第4讲 对数概念及其运算 [讲义]
- 格式:doc
- 大小:87.00 KB
- 文档页数:2
《对数的概念》讲义一、引入在数学的世界里,我们常常会遇到各种各样的数和运算。
其中,有一种非常重要的数学概念,那就是对数。
想象一下,你正在计算一个数的乘方,比如 2 的 3 次方等于 8。
但如果反过来,已知结果是 8,要找出是 2 的几次方得到 8 呢?这时候,对数就派上用场了。
二、什么是对数对数,简单来说,就是在一个等式中,表示要得到某个数,需要对另一个固定的数(底数)进行多少次乘方运算。
如果 a 的 b 次幂等于 N(a>0,且a≠1),那么数 b 叫做以 a 为底N 的对数,记作 b =logₐN。
例如,因为 2³= 8,所以 3 就是以 2 为底 8 的对数,记作 log₂8 =3。
再比如,因为 10²= 100,所以 2 就是以 10 为底 100 的对数,记作log₁₀100 = 2。
这里,a 叫做对数的底数,N 叫做真数。
三、对数的性质1、零和负数没有对数。
因为对数是指数运算的逆运算,而任何数的任何次幂都不可能是零或负数。
2、 1 的对数是 0。
因为 a⁰= 1(a>0,且a≠1),所以logₐ1 = 0。
3、底数的对数是 1。
即logₐa = 1。
四、对数的运算1、对数的加法logₐ(MN) =logₐM +logₐN例如,log₂(4×8) = log₂4 + log₂8 = 2 + 3 = 52、对数的减法logₐ(M / N) =logₐM logₐN比如,log₃(9 / 3) = log₃9 log₃3 = 2 1 = 13、对数的乘方logₐ(Mⁿ) =n logₐM例如,log₅(25²) = 2 log₅25 = 4五、常用对数和自然对数1、常用对数以 10 为底的对数叫做常用对数,简记为 lg。
例如,lg100 = 2。
2、自然对数以无理数 e(约等于 271828)为底的对数叫做自然对数,简记为 ln。
例如,ln e = 1,ln e²= 2。