阿伏加德罗定律
- 格式:ppt
- 大小:410.00 KB
- 文档页数:15
正确理解阿伏加德罗定律
“在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子”。
这是意大利科学家阿伏加德罗于1811年最早提出的,因此称为“阿伏加德罗定律”。
在该定律中有“四同”:同温、同压、同体积、同分子数目。
有“三同”就可定“一同”,如,同温同压下,同体积的两种气体必含有相同数目的分子;同温同压下,同分子数目的两种气体必然同体积。
再如,在同温下,两种气体同体积又同分子数目,则必然同压。
由上推知,在同温同压下,两种气体的体积之比等于两种气体所含分子数目之比,而分子数目之比又等于其物质的量之比。
即有: 在同温同压下:2
12121n n N N V V == 这是阿伏加德罗定律的重要推论。
阿伏加德罗定律还有其他一些推论,请同学们自行推导。
上述定律及其推论仅适用于气体,不适用于固体和液体。
阿伏加德罗定律及其推论一、阿伏加德罗定律(1)内容: 在相同的温度和压强下,相同体积的任何气体都含有相同 数目的粒子。
这就是阿伏加德罗定律。
(2)表示:二、阿伏加德罗定律的推论1、同温同压下,任何气体的体积之比等于物质的量(或分子数) 之比。
即 V 1 :V 2 = n 1 :n 2 = N 1 :N 22、同温同压下,气体密度之比等于摩尔质量之比。
即 ρ1 :ρ2 = M 1 :M 23、同温同体积的任何气体的压强之比等于物质的量之比。
即 p 1 :p 2 = n 1 :n 24、同温同压下,同体积的气体的质量之比等于密度之比。
即 m 1 :m 2 = ρ1 :ρ25、同温同压下,同质量的气体的体积之比等于相对分子质量的 反比。
即 V 1 :V 2 = M 2 :M 16、同温同体积同质量的任何气体的压强之比等于相对分子质量 的反比。
即 p 1 :p 2 = M 2 :M 1【练习巩固】1、同温同压下,等质量的二氧化碳和二氧硫相比,下列叙述中正确的( )A 、密度之比为16 :11B 、密度之 比为11 :16C 、体积之比为11 :16D 、物质的量之比为16 :112、在标准状况下,下列气体体积最大的是( )A 、14gCOB 、32gO 2C 、44gCO 2D 、4gH 23、在同温同压下,1mol 氩气和1mol 氟气具有相同的( )A 、质子数B 、质量C 、原子数D 、体积4、在标准状况下,相同质量的下列气体中体积最大的是( )A 、O 2B 、N 2C 、Cl 2D 、CO 2T PV 同 N同 任何气体5、相同条件下,下列气体中所含分子数最多的是()A、10g O2B、71g Cl2C、34g NH3D、1g H2三、气体的密度和相对密度1、定义式:ρ = m/V2、标状下:ρ= m/V= M g·mol-1 /22.4 L·mol-13、相对密度:(1)含义:物质的密度与参考物质的密度在各自规定的条件下之比(2)符号:D(3)使用范围:一般,相对密度只用于气体(4)表达式:D = ρA/ρB = M A / M B四、气体摩尔质量的求算方法1、定义式:2、用标状下气体的密度求解:3、用相对密度求解:4、利用各组分的摩尔质量及体积分数求解:【应用】1、448mL某气体在标状下的质量为 1.28g,求该气体的相对分子质量。
阿伏加德罗定律及应用一、阿伏加德罗定律及应用:1、定律内容:同温同压下,相同体积的任何气体含有相同数目的分子。
注意:(1)、适应范围:任何气体。
(2)、拓展:在定律中,可以“四同”中的任意“三同”为条件,均可导出“第四同”。
(3)、与气体摩尔体积的关系:标准状况下的气体摩尔体积实际上是阿伏加德罗定律的一个特例。
2、重要推论:(1)、同温同压下,任何气体的体积之比等于物质的量(或分子数)之比。
V1:V2=n1:n2=N1:N2。
(2)、同温同体积的任何气体的压强之比等于物质的量之比。
p1:p2=n1:n2。
(3)、同温同压下,气体密度之比等于相对分子质量之比。
ρ1:ρ2=M1:M2(4)、同温同压下,同体积的气体的质量之比等于密度之比。
m1:m2=ρ1:ρ2(5)、同温同压下,同质量的气体的体积之比等于相对分子质量的反比。
V1:V2=M2:M1。
(6)、同温同体积同质量的任何气体的压强之比等于相对分子质量的反比。
p1:p2=M2:M1。
典型习题:1、同温同压下,等质量的二氧化碳和二氧化硫相比,下列叙述中正确的是()A、密度之比为16:11B、密度之比为11:16C、体积之比为11:16D、物质的量之比为16:112、在标况下,下列气体体积最大的是()A、14gCOB、32gO2C、44gCO2D、4gH23、在同温同压下,1摩尔氩气和1摩尔氟气具有相同的()A、质子数B、质量C、原子数D、体积4、在标准状况下,相同质量的下列气体中体积最大的是()A、O2B、N2C、Cl2D、CO25、相同条件下,下列气体中所含分子数最多的是()A、10g O2B、71g Cl2C、34g NH3D、1g H26、在同温同压下,同体积的下列气体,质量最大的是()A、O2B、N2C、Cl2D、CO27、同温同体积同质量的下列气体,产生压强最大的是()A、O2B、N2C、Cl2D、CO28、下列说法正确的是()A、在标准状况下,如果5.6L氧气含有n个氧气分子,则N A约为4n;B、常温常压下,1摩尔的甲烷含有的电子数为10N A;C、1摩尔Na2O2与足量的水反应,转移电子数为2N A;D、标准状况下,22.4L以任意比混合CO和CO2气体中含有的碳原子数为2N A。
阿伏加德罗定律(Avogadro's hypothesis)定义:同温同压同体积的气体含有相同的分子数。
推论:(1)同温同压下,V1/V2=n1/n2(2)同温同体积时,p1/p2=n1/n2=N1/N2(3)同温同压等质量时,V1/V2=M2/M1(4)同温同压同体积时,M1/M2=ρ1/ρ2同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。
气体的体积是指所含分子占据的空间,通常条件下,气体分子间的平均距离约为分子直径的10倍,因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。
分子间的平均距离又决定于外界的温度和压强,当温度、压强相同时,任何气体分子间的平均距离几乎相等(气体分子间的作用微弱,可忽略),故定律成立。
该定律在有气体参加的化学反应、推断未知气体的分子式等方面有广泛的应用。
阿伏加德罗定律认为:在同温同压下,相同体积的气体含有相同数目的分子。
1811年由意大利化学家阿伏加德罗提出假说,后来被科学界所承认。
这一定律揭示了气体反应的体积关系,用以说明气体分子的组成,为气体密度法测定气态物质的分子量提供了依据。
对于原子分子说的建立,也起了一定的积极作用。
中学化学中,阿伏加德罗定律占有很重要的地位。
它使用广泛,特别是在求算气态物质分子式、分子量时,如果使用得法,解决问题很方便。
下面简介几个根据克拉伯龙方程式导出的关系式,以便更好地理解和使用阿佛加德罗定律。
克拉伯龙方程式通常用下式表示:PV=nRT……①P表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数。
所有气体R值均相同。
如果压强、温度和体积都采用国际单位(SI),R=8.31帕〃米3/摩尔〃开。
如果压强为大气压,体积为升,则R=0.082大气压〃升/摩尔〃度。
因为n=m/M、ρ=m/v(n—物质的量,m—物质的质量,M—物质的摩尔质量,数值上等于物质的分子量,ρ—气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式:Pv=m/MRT……②和Pm=ρRT……③以A、B两种气体来进行讨论。
阿伏加德罗定律及其推论1.理想气体状态方程我们设定:T .温度;p .气体夺强;n .物质的量;V .气体的体积;m .气体的质量;M .气体的摩尔质量; .气体的密度N .气体的分子数。
理想气体状态方程为:(1)111T V p =222T V p ;(2)pV =nRT =RT Mm (R 为常数)。
对(2)若p 的单位为大气压(atm ),V 为升(L ),T 为绝对温度时,R =0.082。
若p 为帕斯卡(Pa ),V 为立方米(m 3),T 为绝对温度时,R =8.31。
2.阿伏加德罗定律在相同温度和压强下,相同体积.............的任何气体都含有相同数目的分子数。
这是意大利科学家阿伏加德罗最早提出的,因此称为“阿伏加德罗定律”。
理解时注意:在该定律中有“四同”:同温、同压、同体积、同分子数目,有“三同”就可定“一同”。
如,同温同压下,同体积的两种气体必含有相同数目的分子;同温同压下,同分子数目的两种气体必然同体积;再如,在同温下,两种气体同体积又同分子数目,则必然同压。
3.阿伏加德罗定律的推论根据阿伏加德罗定律及气态方程(pV =nRT )限定不同的条件,便可得到阿伏加德罗定律的多种形式,熟练并掌握了它们,解答有关问题时,可达到事半功倍的效果。
条件结论语言叙述T 、p 相同 21N N =21V V 同温同压下,气体的分子数与其体积成正比 T 、V 相同21p p =21N N 温度、体积相同的气体,压强与其分子数成正比 n 、p 相同21V V =21T T 分子数相等、压强相同的气体,体积与其温度成正比 n 、T 相同21p p =12V V 分子数相等、温度相同的气体,压强与其体积成反比 T 、p 、m 相同21M M =12V V 同温同压下,等质量的气体相对分子质量与其体积成反比。
阿伏加德罗定律(Avogadro's hypothesis)同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。
气体的体积是指所含分子占据的空间,通常条件下,气体分子间的平均距离约为分子直径的10倍,因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。
道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。
这一经验定律是在1801年由约翰·道尔顿所观察得到的。
在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。
也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。
例如,零摄氏度时,1mol 氧气在22.4L 体积内的压强是101.3kPa 。
如果向容器内加入1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。
可见,1mol 氮气在这种状态下产生的压强也是101.3kPa 。
气体的弥散物体的分子不需外力,而靠自己(分子)的运动,向另外地方移动或进入另一物体内的现象称弥散或扩散。
[((一)早期阶段通过临床机械通气曾经历过漫长的发展过程。
在古罗马帝国时代,著名医生盖伦(Galen)曾经作过这样的记载:通过死亡动物咽部的芦苇向气管内吹气,可发现动物的肺达到最大的膨胀。
1543年,Vesalius在行活体解剖时,采用类似盖伦介绍的方法,使开胸后萎陷的动物肺重新复张。
1664年,Hooke 把一根导气管放入气管,并通过一对风箱进行通气,发现可以使狗存活超过一个小时。
1774年,Tossach首次运用口对口呼吸,成功地对一例患者进行复苏。
Fothergill还建议在口对口呼吸不能吹入足够气体时,可使用风箱替代吹气。
之后不久,在英国皇家慈善协会(Royal Humanne Society)的支持下,基于这种风箱技术的急救方法被推荐用于溺水患者的复苏,并在欧洲被广泛接受。