九年级旋转专题复习
- 格式:doc
- 大小:1.50 MB
- 文档页数:6
旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
《图形的旋转》复习知识回顾1、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称基础练习一、选择题1、(泸州)如图1,P是正△ABC内的一点,若将△PBC绕点B旋转到△P’BA,则∠PBP′的度数是( )A.45° B.60°C.90° D.120°2、(陕西省) 如图2,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的,若点A′在AB上,则旋转角α的大小可以是()A.30°B.45°C.60°D.90°3、(桂林市、百色市)如图3所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O 按顺时针方向旋转90°,得△A′B′O,则点A′的坐标为().A.(3,1) B.(3,2) C.(2,3) D.(1,3)4、、(甘肃白银)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形5、(台州市)单词NAME的四个字母中,是中心对称图形的是()A.N B.A C.M D.E6、(2009年广西钦州)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形7、(锦州)下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A B C D8、 (四川省内江市)已知如图4所示的四张牌,若将其中一张牌旋转180O后得到图5,则旋转的牌是()9、(成都)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到0A′,则点A′在平面直角坐标系中的位置是在()(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限10、(崇左)已知点A的坐标为()a b,,O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为().A.()a b-, B.()a b-, C.()b a-, D.()b a-,11、(河南)如图6所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).图6xy1243-11-22-33123AB图3图2图4图5 A.B.C.D.月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为( ) A.(2,2) B.(2,4) C.(4,2) D.(1,2)12、(新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )13、(淄博市)如图7,点A ,B ,C 的坐标分别为(01)(02)(30)-,,,,,.从下面四个点M(3,3),N(3,-3),P(-3,0), Q(-3,1)中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .M B .N C .P D .Q二、填空题1、(肇庆)在平面直角坐标系中,点P(2,-3)关于原点对称点P ′的坐标是 .2、(湖北十堰市)如图8,在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是 .3、(梅州市)如图10所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过________次旋转而得到, 每一次旋转_______度.4、(衡阳市)点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _________ .5、(枣庄市)如图11,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AO B△绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 .三、解答题1、(娄底)如图13所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系.(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是 . (2)画出四边形OABC 绕点O 顺时针方向旋转180°后得到的四边形OA 2B 2C 2.2、(潍坊)在如图14所示的方格纸中,每个小方格都是边长为1个单位的正方形,A B C △的三个顶点都在格点上(每个小方格的顶点叫格点).画出A B C △绕点O 逆时针旋转90°后的A B C '''△. 4、(长春)图①、图②均为76⨯的正方形网格,点A B C 、、在格点上. (1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形, 使其为轴对称图形.(画一个即可)(3分)(2)在图②中确定格点E ,并画出以A B C E 、、、为顶点的四边形,使其为中心对称图形. (画一个即可)(3分)3、(株洲市)如图15,在Rt OAB ∆中,90O A B ∠=︒,6O A A B ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11O A B ∆. (1)线段1O A 的长是 ,1A O B ∠的度数是 ; (2)连结1A A ,求证:四边形11O A A B 是平行四边形; (3)求四边形11O A A B 的面积.甲乙甲乙A B C D 甲乙甲乙图14图13图10图11图9 图8 图7图①图②图15。
第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
图形的平移旋转专题复习一:基本概念1、下列图形中,绕某个点旋转180°能与自身重合的有 ( )个 ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形2、下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A 、4 B 、3 C 、2 D 、12.1下列图形中,既是轴对称图形,又是中心对称图形的是( )AB CD3、下列命题中,正确命题是()A .两条对角线相等的四边形是平行四边形; B.两条对角线相等且互相垂直的四边形是矩形; C .两条对角线互相垂直平分的四边形是菱形; D .两条对角线平分且相等的四边形是正方形。
图形的平移旋转专题复习二:变化后求坐标1、如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是 2、平面直角坐标系中,O 为坐标原点,点A 的坐标为(3,1),将OA 绕原点按逆时针方向旋转30°得 OB ,则点B 的坐标为3、如图,A 1),B (1.将△AOB 绕点O 旋转l 500得到△A ′OB ′,,则此时点A 的对应点A ′的坐标为图形的平移旋转专题复习三:解答证明1、如图3,在Rt ACB ∆中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将ACB ∆绕点A 顺时针旋转得到Rt ''AC B ∆,且'C 落在CO 的延长线上,联结'BB 交CO 的延长线于点F ,则BF = . (写过程)2、在Rt △ABC 中,∠C =90º ,BC =4 ,AC =3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ', 点C 落在点C '处,那么'tan AAC 的值是 .3、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别为EB ,CD 的中点,易证:CD =BE ,△AMN 是等边三角形:(1)当把△ADE 绕点A 旋转到图2的位置时,CD =BE 吗?若相等请证明,若不等于请说明理由;(2)当把△ADE 绕点A 旋转到图3的位置时,△AMN 还是等边三角形吗?若是请证明,若不是,请说明理由图3C A B O F 'C 'B5、如图1,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(BCCG>)取线段AE的中点P.探究:线段PD、PF的关系,并加以证明.⑵如图2,将正方形CGEF绕点C旋转任意角度后,其他条件不变. 探究:线段PD、PF的关系,并加以证明.6、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=900,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论①(BE+CF)=2BC,②AEF ABC1S S4∆∆≤,③AEDFS=四形边AD·EF,④AD≥EF,⑤AD与EF可能互相平分,其中正确结论是【】(写过程)7、如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数ky(x0)x=>的图象交EF于点B,则点B的坐标为▲ .(写过程)8、如图,在Rt△ABC中,∠C=900,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积为(写过程)9、如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF 时,∠BAE的大小可以是▲ .(写过程)10、如图,在平面直角坐标系中,点A在x上,△ABO是直角三角形,∠ABO=900,点B的坐标为(-1,2),将△ABO绕原点O顺时针旋转900,得到△A l B l O,则过A1, B两点的直线解析式为▲(写过程)。
中考数学复习《旋转知识点梳理+过关练习》)专题复习讲义一.知识点回顾1.定义:在平面内,将一个图形绕一个定点按某个方向转动一个角度,图形的这种变化称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.2.性质:(1)旋转不改变图形的形状与大小,旋转前、后的图形全等.(2)一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离⑧,任意一组对应点与旋转中心的连线所成的角都等于⑨;对应线段相等,对应角相等.二.规律总结:(1)确定旋转中心的方法:旋转中心是对应点所连线段的垂直平分线的交点.(2)旋转作图的方法步骤:①连点:将原图中的一个关键点与旋转中心连接;②转角:将①中所连接的线段绕旋转中心按指定的方向旋转一个角度,得到这个关键点的对应点;③连接:重复①②,将原图中所有关键点的对应点找出来,再按原图中的顺序,依次连接成图.三.过关练习1.下列图形中,既是轴对称图形,又是中心对称图形的是()2.如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1)B.(1,-2)C.(-2,1)D.(-2,-1)3.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°4.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.2√5C.6D.2√65.在平面直角坐标系中,点A的坐标为(1,√ 3 ),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(√3,1)B.(√3,-1)C.(2,1)D.(0,2)6.如图,在平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(-1,2+√3)B.(-√3,3)C.(-√3,2+√3)D.(-3,√3)7. 如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A. B. C.1﹣ D.1﹣8.如图,P为等边三角形ABC内的一点,且点P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为 ()A.9+254√3 B.9+252√3 C.18+25√3 D.18+252√39.如图,直线a,b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点 D.若OB=3,AB=2,则阴影部分的面积之和为.10.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是.11.如图,Rt△OCB的斜边在y轴上,OC=√3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC'B',则B点的对应点B'的坐标是.x+4与x轴、y轴分别交于A,B两点,△AOB绕点A顺时针旋12. 如图,直线y=-43转90°后得到△AO′B′,则点B的对应点B′的坐标为 .13.如图,将△ABC绕点C逆时针旋转得到△A'B'C,其中点A'与A是对应点,点B'与B是对应点,点B'落在边AC上,连接A'B,若∠ACB=45°,AC=3,BC=2,则A'B 的长为.14. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为________.15. 如图,王虎使一长为4 cm,宽为3 cm的长方形木板,在桌面上做无滑动地翻滚(顺时针方向),木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为_______.16. 如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17. 如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC 绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.18.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的延长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6√ 2 ,AD=3,求△PDE的面积.19. 如图,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论.(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由.(3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即可),(1)中的结论还成立吗?(作出判断不必说明理由)(4)根据以上证明、说理、画图,归纳你的发现.20. 如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是________;②线段AC,CD,CE之间的数量关系是________.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.。
一、旋转真题与模拟题分类汇编(难题易错题)1.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=1×6=2,∴AE=AD+DE=2+6=8.12点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.2.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.3.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.(1)求证:△PCQ是等边三角形;(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求出△PBQ周长的最小值;若不存在,请说明理由;(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?若存在,求出此时t的值;若不存在,请说明理由.(1)(2)(3)【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.【解析】分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;(3)根据点的移动的距离,分类讨论求解即可.详解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE =∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,∴∠PCE +∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形.(2)存在∵CE平分∠BCD,∴∠BCE=60 ,∵在平行四边形ABCD 中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BCsin60°=∴△PBQ周长最小为4+(3)①当点B与点P重合时,P,B,Q不能构成三角形②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∴∠CPB=30°∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2÷=s所以t=212③当6<t<10时,由∠PBQ=120°>90°,所以不存在④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,所以AP=14cm所以t=14s综上所述:t为2s或者14s时,符合题意。
1.旋转—线段1.在ABC 中,AB AC =,060BAC αα∠=︒︒(<<),将线段BC 绕点B 逆时针旋转60︒得到线段BD . (1)如图1,直接写出ABD ∠的大小(用含α的式子表示);(2)如图2,150BCE ∠=︒,60ABE ∠=︒,判断ABE 的形状并加以证明;(3)在(2)的条件下,连接DE ,若45DEC∠=︒,求α的值.解析:(1) 60ABD ABC ∠=∠-︒ 又18019022ABC αα︒-∠==︒- 1190603022ABD αα∴∠=︒--︒=︒- (2)ABE 是等边三角形证明:连接AD 、CD∵60DBC∠=︒,DB BC = ∴BCD 是等边三角形,60BDC ∠=︒,BD DC =又∵AB AC =,AD AD =,∴ABD ACD ≌∴ADB ADC ∠=∠,∴150ADB ∠=︒∵60ABE DBC ∠=∠=︒,∴ABD EBC ∠=∠又∵BD BC =,150ADB ECB ∠=∠=︒∴ABD EBC ≌,∴AB EB = ∴ABE 是等边三角形(3)解:∵BDC 是等边三角形,∴60BCD ∠=︒ ∴90DCE BCE BCD ∠=∠-∠=︒又∵45DEC ∠=︒,∴EC DC BC ==, ∴1801801501522BCE EBC CEB ︒-∠︒-︒∠=∠===︒, ∵ 302EBC ABD a ∠=∠=︒-, ∴30α=︒.2.在ABC 中,BA BC =,BAC α∠=,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若60α=︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.解析:(1)补全图形,见图1;30CDB ∠=︒(2)猜想:90CDB α∠=︒-证明:如图2 ,连结AD ,PC∵BA BC =,M 是AC 的中点,∴BM AC ⊥∵点D ,P 在直线BM 上,∴PA PC =,DA DC = 又∵DP 为公共边,∴ADP CDP ≌∴DAP DCP ∠=∠,ADP CDP ∠=∠又∵PA PQ =,∴PQ PC =∴DCP PQC ∠=∠,DAP PQC ∠=∠∵180PQC DQP ∠+∠=︒,∴180DAP DQP ∠+∠=︒∴在四边形APQD 中,180ADQ APQ ∠+∠=︒∴2APQ α∠=,∴1802ADQ α∠=︒- ∴9012CDB ADQ α∠=∠=︒-(3)4560α︒︒<<提示:由(2)知90CDB α∠=︒-,且PQ QD =QPD CDB ∴∠=∠∴21802PQC QPD CDB CDB PAD PCQ α∠=∠+∠=∠=︒-=∠=∠∵点P 不与点B ,M 重合,∴MAD PAD BAD ∠∠∠<<∴18022ααα︒-<<,∴4560α︒︒<<3.如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B ,C 重合). 第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ;第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ;依此操作下去…(1)图2中的EFD 是经过两次操作后得到的,其形状为____________,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH .①请判断四边形EFGH 的形状为____________,此时AE 与BF 的数量关系是_________;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及y 的取值范围.(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.解析:(1)由旋转可得:EF FD DE == DEF ∴为等边三角形∵四边形ABCD 是正方形,∴AD CD BCAB ===,90A B C ∠=∠=∠=︒ ∵ED FD =,∴ADE CDF ≌ ∴AE CF =,BE BF =∴三角形BEF 是等腰直角三角形设BE 的长为x ,则DE EF==,4AE x =- 在Rt ADE 中,222DE AD AE =+∴ 2224)4()x =+-解得14x =-+,24x =--(舍去)∴EF ==-+(2)①四边形EFGH 的形状为正方形,此时AE BF = .理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF FG GH HE === ,∴ 四边形EFGH 的形状为正方形.12902390∠+∠=︒∠+∠=︒, ,13∴∠=∠ .34902390∠+∠=︒∠+∠=︒, ,24∴∠=∠ .在AEH 与BFE 中,1324EH EF ∠=∠⎧⎪=⎨⎪∠=∠⎩AEH BFE ASA ∴≌()AE BF ∴= .②利用①中结论,易证AEH BFE CGF DHG 、、、均为全等三角形,BF CG DH AE x ∴==== ,4AH BE CF DG x ====- .在Rt BEF 中,222EF BE BF =+∴2224281(60)4y x x x x x =-+=-+(<<) ∵222816(228)y x x x =-+=-+∴当2x =时,y 取得最小值8;当0x =时,16y =∴y 的取值范围是816y ≤<(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4-.如答图2所示,粗线部分是由线段EF 经过7次操作所形成的正八边形.设边长EF FG x == ,则BF CG x == ,422BC BF FG CG x x x =++=++=,解得:4x =-.4.已知,四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P 、G 不与正方形顶点重合,且在CD 的同侧),PD PG =,DFPG ⊥于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90︒得到线段PE ,连结EF .(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时.①求证:2DG PC =;②求证:四边形PEFD 是菱形;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.解析:(1)①作PM AD ⊥于点M∵PD PG =,∴MG MD =又∵MD PC =,∴2DG PC =②∵PG FD ⊥于H ,∴90DGHADF ∠+∠=︒ 又∵90ADF AFD ∠+∠=︒∴DGP AFD ∠=∠∵四边形ABCD 是正方形,PMAD ⊥于点M ∴90A PMD ∠=∠=︒,PMAD = ∴PMG DAF ≌,∴DF PG =∵PG PE =,∴DFPE = ∵DF PG ⊥,PE PG ⊥,∴DF PE∴四边形PEFD 是平行四边形又∵PE PD =,∴PEFD 是菱形(2)四边形PEFD 是菱形证明:∵四边形ABCD 是正方形,DHPG ⊥于H ∴90ADC DHG ∠=∠=︒∴90CDG DHG ∠=∠=︒∴90CDP PDG ∠+∠=︒,90GDHG ∠+∠=︒ ∵PD PG =,∴PDG G ∠=∠∴CDP GDH ∠=∠∴CDP ADF ∠=∠又∵AD DC =,90FAD PCD ∠=∠=︒∴PCD FAD ≌,∴DF PD =∵PD PG PE ==,∴DF PE =又∵FD PG ⊥,PE PG ⊥,∴DF PE ∴四边形PEFD 是平行四边形又∵DFPD =,∴平行四边形PEFD 是菱形5.如图1,在正方形ABCD 中,点E 、F 分别在边AB 、BC 上,且DE 平分ADF ∠.(1)求证:AE CF DF +=;(本小问不予评分,自行查看解析) (2)当FE 平分BFD ∠时(如图2),将线段DF 绕点F 逆时针旋转45︒,旋转后的线段分别交AD 、ED 于点P 、Q ,若正方形ABCD 的边长为4,求PEQ 的面积.解析:(1)证明:将ADE 绕点D 顺时针旋转90︒到CDG则AE CG =,ADE CDG ∠=∠,AED G ∠=∠∵AB DC ,∴AED EDC ∠=∠ ∴G EDC ∠=∠∵ADE EDF ∠=∠,∴CDG EDF ∠=∠∴FDG FDC CDG FDC EDFEDC ∠=∠+∠=∠+∠=∠ ∴G FDG ∠=∠,∴DFFG = ∵CFCG FG +=,∴AE CF DF +=(2)过E 作EG DF ⊥于G 则ADE GDE ≌,BEF GEF ≌∴2AE GE BE ===,∴DE =∵AD BC ,∴180ADF BFD ∠+∠=︒ ∵DE 平分ADF ∠,FE 平分BFD ∠∴180ADFBFD ∠+∠=︒ ∴90EDFDFE ∠+∠=︒,∴90DEF ∠=︒∴EDF ADE ∽,∴EF =5DF =∴3CF=,1BF = 过Q 作QH DF ⊥于H ,设QH x =45,DFP FH QH x ∠=︒∴== 又21,tan tan 42AE ADE EDH ADE EDH AD ∠=∠∴∠====∠ 2DH x ∴=∴25x x +=,∴ 53x = ,∴ 553DQ =, 523QF =∴3EQ DE DQ =-=,∴15EQ DQ = 过E 作EIBF 交PF 于I ,则EI 是梯形ABFP 的中位线 设EI t =,11,55EQ DP EQ DQ EI DQ =∴== 5DP t ∴=,45AP t =-∴ 4511()2t t =-+, 57t = ,∴ 257DP =过P 作PK DE ⊥于K ,则 25sin7PK PD ADE =⋅∠==∴ 112522342PEQ EQ PK S ⋅=⨯==6.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,点D 是AB 的中点,DE BC ⊥,垂足为点E ,连接CD .(1)如图1,DE 与BC 的数量关系是___________;(2)如图2,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转60︒,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE 、BF 、BP 三者之间的数量关系_____________.解析:(1)9030ACB A ∠=︒∠=︒, ,60B ∴∠=︒ ,点D 是AB 的中点,DB DC ∴= ,DCB ∴ 为等边三角形,DE BC ⊥ ,2DE BC ∴=;故答案为2DEBC =(或BC =)(2)BF BP += (或()2BF BP DE +=)证明:∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒∴60ABC ∠=︒∵D 是AB 的中点,∴12CD AB BD == ∴DCB 是等边三角形,∴60CDB PDF ∠=∠=︒∴CDP BDP BDFBDP ∠+∠=∠+∠ 即CDP BDF ∠=∠又∵DP DF =,∴CDP BDF ≌ ∴CP BF =∵BC BP CP =+,∴BC BP BF =+,∵sin60DE BC CD ===︒∴BP BF += (3)如图,与(2)一样可证明DCP DBF ≌ ,CP BF ∴= ,而CP BC BP =+ ,BF BP BC ∴-= ,BF BP ∴-=(或)2BF BP DE -=)7.在ABC 中,4AC BC ==,90ACB ∠=︒,D 是AC 的中点,E 为射线DC 上任意一点,将线段DE 绕点D 逆时针旋转90︒得到线段DF ,连接FC ,过点F 作FG FC ⊥,交直线AB 于点G . (1)如图1,当点E 在线段DC 上时,判断FG 与FC 的数量关系并加以证明;(2)如图2,当点E 在线段DC 的延长线上时,其它条件不变,你在(1)中得到的结论是否成立,请说明理由;(3)当点E 从DC 的中点M 移动到C 点时,直接写出线段FG 的中点N 所经过的路径长.解析:(1)FG FC =证明:连接EF ,延长DF 交AB 于H∵90EDF ACB ∠=∠=︒,∴DH BC∵D 是AC 的中点,∴H 为AB 的中点,12DC AC = ∴DH 是ABC 的中位线,∴12DH BC = ∵AC BC =,∴DC DH =∵DE DF =,∴CE FH =∵90EDF∠=︒,FG FC ⊥ ∴90ECFDFC ∠+∠=︒,90HFG DFC ∠+∠=︒ ∴ECFHFG ∠=∠ ∵DEF 和ADH 都是等腰直角三角形∴45DEFAHD ∠=∠=︒,∴135CEF FHG ∠=∠=︒ ∴CEF FHG ≌,∴FG FC =(2)成立证明:连接EF ,设DF 交AB 于H同理可证CE FH =,45CEF FHG ∠=∠=︒90ECF FCB ∠=︒+∠,90HFG DFC ∠=︒+∠∵DF BC ,∴DFC FCB ∠=∠∴ECF HFG ∠=∠,∴CEF FHG ≌∴FG FC =(3)线段FG 的中点N 所经过的路径长为 2提示:延长DF 交AB 于H ,取DH 中点P ,连接PC 、PN 、CN则2CD DP =,2CFFN = ∴CDP CFN ∽,∴DCP FCN ∠=∠∴DCF PCN ∠=∠∵2CD DP =,2CFFN =∴2CP CD =,2CN = ∴CP CD CN CF= ,∴CDF CPN ∽ ∴90CPNCDF ∠=∠=︒ ∴90FPN DPC ∠=︒-∠,是定值∴线段FG 的中点N 所经过的路径是一条线段当点E 与点M 重合时,F 是DH 的中点连接MF 、CG ,则MF 是DCH 的中位线由(1)知,CMF FHG ≌ ∴1122HG MF CH BH === 当点E 与点C 重合时,点G 与点B 重合,此时N 为BH 的中点∴点N 所经过的路径长即为图中NG 的长∵4AC BC ==,∴2CD =,1DF =,FG FC ==∴2NG=8.已知90ACD ∠=︒,AC DC =,MN 是过点A 的直线,DB MN ⊥于点B .(1)如图1,求:BD AB +=;(2)当MN 绕点A 旋转到如图(2)和图(3)两个位置时,猜想BD 、AB 、CB 满足的关系式,并给予证明;(3)在MN 在绕点A 旋转过程中,当30BCD ∠=︒,BD =时,则CD =_________,CB =_________.解析:(1)证明:如图1,过点C 作CE CB ⊥,交MN 于点E∵90ACB ACE ∠+∠=︒,90ACB BCD ∠+∠=︒∴ACE BCD ∠=∠∵四边形ACDB 内角和为360︒∴180D CAB ∠+∠=︒∵180EAC CAB ∠+∠=︒,∴EACD ∠=∠ 又AC DC =,∴ACE DCB ≌ ∴AE DB =,CECB = ∴ECB 为等腰直角三角形∴BE =又BE AE AB =+,∴BE BD AB =+∴BD AB +=(2)图2中,AB BD -=;图3中,BD AB -=证明:如图2,过点C 作CECB ⊥,交MN 于点E ∵90ACB ACE ∠-∠=︒,90ACB BCD ∠-∠=︒∴ACE BCD ∠=∠∵90ACD ABD ∠=∠=︒,∴EACD ∠=∠ 又AC DC =,∴ACE DCB ≌ ∴AE DB =,CECB = ∴ECB 为等腰直角三角形 ∴2BE CB =又BE AB AE =-,∴BE AB BD =-∴AB BD -=如图3,过点C 作CECB ⊥,交MN 于点E ∵90ACEACB ∠=︒+∠,90BCD ACB ∠=︒+∠ ∴ACE BCD ∠=∠∵90ABD ACD ∠=∠=︒,∴EACD ∠=∠ 又AC DC =,∴ACE DCB ≌ ∴AE DB =,CECB = ∴ECB 为等腰直角三角形∴BE =又BE AE AB =-,∴BE BD AB =-∴BD AB -=(3)2CD =,1CB =-1+提示:过点C 作CE CB ⊥,交MN 于点E ,连接AD , ACD 和ECB 都是等腰直角三角形∴45CAD CEB ∠=∠=︒∵ACE DCB ≌,∴30ACE BCD ∠=∠=︒当C 、D 两点在直线MN 异侧时则15EAC ∠=︒,∴30BAD ∠=︒∵BD =AE BD ==,AD =AB =∴2CD =∵AB BD -=-=∴1CB =-当C 、D 两点在直线MN 同侧时45ABC ADC ∠=∠=︒,∴30BAD BCD ∠=∠=︒∵BD =AE BD ==,AD =AB =∴2CD =∵BD AB +==∴1CB =+9.在ABCD 中,过点C 作CE CD ⊥交AD 于点E ,将线段EC 绕点E 逆时针旋转90︒得到线段EF (如图1).(1)在图1中画图探究:①当1P 为射线CD 上任意一点(1P 不与C 点重合)时,连结1EP ,将线段1EP 绕点E 逆时针旋转90︒得到线段1EG ,判断直线1FG 与直线CD 的位置关系并加以证明;②当2P 为线段DC 的延长线上任意一点时,连结2EP ,将线段2EP 绕点E 逆时针旋转90︒得到线段2EG ,判断直线12G G 与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若6AD =,43tanB =,1AE =,在①的条件下,设1CP x =,11PFG S y =,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.解析:(1)①直线1FG 与直线CD 的位置关系为互相垂直.证明:如图,设直线1FG 与直线CD 的交点为H .∵线段EC 、1EP 分别绕点E 逆时针旋转90︒依次得到线段EF 、1EG .∴1190PEG CEF ∠=∠=︒,11EG EP =,EF EC =. ∵1190G EFPEF ∠=︒-∠,1190PEC PEF ∠=︒-∠. ∴11G EFPEC ∠=∠,∴11G EF PEC ≌. ∴1190G FEPCE ∠=∠=︒,∴90EFH ∠=︒,∴90FHC ∠=︒. ∴1FG CD ⊥.②按题目要求所画图形见图1,直线12G G 与直线CD 的位置关系为互相垂直.(2)∵四边形ABCD 是平行四边形,∴B ADC ∠=∠.∵6AD =,1AE =,43tanB =.∴5DE =,43tan EDC tanB ∠==. 可得4CE= 由(1)可得四边形FECH 为正方形∴4CHCE ==①如图2,当1P 点在线段CH 的延长线上时11G EF PEC ≌(已证) 11FG CP x ∴==四边形ABCD 为平行四边形B D ∴∠=∠1,6,AE AD ==5ED ∴= 又4tan 3B ∠= 4EC ∴=四边形EFHC 中90,90,90CEF EOD FDH ∠=︒∠=︒∠=︒且EF EC =∴四边形EFHC 为正方形4CH EC ∴==114PH CP CH x ∴=-=-. ∴1112111()222142P FG FG P S x x H x x ⋅==-=- 即22412y x x x =-(>) ②如图3,当1P 点在线段CH 上(不与C 、H 两点重合)时∵11FG CP x ==,14PH x =-. ∴11211(11·4222)12P FG S FG PH x x x x ==-=-+ 即224120y x x x =-+(<<) ③当1P 点与H 点重合时,即4x =时,11PFG 不存在.综上所述,y 与x 之间的函数关系式及自变量x 的取值范围是212(4)2x x yx ->= 或224120y x x x =-+(<<).10.在ABC 中,AB AC =,D 为BC 中点,CE 为AB 边的高,点M 在AB 边上,点N 在线段CE 上,且DM DN ⊥.(1)如图l ,当45B ∠=︒时,线段AM 与CN 的数量关系为___________;(2)如图2,当30B ∠=︒时,求证:132ME AB -=; (3)如图3,在(2)的条件下,将射线DM 绕点D 顺时针旋转30︒,交AC 边于点F ,连接MF 、MN ,若:BM CN =MN =MF 的长.解析:(1)AM CN =提示:连接AD ,∵AB AC = ,45B ∠=︒ ,∴90BAC ∠=︒ ,45C ∠=︒ ,∵D 为BC 边上的中点,∴AD BD DC == ,且AD BC ⊥ ,∴45DAB B C ∠=∠=︒=∠∵MD DN ⊥ ,∴90MDA AND ∠+∠=︒ ,且90AND NDC∠+∠=︒ , ∴MDA NDC ∠=∠ ,在ADM 与CDN 中,DAB C AD CDMDA NDC ∠=∠=∠=∠⎧⎪⎨⎪⎩CB∴ADM CDN ≌(2)连接AD∵AB AC = ,D 为BC 中点,30B ∠=︒∴AD BC ⊥ ,30C B ∠=∠=︒ ,60BAD CAD ∠=∠=︒∵CE 为AB 边的高,∴60DCN∠=︒ ∵DMDN ⊥ ,∴ADM CDN ∠=∠ ∴ADM CDN ∽∴tan303AM AD CN CD ==︒= ,∴3AM = ∵1122ME AM AE AC AB -===∴132ME AB -=(3)由:BM CN =CN =,则5BM k =由(2)知3AM=,∴AM k =∴6AB k AC == ,132AE AC k == ,4ME k = ,CE =,NE = 在Rt MEN 中,222ME NE MN +=∴2224)()k +=,解得2k = (舍去负值)∴12AB = ,10BM = ,6AE = ,2AM = ,CE =BC =,BD CD ==连接AD,6AD ===,由(2)知ADM CDN ∽∴3DM AD AD DN CD BD===,∴30MND B MDF ∠=︒=∠=∠∴12DM MN ==∵30MDF B ∠=∠=︒ ,∴150BMD BDM ∠+∠=︒ ,150CDF BDM ∠+∠=︒∴BMD CDF ∠=∠ ,∴BMD CDF ∽ ,∴BM MD CD DF= ∵BD CD = ,∴BM MD BD DF= ∴BMD DMF ∽ ,∴MF MD MD BM =10= ,∴14 2.85MF ==。
九年级旋转知识点一、旋转的定义。
1. 在平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这个定点叫做旋转中心,转动的角叫做旋转角。
- 例如,将三角形ABC绕点O顺时针旋转30°,点O就是旋转中心,30°就是旋转角。
2. 旋转三要素:旋转中心、旋转方向(顺时针或逆时针)、旋转角度。
二、旋转的性质。
1. 对应点到旋转中心的距离相等。
- 在图形旋转过程中,若点A旋转后得到点A',那么OA = OA',这里O为旋转中心。
2. 对应点与旋转中心所连线段的夹角等于旋转角。
- 假设图形绕点O旋转,点B的对应点是B',那么∠BOB'就是旋转角。
3. 旋转前后的图形全等。
- 即旋转不改变图形的形状和大小。
如果四边形ABCD绕点P旋转得到四边形A'B'C'D',那么四边形ABCD≌四边形A'B'C'D'。
三、旋转作图。
1. 确定旋转中心、旋转方向和旋转角度。
2. 找出原图形的关键点(如多边形的顶点)。
3. 连接关键点与旋转中心,按照旋转方向和旋转角度旋转这些线段。
- 例如,要将三角形ABC绕点O逆时针旋转60°,先连接OA、OB、OC,然后将OA绕点O逆时针旋转60°得到OA',同理得到OB'和OC',最后连接A'B'、B'C'、C'A'得到旋转后的三角形A'B'C'。
4. 顺次连接旋转后的关键点,得到旋转后的图形。
四、中心对称。
1. 定义。
- 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
- 例如,平行四边形ABCD中,点O是对角线AC与BD的交点,那么平行四边形ABCD绕点O旋转180°后能与自身重合,平行四边形ABCD就是中心对称图形,点O是对称中心。
人教版九年级上册数学期末专题复习---《旋转的性质》一、选择题1.如图,在正方形网格中,将△ABC顺时针旋转后得到△A'B′C′,则下列4个点中能作为旋转中心的是( )A.点PB.点QC.点RD.点S2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°3.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是( )A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)4.如图所示,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).若将△ABC绕着点C顺时针旋转90º,得到△A'B'C',点A,B的对应点A',B'的坐标分别为(a,b),(c,d),则(ab-cd)2023的值为()A.0B.1C.-1D.无法计算5.在下列几何图形中:(1)两条互相平分的线段;(2)两条互相垂直的直线;(3)两个有公共顶点的角;(4)两个有一条公共边的正方形.其中是中心对称图形的有( )A.1个B.2个C.3个D.4个6.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A.1个 B.2个 C.3个 D.4个7.将一副三角板按如图①的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,得到如图②,测得CG=6,则AC长是()A.6+2B.9C.10D.6+68.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB/C/,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.πB.πC.2πD.4π9.如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60º,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60º;③∠ADE=∠BDC.其中正确结论的序号是()A.①②B.①③C.②③D.只有①10.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE.给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是( )A.1B.2C.3D.4二、填空题11.如图,在△BDE中,∠BDE=90°,2D的坐标是(5,0),∠BDO=15°,将△BDE旋转到△ABC 的位置,点C在BD 上,则旋转中心的坐标为_______.12.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确的结论是 .13.在Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD,把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_______.14.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是 .(把你认为正确结论的序号都填上).15.P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP逆时针旋转,使得AB与AC 重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC= .16.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题17.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得到△A′BO′,点A,O旋转后的对应点分别为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标.18.如图所示,正方形ABCD的边BC上有一点E,∠DAE的平分线交CD于点F.求证:AE=DF+BE.19.如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成,在Rt△ABC中,已知直角边BC=5,AC=7,将四个直角三角形中边长为5的直角边分别向外延长一倍,得到如图②所示的“数学风车”.⑴这个风车是中心对称图形吗?若是,指出这个风车至少需要绕着它的中心旋转多少度才能和它本身重合;⑵求这个风车的外围周长(即求图②中的实线的长).20.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.答案1. A.2. C;3. A;4. C.5. C6. B.7. A;8. C.9.A10.C11. (3,23)12.①②③13. 80或120.14.:①③④.15. 3:4:2.16.(36,0).17.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.∴AB=5.∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°.∴△ABA′为等腰直角三角形,(2)作O′H⊥y轴于点H.∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°.∴∠HBO′=60°.在Rt△BHO′中,∵∠BO′H=90°-∠HBO′=30°,18.解:如图,将△ADF绕点A顺时针旋转90°得△ABF′,则∠3=∠1,∠AFD=∠F′,∠ABF′=∠D,BF′=DF.∵四边形ABCD为正方形,∴AB∥CD,∠ABC=∠D=90°,∴∠AFD=∠FAB,∠ABF′=∠D=90°,∴∠ABF′+∠ABC=180°,∴F′,B,C三点共线.∵∠FAB=∠2+∠BAE,∴∠AFD=∠2+∠BAE.又∵∠DAE的平分线交CD于点F,∴∠1=∠2,∴∠3=∠2,∴∠AFD=∠3+∠BAE,∴F′=∠3+∠BAE.∵∠F′AE=∠3+∠BAE,∴∠F′AE=∠F′,∴AE=EF′=BF′+BE=DF+BE.19.解:⑴这个风车是中心对称图形,这个风车至少需要绕着它的中心旋转90度才能和它本身重合;⑵风车的其中一个直角三角形的较短直角边长为5,较长直角边长为7+5=12,则斜边长为13,所以这个风车的外围周长为4×(5+13)=4×18=72.20.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠FAE,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2.。
九年级旋转专题复习
1.下列图案既是中心对称,又是轴对称的是( )
A B C D
2.已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90得1OA ,则点1A 的坐标为( ) A .()a b -,
B .()a b -,
C .()b a -,
D .()b a -,
3.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 .
4.如图,把面积为1的正方形纸片ABCD 放在平面直角坐标系中, 点B 、C 在x 轴上,A 、D 关于y 轴对称,将C 点折叠到y 轴上的C′,折痕BP ,则经过P 点反比例函数的解析式为 .
5.(1)点(2,4)绕点(0,2)顺时针旋转90°得到的点的坐标是 . (2)直线y=2x 绕点(0,2)顺时针旋转90°得到的直线解析式是 . (3) 求直线y=2x+2绕点(0,2)顺时针旋转90°得到的直线的解析式是 . 6.如图,已知ABC △: (1)AC 的长等于_______.
(2)若将ABC △向右平移2个单位得到A B C '''△, 则A 点的对应点A '的坐标是_____;
(3)若将ABC △绕点C 按顺时针方向旋转90后得到
∆A 1B 1C 1,则A 点对应点A 1的坐标是_________.
7. 正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点, AQ 交BD 于M ,过M 作MN ⊥AM 交BC 于N ,连AN 、QN. 下列结论:①MA =MN ;②∠AQD =∠AQN ; ③ABNQD AQN S S 五边形2
1
=
∆; ④AQ.MN=QN.CD 。
其中正确的结论有( ) (A )①②③④. (B )只有①③④. (C )只有②③④. (D )只有①②.
8.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,
将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ;
②△ABE ≌△ACD ; ③BE DC DE +=; ④2
22BE DC DE += 其中正确的是 【 】
(第8题图)
A B
C
D E
F
12题
Q N M D
O
C
B
A
A .②④;
B .①④;
C .②③;
D .①③.
图 (一)在△OAB , △OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =90°,连AC ,BD . (1)①若O 、C 、A 在一条直线上,连AD 、BC ,取BC 的中点M (如图1),则OM 、AD 之间有何确定的关系?
②若将△OCD 绕O 旋转(如图1-1、1-2、1-3),则①的结论是否变化,加以证明.
图1 图1-1 图1-2 图1-3
(2)①若O 、C 、A 在一条直线上,连AD 、BC ,AC 取BC 、AD 的中点M 、N (如图2),则MN 、AC 之间有何确定的关系?
②若将△OCD 绕O 旋转(如图2-1、2-2),则①的结论是否变化,加以证明.
图2 图2-1 图2-2
O C B A M O D C B A M O D
C B A
M O D B A M
O N
D C B A
M
O N
D C
B
A M O N D
C B A
(3) ①若O 、C 、A 在一条直线上,连AC 、BD ,取CD 、AB 的中点M 、N (如图3),则MN 、AC 之间有何确定的关系?
②若将△OCD 绕O 旋转(如图3-1、3-2),则①的结论是否变化,加以证明.
图3 图3-1 图3-2
(4)①如图4,若D 、O 、B 在一条直线上,连AD 、BC ,取AD 、BC 的中点M 、N ,MP ⊥AD ,N P ⊥BC 相交于P ,则PM+PN 与AD+BC 之间有何确定的关系? ②将△OCD 绕O 旋转(如图4-1、4-2),则①的结论是否变化,加以证明.
图4 图4-1 图4-2
M O N D C
B
A
M O N D C B A M
O N D
C B A M
O N
D C
B
A P M
O N D C B
A P M
O N D C B A P
图 (二)在△CAB , △DEB 中,CA =CB ,DE =DB ,∠ACB =∠EDB =90°,连AE .
①若A 、D 、B 在一条直线上,取AE 的中点M (如图5),连CM 、DB ,则CM 、DM 之间有何确定的关系?
②若将△DEB 绕B 旋转(如图5-1、5-2、5-3),则①的结论是否变化,加以证明.
图5 图5-1 图5-2 图5-3
图 (三)在△CAB , △DBE 中,CA =DB ,BE =BD ,∠ACB =∠EBD =90° ①若E 、C 重合,连AD (如图6),则CM 、AE 之间有何确定数量的关系? ②若E 沿射线CA 运动, (如图6-1、6-2),则①的结论是否变化,加以证明.
图6 图6-1 图6-2
M E D C B A M E
D C B A M
E
D C B A M
E D C B
A M D
C (E )B A M
E
D
C B A
M E D
C
B A
在△CAB , △DEF 中,CA =CB ,DE =DF ,∠ACB =∠EDF =90°. 若把△DEF 的顶点E 放在AB 的中点处并绕E 旋转,交直线CA 、CB 于M 、N 连CE 、MN ①若△DEF 绕E 旋转到(如图7),则CN 、CM 、MN 、CE 之间有何确定数量的关系? ②若△DEF 绕E 旋转到(如图7-1),①的结论又如何,加以证明.
图7 图7-1
图 (五)
在△CAB 中,CA =CB , ∠ACB = 90°. ①把△ABC 绕B 顺时针旋转a =135°(如图8),将线段AE 射线ED 的方向平移至DF ,连CD 、CF ,则CF 、CD 之间有何确定的关系?
②若△ABC 绕B 顺时针旋转a ≠135°(如图8-1),其它条件不变,①的结论是否变化,加以证明. 图8 图8-1
M
N F
E
D C
B A M
N F E D
C B
A F E D
C B
A
F E D
C B A
(1)△ABC 中,CA =CB ,点D 为AB 的中点,∠A =30°,M 、N 分别为AC 、BC 上的点.且∠MDN +∠ACN =180°
①如图9,当CM =CN 时, DM 与DN 的数量关系为___________;∠MDN =__________;CM +CN 与AB 的数量关系为________________________. ②如图9-1,当CM ≠CN 时,①的结论是否成立? ③如图9-2,若点M 在AC 的延长线上,点N 在BC 上, 其它条件不变,CM 、CN 、AB 有何数量关系? ④在图9-1中,若∠A =a ,则DM 和DN 的数量关系为____________,∠MDN =______________.
图9 图9-1 图9-2
(2)如图10,点I 是Rt △ABC (∠ACB =90°)的内角平分线交点,在CI 的延长线上取点D ,使DA ⊥DB .
①判断线段DA 与DB 有何种数量关系?
②如图10-1,过点C 作IC 的垂线,在垂线上取点D 使DA ⊥DB ,则线段DA 与DB 有何种数量关系?
③如图10-2,在②的条件下,过点D 作DE ⊥AC 于E ,过I 作IF ⊥AB 于点F ,判断AF -BF 与DE
图10 图10-1 图10-2
A M N D C
B A M N D
C
B A M N
D C B。