简单pid电路
- 格式:pdf
- 大小:106.66 KB
- 文档页数:3
plc自己编写pid案例在工业自动化控制领域,PID控制器是一种常见的控制方式,它可以通过对系统的反馈信号进行比例、积分和微分运算,来实现对系统的稳定控制。
在PLC编程中,我们经常需要编写PID控制的程序来实现对温度、压力、流量等参数的精确控制。
下面,我将以一个温度控制的案例来介绍如何在PLC中编写PID控制程序。
首先,我们需要明确PID控制器的工作原理。
PID控制器根据系统的误差信号,分别进行比例、积分和微分运算,然后将这三个部分的输出相加,得到最终的控制量。
比例部分决定了控制量与误差的线性关系,积分部分可以消除稳态误差,微分部分可以抑制系统的振荡。
在PLC编程中,我们可以利用PID指令来实现PID控制。
首先,我们需要定义输入输出变量,比如温度传感器的输入变量和加热元件的输出变量。
然后,我们需要设置PID控制器的参数,包括比例系数、积分时间、微分时间等。
接下来,我们可以使用PID指令来进行PID计算,并将计算结果输出到加热元件,从而实现对温度的精确控制。
下面,我将以一个温度控制的案例来具体介绍如何在PLC中编写PID控制程序。
假设我们需要控制一个恒温箱的温度,使其保持在设定的目标温度。
首先,我们需要接入一个温度传感器,将传感器的输出信号作为PID控制器的输入。
然后,我们需要接入一个加热元件,将PID控制器的输出信号作为加热元件的控制信号。
接下来,我们需要在PLC中定义温度传感器的输入变量和加热元件的输出变量,并设置PID控制器的参数,比如比例系数为0.1、积分时间为10秒、微分时间为5秒。
最后,我们可以使用PID指令来进行PID计算,并将计算结果输出到加热元件,从而实现对恒温箱温度的精确控制。
在实际编写PID控制程序时,我们需要注意以下几点。
首先,需要根据实际系统的特性来调整PID控制器的参数,比如根据系统的惯性和时间常数来确定积分时间和微分时间。
其次,需要考虑系统的稳定性和抗干扰能力,可以通过合理设置PID参数和添加滤波器来提高系统的性能。
PID控制原理详解及实例说明PID控制器是一种广泛应用于自动控制系统中的一种控制算法。
它可以根据被控对象的反馈信号,调整控制器的输出信号,从而实现对被控对象的控制。
PID控制器适用于各种自动控制系统,包括工业过程控制、机械运动控制和温度控制等。
本文将从PID控制原理和实例两个方面进行详细介绍。
首先,我们来看PID控制的原理。
PID控制器由三个部分组成,分别是比例(P)、积分(I)和微分(D)部分。
这三个部分可以根据具体的控制需求进行组合或选择。
比例部分(P)根据被控对象的反馈信号与期望值之间的偏差,输出与该偏差成正比的控制信号。
积分部分(I)通过积分被控对象的偏差信号,来消除静态误差。
微分部分(D)通过对被控对象的反馈信号进行微分,来预测被控对象未来的变化趋势。
PID控制的原理可以总结为以下几个步骤:首先,获取被控对象的反馈信号和期望值,计算偏差值;然后,根据比例系数和偏差值计算比例部分的输出;接着,将比例部分的输出与被控对象的反馈信号进行积分,并根据积分系数进行调整,计算积分部分的输出;最后,将比例部分和积分部分的输出与被控对象的反馈信号进行微分,并根据微分系数进行调整,计算微分部分的输出。
最终,将比例部分、积分部分和微分部分的输出进行加权求和,得到PID控制器的最终输出信号。
下面,我们以温度控制为例进行说明。
假设我们需要将一个物体加热到指定温度。
我们可以使用PID控制器来控制加热装置的功率,在达到指定温度时自动停止加热。
首先,我们需要将温度传感器的输出与设定温度进行比较,计算出温度的偏差。
然后,根据比例系数和偏差值计算出比例部分的输出。
如果比例部分的输出过大,可能会引发温度的过冲现象。
为了解决这个问题,我们引入积分部分,通过积分被控对象的偏差信号来消除静态误差。
如果积分部分的输出过大,可能会引发温度的振荡现象。
为了解决这个问题,我们引入微分部分,通过对温度的变化趋势进行预测,来控制加热装置的功率的变化速度。
模拟式P I D调节电路(总24页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除湖南文理学院课程设计报告课程名称:电子技术课程设计院系:电气与信息工程学院专业班级:学生姓名:指导教师:完成时间:报告成绩:模拟式PID 调节电路的研究目录摘要........................................................................................................................................................................ ABSTRACT . (I)第一章模拟式PID调节电路结构 01.1基于PID调节规律的PID调节电路结构 01.2PID调节电路结构之比较 0第二章并联式模拟PID调节电路单元分析 (2)2.1PID调节电路单元的基石 (2)2.1.1 反相比例电路 (2)2.1.2 积分电路 (3)2.1.3 基本微分电路 (4)2.2调节单元电路分析 (5)2.2.1 比例调节(P调节) (5)2.2.2 比例积分调节(PI调节) (6)2.2.3 比例微分调节(PD调节) (7)2.2.4比例积分微分调节 (8)2.3数字式调节模式选择单元分析 (9)第三章基于MULTISIM10的模拟式PID调节电路的仿真 (10)3.1积分、微分电路的仿真 (10)3.1.1 积分电路的阶跃响应及频率特性 (10)3.2.2 微分电路的阶跃响应及频率特性 (11)3.2并联式模拟PID调节单元仿真 (11)3.2.1 数字式调节模式选择单元仿真 (11)3.2.2 P调节电路的阶跃响应 (12)3.2.3 PD调节电路的阶跃响应 (12)3.2.4 PI调节电路的阶跃响应 (12)3.2.5 PID调节电路的阶跃响应 (12)总结 (15)参考文献 (16)致谢 (17)附录1 并联式模拟PID调节仿真电路 (18)附录2 并联式模拟PID调节电路 (19)附录3 并联式模拟PID调节电路元件明细表 (20)PID调节规律是自动控制系统中常见而典型的控制策略,其中模拟式PID器是最基本的实现手段与方式。
在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。
但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。
调节器是根据设定值和实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量是加热或制冷的功率。
PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。
PID调节按基本理论是属于线性调节。
但由于直接控制量的幅度总是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。
这时系统是非线性工作。
手动对PID进行整定时,总是先调节比例环节,然后一般是调节积分环节,最后调节微分环节。
温度控制中控制功率和温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。
许多文献对PID整定都给出推荐参数。
PID是依据瞬时误差(设定值和实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动.大家讲的都不错. 比例:实际温度与设定温度差得越大,输出控制参数越大。
例如:设定温控于60度,在实际温度为50和55度时,加热的功率就不一样。
而20度和40度时,一般都是全功率加热.是一样的. 积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点是随时间延长而增大.在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡. 方法是按比例.微分.积分的顺序调.一次调一个值.调到振荡范围最小为止.再调下一个量.调完后再重复精调一次. 要求不是很严格.先复习一下P、I、D的作用,P就是比例控制,是一种放大(或缩小)的作用,它的控制优点就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。
举个例子:如果你煮的牛奶迅速沸腾了(你的火开的太大了),你就会立马把火关小,关小多少就取决于经验了(这就是人脑的优越性了),这个过程就是一个比例控制。
在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID、但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新得智能调节、调节器就是根据设定值与实际检测到得输出值之间得误差来校正直接控制量得,温度控制中得直接控制量就是加热或制冷得功率。
PID调节中,用比例环节(P)来决定基本得调节响应力度,用微分环节(D)来加速对快速变动得响应,用积分环节(I)来消除残留误差、PID调节按基本理论就是属于线性调节、但由于直接控制量得幅度总就是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。
这时系统就是非线性工作。
手动对PID 进行整定时,总就是先调节比例环节,然后一般就是调节积分环节,最后调节微分环节、温度控制中控制功率与温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。
许多文献对PID整定都给出推荐参数。
PID就是依据瞬时误差(设定值与实际值得差值)随时间得变化量来对加热器得控制进行相应修正得一种方法!!!如果不修正,温度由于热惯性会有很大得波动.大家讲得都不错、比例:实际温度与设定温度差得越大,输出控制参数越大。
例如:设定温控于60度,在实际温度为50与55度时,加热得功率就不一样。
而20度与40度时,一般都就是全功率加热.就是一样得。
积分:如果长时间达不到设定值,积分器起作用,进行修正积分得特点就是随时间延长而增大.在可预见得时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小得振荡. 方法就是按比例。
微分.积分得顺序调、一次调一个值。
调到振荡范围最小为止、再调下一个量。
调完后再重复精调一次、要求不就是很严格。
先复习一下P、I、D得作用,P就就是比例控制,就是一种放大(或缩小)得作用,它得控制优点就就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用得强弱取决于比例系数Kp。
举个例子:如果您煮得牛奶迅速沸腾了(您得火开得太大了),您就会立马把火关小,关小多少就取决于经验了(这就就是人脑得优越性了),这个过程就就是一个比例控制、缺点就是对于具有自平衡性得被控对象存在静态误差,加大Kp可以减小静差,但Kp过大时,会导致控制系统得动态性能变坏,甚至出现不稳定、所谓自平衡性就是指系统阶跃响应得终值为一有限值,举个例子:您用10%得功率去加热一块铁,铁最终保持在50度左右,这就就是一个自平衡对象,那静差就是怎样出现得呢?比例控制就是通过比例系数与误差得乘积来对系统进行闭环控制得,当控制得结果越接近目标得时候,误差也就越小,同时比例系数与误差得乘积(控制作用)也在减小,当误差等于0时控制作用也为0,这就就是我们最终希望得控制效果(误差=0),但就是对于一个自平衡对象来说这一时刻就是不会持续得。
目录第一章绪论 ............................................................................................................ - 1 -第二章PID对BOOST电路的控制及仿真...................................................................... - 2 -2.1 设计要求 ............................................................................................................. - 2 -2.2 设计思路 ............................................................................................................. - 2 -2.3 设计过程 ............................................................................................................. - 3 -2.4调制过程 ................................................................................................................ - 6 -2.5仿真结果及分析 .................................................................................................... - 8 -第三章FUZZY对BOOST电路的控制及仿真 ............................................................. - 12 -3.1 设计要求 ........................................................................................................... - 12 -3.2 设计思路 ........................................................................................................... - 12 -3.3 设计过程 ........................................................................................................... - 12 -3.3 调试及仿真结果 ............................................................................................... - 14 - 附录参考文献第一章绪论本文采用的boost电路是一种开关直流升压电路,即可以使输出电压比输入电压高它。
在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。
但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。
调节器是根据设定值和实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量是加热或制冷的功率。
PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。
PID调节按基本理论是属于线性调节。
但由于直接控制量的幅度总是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。
这时系统是非线性工作。
手动对PID进行整定时,总是先调节比例环节,然后一般是调节积分环节,最后调节微分环节。
温度控制中控制功率和温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。
许多文献对PID整定都给出推荐参数。
PID是依据瞬时误差(设定值和实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动.大家讲的都不错. 比例:实际温度与设定温度差得越大,输出控制参数越大。
例如:设定温控于60度,在实际温度为50和55度时,加热的功率就不一样。
而20度和40度时,一般都是全功率加热.是一样的. 积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点是随时间延长而增大.在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡. 方法是按比例.微分.积分的顺序调.一次调一个值.调到振荡范围最小为止.再调下一个量.调完后再重复精调一次. 要求不是很严格.先复习一下P、I、D的作用,P就是比例控制,是一种放大(或缩小)的作用,它的控制优点就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。
举个例子:如果你煮的牛奶迅速沸腾了(你的火开的太大了),你就会立马把火关小,关小多少就取决于经验了(这就是人脑的优越性了),这个过程就是一个比例控制。
湖南文理学院课程设计报告课程名称:电子技术课程设计院系:电气与信息工程学院专业班级:学生姓名:指导教师:完成时间:2011.6.23报告成绩:模拟式PID 调节电路的研究目录摘要 (I)ABSTRACT ......................................................................................................................................................... I I 第一章模拟式PID调节电路结构 (1)1.1基于PID调节规律的PID调节电路结构 (1)1.2PID调节电路结构之比较 (1)第二章并联式模拟PID调节电路单元分析 (2)2.1PID调节电路单元的基石 (2)2.1.1 反相比例电路 (2)2.1.2 积分电路 (3)2.1.3 基本微分电路 (3)2.2调节单元电路分析 (5)2.2.1 比例调节(P调节) (5)2.2.2 比例积分调节(PI调节) (5)2.2.3 比例微分调节(PD调节) (6)2.2.4比例积分微分调节 (7)2.3数字式调节模式选择单元分析 (8)第三章基于MULTISIM10的模拟式PID调节电路的仿真 (9)3.1积分、微分电路的仿真 (9)3.1.1 积分电路的阶跃响应及频率特性 (9)3.2.2 微分电路的阶跃响应及频率特性 (10)3.2并联式模拟PID调节单元仿真 (10)3.2.1 数字式调节模式选择单元仿真 (10)3.2.2 P调节电路的阶跃响应 (11)3.2.3 PD调节电路的阶跃响应 (11)3.2.4 PI调节电路的阶跃响应 (11)3.2.5 PID调节电路的阶跃响应 (11)总结 (14)参考文献 (15)致谢 (16)附录1 并联式模拟PID调节仿真电路 (17)附录2 并联式模拟PID调节电路 (18)附录3 并联式模拟PID调节电路元件明细表 (19)PID调节规律是自动控制系统中常见而典型的控制策略,其中模拟式PID器是最基本的实现手段与方式。
在定值掌握问题中,假设掌握精度要求不高,一般承受双位调整法,不用PID。
但假设要求掌握精度高,而且要求波动小,响应快,那就要用PID 调整或更的智能调整。
调整器是依据设定值和实际检测到的输出值之间的误差来校正直接掌握量的,温度掌握中的直接掌握量是加热或制冷的功率。
PID 调整中,用比例环节〔P)来打算根本的调整响应力度,用微分环节〔D)来加速对快速变动的响应,用积分环节〔I)来消除残留误差。
PID 调整按根本理论是属于线性调整。
但由于直接掌握量的幅度总是受到限定,所以在实际工作过程中三个调整环节都有可能使掌握量进入受限状态。
这时系统是非线性工作。
手动对PID 进展整定时,总是先调整比例环节,然后一般是调整积分环节,最终调整微分环节。
温度掌握中掌握功率和温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。
很多文献对PID 整定都给出推举参数。
PID 是依据瞬时误差(设定值和实际值的差值)随时间的变化量来对加热器的掌握进展相应修正的一种方法假设不修正,温度由于热惯性会有很大的波动.大家讲的都不错. 比例:实际温度与设定温度差得越大,输出掌握参数越大。
例如:设定温控于60 度,在实际温度为50 和55 度时,加热的功率就不一样。
而20 度和40 度时,一般都是全功率加热.是一样的. 积分:假设长时间达不到设定值,积分器起作用,进展修正积分的特点是随时间延长而增大.在可预见的时间里,温度按趋势将到达设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡. 方法是按比例.微分.积分的挨次调.一次调一个值.调到振荡范围最小为止.再调下一个量.调完后再重复精调一次. 要求不是很严格.先复习一下P、I、D 的作用,P 就是比例掌握,是一种放大〔或缩小〕的作用,它的掌握优点就是:误差一旦产生,掌握器马上就有掌握作用,使被控量朝着减小误差方向变化,掌握作用的强弱取决于比例系数Kp。
举个例子:假设你煮的牛奶快速沸腾了〔你的火开的太大了〕,你就会立马把火关小,关小多少就取决于阅历了〔这就是人脑的优越性了〕,这个过程就是一个比例掌握。