这个法则说明,对数中的倒数可以转换为对数的相反数。
7.对数的幂运算法则对数的幂运算法则是a^loga x = x,其中a、x为正数,且a不等于1、这个法则说明,一个数的对数值乘以底数的指数幂等于这个数本身。
二、常用的对数公式1.常用对数公式常用对数公式是以10为底的对数函数,记作lg x。
对数的基本性质和运算公式对数是数学中非常重要和常用的概念,它在许多领域都有广泛的应用。
对数的基本性质和运算公式包括对数的定义、对数的性质、对数的运算规则以及一些常用的对数公式等。
本文将详细介绍这些基本性质和运算公式。
一、对数的定义:对数是指数运算的逆运算。
设a为一个正实数,b为一个正实数且不等于1,若满足b^x = a,其中x为实数,则称x为以b为底a的对数,记作x = log_b a。
其中,a称为真数,b称为底数,x称为对数。
在对数的定义中,底数和真数的位置可以互换,即x = log_b a等价于 a = b^x。
二、对数的性质:1.对数的定义保证了对数的唯一性,即对于给定的底数和真数,对数是唯一的。
2.对于不同的底数,同一个真数的对数是不同的。
3.当底数为1时,对数不存在,因为1的任何次幂都等于14. 当真数为1时,对数等于0,即log_b 1 = 0。
5.当底数为0时,对数不存在,因为0无法作为一个数的底数。
6.当0<b<1时,对数是负数;当b>1时,对数是正数;当b=1时,对数等于0。
三、对数的运算规则:1.对数的乘法法则:log_b (a * c) = log_b a + log_b c2.对数的除法法则:log_b (a / c) = log_b a - log_b c3.对数的幂法法则:log_b (a^p) = p * log_b a,其中p是任意实数。
这些运算规则可以用来简化对数运算或者将对数转化成乘法和除法的形式。
四、常用的对数公式:1.自然对数和常用对数之间的换底公式:log_b a = log_c a / log_c b,其中b和c是底数。
2.e为底的自然对数:自然对数是以e (自然常数)为底的对数,记作ln(x)。
3.常用对数:常用对数是以10为底的对数,记作log(x)。
4.对数性质的推广:log_b a^n = n * log_b alog_b √(a) = 1/2 * log_b a这些对数公式在计算和解决问题时都有常用的作用。
对数及运算法则1.对数源于指数,是指数函数反函数因为:y = ax所以:x = logay2. 对数的定义【定义】如果 N=ax(a>0,a≠1),即a的x次方等于N (a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作:x=logaN其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
2.1对数的表示及性质:1.以a为底N的对数记作:logaN2.以10为底的常用对数:lg N = log10N3.以无理数e(e=2.71828...)为底的自然对数记作:ln N = logeN4.零没有对数.5.在实数范围内,负数无对数。
[3]在虚数范围内,负数是有对数的。
-------------------------------------------------------------------------------------------------------------------------------------注:自然对数的底数 e :细胞分裂是不间断的,连续的。
每一分钟都有新的细胞产生,它们会像母体一样继续分裂。
单位时间内(24小时)最多能得到多少个细胞?答案是:当增长率为100%保持不变时,在单位时间内细胞种群最多只能扩大2.71828倍。
数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值。
-----------------------------------------------------------------------------------------------------------------------------------3.对数函数【3.1定义】函数叫做对数函数(logarithmic function),其中x是自变量。
对数函数的定义域是。
【3.2函数基本性质】1、过定点,即x=1时,y=0。
对数函数运算法则公式一、什么是对数函数对数函数,又称为指数函数,是一类常见的数学函数,它可以用来表达不同系数的多次方之间的关系。
它的基本形式为y=loga x (a>0, a≠1),其中 a 为底数,x 为真数,y 为对数。
二、对数函数运算法则1. 同底数相加/减法则:若 y1=loga x,y2=loga m,则有:y1+y2=loga x+loga m =loga (xm)y1-y2=loga x-loga m =loga (x/m)2. 同底数乘/除法则:若 y1=loga x,y2=loga m,则有:y1*y2=loga x*loga m =loga (x^m)y1/y2=loga x/loga m =loga (x^(1/m))3. 相乘/除法则:若 y1=loga x,y2=logb m,则有:y1*y2=loga x*logb m =loga (x^b)y1/y2=loga x/logb m =loga (x^(1/b))4. 幂函数的对数运算法则:若 y=ax,则有:loga y=x*loga a5. 指数函数的对数运算法则:若 y=a^x,则有:loga y=x*loga a6. 反函数的对数运算法则:若 y=f-1(x),则有:loga y=loga f-1(x)=loga x7. 同余式的对数运算法则:若y=a^x ≡ b^x mod c,则有:loga y=x*loga a ≡ x*loga b mod c三、总结以上就是关于“对数函数运算法则公式” 的详细介绍,它是一类常见的数学函数,可以用来表达不同系数的多次方之间的关系,它有 7 种运算法则,即同底数相加/减法、同底数乘/除法、相乘/除法、幂函数的对数运算法则、指数函数的对数运算法则、反函数的对数运算法则以及同余式的对数运算法则。