2012年天津卷高考数学考试大纲(考试说明)及考点分析
- 格式:doc
- 大小:78.00 KB
- 文档页数:19
2012年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分)1.(5分)(2012•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:进行复数的除法运算,分子很分母同乘以分母的共轭复数,约分化简,得到结果.解答:解:===1+i故选C.点评:本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.2.(5分)(2012•天津)设变量x,y满足约束条件,则目标函数z=3x﹣2y的最小值为()A.﹣5 B.﹣4 C.﹣2 D.3考点:简单线性规划.专题:不等式的解法及应用.分析:先画出线性约束条件对应的可行域,再将目标函数赋予几何意义,数形结合即可得目标函数的最小值解答:解:画出可行域如图阴影区域:目标函数z=3x﹣2y可看做y=x﹣z,即斜率为,截距为﹣z的动直线,数形结合可知,当动直线过点A时,z最小由得A(0,2)∴目标函数z=3x﹣2y的最小值为z=3×0﹣2×2=﹣4故选B点评:本题主要考查了线性规划的思想方法和解题技巧,二元一次不等式组表示平面区域,数形结合的思想方法,属基础题3.(5分)(2012•天津)阅读右边的程序框图,运行相应的程序,则输出s的值为()A.8B.18 C.26 D.80考点:数列的求和;循环结构.专题:算法和程序框图.分析:根据框图可求得S1=2,S2=8,S3=26,执行完后n已为4,故可得答案.解答:解:由程序框图可知,当n=1,S=0时,S1=0+31﹣30=2;同理可求n=2,S1=2时,S2=8;n=3,S2=8时,S3=26;执行完后n已为4,故输出的结果为26.故选C.点评:本题考查数列的求和,看懂框图循环结构的含义是关键,考查学生推理、运算的能力,属于基础题.4.(5分)(2012•天津)已知a=21.2,b=()﹣0.8,c=2log52,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.b<a<c D.b<c<a考点:不等式比较大小.专题:不等式的解法及应用.分析:由函数y=2x在R上是增函数可得a>b>20=1,再由c=2log52=log54<log55=1,从而得到a,b,c的大小关系解答:解:由于函数y=2x在R上是增函数,a=21.2,b=()﹣0.8 =20.8,1.2>0.8>0,∴a>b>20=1.再由c=2log52=log54<log55=1,可得a>b>c,故选A.点评:本题主要考查指数函数、对数函数的单调性和特殊点,属于基础题.5.(5分)(2012•天津)设x∈R,则“x>”是“2x2+x﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出二次不等式的解,然后利用充要条件的判断方法判断选项即可.解答:解:由2x2+x﹣1>0,可知x<﹣1或x>;所以当“x>”⇒“2x2+x﹣1>0”;但是“2x2+x﹣1>0”推不出“x>”.所以“x>”是“2x2+x﹣1>0”的充分而不必要条件.故选A.点评:本题考查必要条件、充分条件与充要条件的判断,二次不等式的解法,考查计算能力.6.(5分)(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x,x∈R B.y=log2|x|,x∈R且x≠0D.y=x3+1,x∈RC.y=考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:利用函数奇偶性的定义可排除C,D,再由在区间(1,2)内有增区间,有减区间,可排除A,从而可得答案.解答:解:对于A,令y=f(x)=cos2x,则f(﹣x)=cos(﹣2x)=cos2x=f(x),为偶函数,而f(x)=cos2x在[0,]上单调递减,在[,π]上单调递增,故f(x)=cos2x在(1,]上单调递减,在[,2)上单调递增,故排除A;对于B,令y=f(x)=log2|x|,x∈R且x≠0,同理可证f(x)为偶函数,当x∈(1,2)时,y=f(x)=log2|x|=log2x,为增函数,故B满足题意;对于C,令y=f(x)=,f(﹣x)=﹣f(x),为奇函数,故可排除C;而D,为非奇非偶函数,可排除D;故选B.点评:本题考查函数奇偶性的判断与单调性的判断,着重考查函数奇偶性与单调性的定义,考查“排除法”在解题中的作用,属于基础题.7.(5分)(2012•天津)将函数y=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是()A.B.1C.D.2考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:图象变换后所得图象对应的函数为y=sinω(x﹣),再由所得图象经过点可得sinω(﹣)=sin(ω)=0,故ω•=kπ,由此求得ω的最小值.解答:解:将函数y=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象对应的函数为y=sinω(x﹣).再由所得图象经过点可得sinω(﹣)=sin(ω)=0,∴ω•=kπ,k∈z.故ω的最小值是2,故选D.点评:本题主要考查y=Asin(ωx+∅)的图象变换,以及由y=Asin(ωx+∅)的部分图象求函数解析式,属于中档题.8.(5分)(2012•天津)在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意可得=0,根据=﹣(1﹣λ)﹣λ=(λ﹣1)4﹣λ×1=﹣2,求得λ的值.解答:解:由题意可得=0,由于=()•()=[﹣]•[﹣]=0﹣(1﹣λ)﹣λ+0=(λ﹣1)4﹣λ×1=﹣2,解得λ=,故选B.点评:本题主要考查两个向量垂直的性质,两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2012•天津)集合A={x∈R||x﹣2|≤5}中的最小整数为﹣3.考点:绝对值不等式的解法.专题:集合.分析:由|x﹣2|≤5可解得﹣3≤x≤7,从而可得答案.解答:解:∵A={x∈R||x﹣2|≤5},∴由|x﹣2|≤5得,﹣5≤x﹣2≤5,∴﹣3≤x≤7,∴集合A={x∈R||x﹣2|≤5}中的最小整数为﹣3.故答案为﹣3.点评:本题考查绝对值不等式的解法,可根据绝对值不等式|x|≤a(a>0)的意义直接得到﹣a≤x≤a,也可以两端平方,去掉绝对值符号解之,属于基础题.10.(5分)(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为30m3.考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.解答:解:由三视图可知几何体是组合体,下部是长方体,底面边长为3和4,高为2,上部是放倒的四棱柱,底面为直角梯形,底面直角边长为2和1,高为1,棱柱的高为4,所以几何体看作是放倒的棱柱,底面是6边形,几何体的体积为:(2×3+)×4=30(m3).故答案为:30.点评:本题考查三视图与几何体的关系,判断三视图复原的几何体的形状是解题的关键,考查空间想象能力与计算能力.11.(5分)(2012•天津)已知双曲线C1:与双曲线C2:有相同的渐近线,且C1的右焦点为F(,0).则a=1,b=2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:双曲线C1:的渐近线方程为y=±x,右焦点为(c,0),结合已知即可得=2,c=,列方程即可解得a、b的值解答:解:∵双曲线C:(a>0,b>0)的渐近线方程为y=±2x,∴=2∵且C1的右焦点为F(,0).∴c=,由a2+b2=c2解得a=1,b=2故答案为1,2点评:本题主要考查了双曲线的标准方程,双曲线的几何性质,属基础题12.(5分)(2012•天津)设m,n∈R,若直线l:mx+ny﹣1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为3.考点:直线与圆相交的性质;直线的一般式方程.专题:直线与圆.分析:由圆的方程找出圆心坐标和半径r,由直线l被圆截得的弦长与半径,根据垂径定理及勾股定理求出圆心到直线l的距离,然后再利用点到直线的距离公式表示出圆心到直线l的距离,两者相等列出关系式,整理后求出m2+n2的值,再由直线l与x轴交于A点,与y轴交于B点,由直线l的解析式分别令x=0及y=0,得出A的横坐标及B的纵坐标,确定出A和B的坐标,得出OA及OB的长,根据三角形AOB为直角三角形,表示出三角形AOB的面积,利用基本不等式变形后,将m2+n2的值代入,即可求出三角形AOB面积的最小值.解答:解:由圆x2+y2=4的方程,得到圆心坐标为(0,0),半径r=2,∵直线l与圆x2+y2=4相交所得弦CD=2,∴圆心到直线l的距离d==,∴圆心到直线l:mx+ny﹣1=0的距离d==,整理得:m2+n2=,令直线l解析式中y=0,解得:x=,∴A(,0),即OA=,令x=0,解得:y=,∴B(0,),即OB=,∵m2+n2≥2|mn|,当且仅当|m|=|n|时取等号,∴|mn|≤,又△AOB为直角三角形,∴S△ABC=OA•OB=≥=3,当且仅当|m|2=|n|2=时取等号,则△AOB面积的最小值为3.故答案为:3.点评:此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,垂径定理,勾股定理,直线的一般式方程,以及基本不等式的运用,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.13.(5分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.考点:与圆有关的比例线段.专题:直线与圆.分析:由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.解答:解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:点评:本题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.14.(5分)(2012•天津)已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,2).考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:函数y===,如图所示,可得直线y=kx与函数y=的图象相交于两点时,直线的斜率k的取值范围.解答:解:函数y===,如图所示:故当一次函数y=kx的斜率k满足0<k<1 或1<k<2时,直线y=kx与函数y=的图象相交于两点,故答案为(0,1)∪(1,2).点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.三、解答题(本大题共6小题,共80分)15.(13分)(2012•天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.(ⅰ)列出所有可能的抽取结果;(ⅱ)求抽取的2所学校均为小学的概率.考点:列举法计算基本事件数及事件发生的概率;分层抽样方法.专题:概率与统计.分析:(1)利用分层抽样的意义,先确定抽样比,在确定每层中抽取的学校数目;(2)(i)从抽取的6所学校中随机抽取2所学校,所有结果共有=15种,按规律列举即可;(ii)先列举抽取结果两所学校均为小学的基本事件数,再利用古典概型概率的计算公式即可得结果解答:解:(I)抽样比为=,故应从小学、中学、大学中分别抽取的学校数目分别为21×=3,14×=2,7×=1(II)(i)在抽取到的6所学校中,3所小学分别记为1、2、3,两所中学分别记为a、b,大学记为A则抽取2所学校的所有可能结果为{1,2},{1,3},{1,a},{1,b},{1,A},{2,3},{2,a},{2,b},{2,A},{3,a},{3,b},{3,A},{a,b},{a,A},{b,A},共15种(ii)设B={抽取的2所学校均为小学},事件B的所有可能结果为{1,2},{1,3},{2,3}共3种,∴P(B)==点评:本题主要考查了统计中分层抽样的意义,古典概型概率的计算方法,列举法计数的方法,属基础题16.(13分)(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=,cosA=﹣.(1)求sinC和b的值;(2)求cos(2A+)的值.考点:解三角形;三角函数中的恒等变换应用.专题:解三角形.分析:(1)△ABC中,利用同角三角函数的基本关系求出sinA,再由正弦定理求出sinC,再由余弦定理求得b=1.(2)利用二倍角公式求得cos2A的值,由此求得sin2A,再由两角和的余弦公式求出cos(2A+)=cos2Acos﹣sin2Asin的值.解答:解:(1)△ABC中,由cosA=﹣可得sinA=.再由=以及a=2、c=,可得sinC=.由a2=b2+c2﹣2bc•cosA 可得b2+b﹣2=0,解得b=1.(2)由cosA=﹣、sinA=可得cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=﹣.故cos(2A+)=cos2Acos﹣sin2Asin=.点评:本题主要考查正弦定理和余弦定理的应用,二倍角公式以及两角和的余弦公式,同角三角函数的基本关系的应用,属于中档题.17.(13分)(2012•天津)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.(1)求异面直线PA与BC所成角的正切值;(2)证明:平面PDC⊥平面ABCD;(3)求直线PB与平面ABCD所成角的正弦值.考点:直线与平面所成的角;异面直线及其所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)判断∠PAD为异面直线PA与BC所成角,在Rt△PDA中,求异面直线PA与BC所成角的正切值;(2)说明AD⊥DC,通过AD⊥PD,CD∩PD=D,证明AD⊥平面PDC,然后证明平面PDC⊥平面ABCD.(3)在平面PDC中,过点P作PE⊥CD于E,连接EB.说明∠PBE为直线PB与平面ABCD所成角,求出PE,PB,在Rt△PEB中,通过sin∠PBE=,求直线PB与平面ABCD所成角的正弦值.解答:(1)解:如图,在四棱锥P﹣ABCD中,因为底面ABCD是矩形,所以AD=BC,且AD∥BC,又因为AD⊥PD,故∠PAD为异面直线PA与BC所成角,在Rt△PDA中,=2,所以异面直线PA与BC所成角的正切值为2.(2)证明:由于底面ABCD是矩形,故AD⊥DC,由于AD⊥PD,CD∩PD=D,因此AD⊥平面PDC,而AD⊂平面ABCD,所以平面PDC⊥平面ABCD.(3)解:在平面PDC中,过点P作PE⊥CD于E,连接EB.由于平面PDC⊥平面ABCD,而直线CD是平面PDC与平面ABCD的交线,故PE⊥平面ABCD.由此得∠PBE为直线PB与平面ABCD所成角,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,在Rt△PEC中,PE=PCsin30°=.由AD∥BC,AD⊥平面PDC,得BC⊥平面PDC,因此BC⊥PC.在Rt△PCB中,PB==.在Rt△PEB中,sin∠PBE==.所以直线PB与平面ABCD所成角的正弦值为.点评:本题考查直线与平面所成的角,异面直线及其所成的角,平面与平面垂直的判定,考查空间想象能力,计算能力.18.(14分)(2012•天津)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a1b1+a2b2+…+a n b n,n∈N*,证明:T n﹣8=a n﹣1b n+1(n∈N*,n≥2).考点:等差数列与等比数列的综合;数列的求和.专题:等差数列与等比数列.分析:(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先借助于错位相减法求出T n的表达式;再代入所要证明的结论的两边,即可得到结论成立.解答:解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由a4+b4=27,S4﹣b4=10,得方程组,解得,所以:a n=3n﹣1,b n=2n.(2)证明:由第一问得:T n=2×2+5×22+8×23+…+(3n﹣1)×2n;①;2T n=2×22+5×23+…+(3n﹣4)×2n+(3n﹣1)×2n+1,②.由①﹣②得,﹣T n=2×2+3×22+3×23+…+3×2n﹣(3n﹣1)×2n+1=﹣(3n﹣1)×2n+1﹣2=﹣(3n﹣4)×2n+1﹣8.即T n﹣8=(3n﹣4)×2n+1.而当n≥2时,a n﹣1b n+1=(3n﹣4)×2n+1.∴T n﹣8=a n﹣1b n+1(n∈N*,n≥2).点评:本题主要考察等差数列和等比数列的综合问题.解决这类问题的关键在于熟练掌握基础知识,基本方法.并考察计算能力.19.(14分)(2012•天津)已知椭圆,点P()在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ 的斜率的值.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)根据点P()在椭圆上,可得,由此可求椭圆的离心率;(2)设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,,根据|AQ|=|AO|,A(﹣a,0),y0=kx0,可求,由此可求直线OQ的斜率的值.解答:解:(1)因为点P()在椭圆上,所以∴∴∴(2)设直线OQ的斜率为,则其方程为y=kx设点Q的坐标为(x0,y0),由条件得,消元并整理可得①∵|AQ|=|AO|,A(﹣a,0),y0=kx0,∴∴∵x0≠0,∴代入①,整理得∵∴+4,∴5k4﹣22k2﹣15=0∴k2=5∴点评:本题考查椭圆的离心率,考查直线与椭圆的位置关系,联立方程组是关键.20.(14分)(2012•天津)已知函数f(x)=x3+x2﹣ax﹣a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(﹣2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g (t)=M(t)﹣m(t),求函数g(t)在区间[﹣3,﹣1]上的最小值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)求导函数,令f′(x)>0,可得函数的递增区间;令f′(x)<0,可得单调递减区间;(2)由(1)知函数在区间(﹣2,﹣1)内单调递增,在(﹣1,0)内单调递减,从而函数在(﹣2,0)内恰有两个零点,由此可求a的取值范围;(3)a=1时,f(x)=,由(1)知,函数在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,在(1,2)上单调递增,再进行分类讨论:①当t∈[﹣3,﹣2]时,t+3∈[0,1],﹣1∈[t,t+3],f(x)在[t,﹣1]上单调递增,在[﹣1,t+3]上单调递减,因此函数在[t,t+3]上的最大值为M(t)=f(﹣1)=﹣,而最小值m(t)为f(t)与f(t+3)中的较小者,从而可得g(t)在[﹣3,﹣2]上的最小值;②当t∈[﹣2,﹣1]时,t+3∈[1,2],﹣1,1∈[t,t+3],比较f(﹣1),f(1),f(t),f(t+3)的大小,从而可确定函数g(t)在区间[﹣3,﹣1]上的最小值.解答:解:(1)求导函数可得f′(x)=(x+1)(x﹣a),令f′(x)=0,可得x1=﹣1,x2=a>0,当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,﹣1)﹣1 (﹣1,a) a (a,+)f′(x)+ 0 ﹣0 +f(x)递增极大值递减极小值递增故函数的递增区间为(﹣∞,﹣1),(a,+∞),单调递减区间为(﹣1,a)(2)由(1)知函数在区间(﹣2,﹣1)内单调递增,在(﹣1,0)内单调递减,从而函数在(﹣2,0)内恰有两个零点,∴,∴,∴0<a<∴a的取值范围为;(3)a=1时,f(x)=,由(1)知,函数在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,在(1,2)上单调递增①当t∈[﹣3,﹣2]时,t+3∈[0,1],﹣1∈[t,t+3],f(x)在[t,﹣1]上单调递增,在[﹣1,t+3]上单调递减因此函数在[t,t+3]上的最大值为M(t)=f(﹣1)=﹣,而最小值m(t)为f(t)与f(t+3)中的较小者由f(t+3)﹣f(t)=3(t+1)(t+2)知,当t∈[﹣3,﹣2]时,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(﹣1)﹣f(t)而f(t)在[﹣3,﹣2]上单调递增,因此f(t)≤f(﹣2)=﹣,所以g(t)在[﹣3,﹣2]上的最小值为②当t∈[﹣2,﹣1]时,t+3∈[1,2],﹣1,1∈[t,t+3],下面比较f(﹣1),f(1),f(t),f(t+3)的大小.由f(x)在[﹣2,﹣1],[1,2]上单调递增,有f(﹣2)≤f(t)≤f(﹣1),f(1)≤f(t+3)≤f(2)∵f(1)=f(﹣2)=﹣,f(﹣1)=f(2)=﹣∴M(t)=f(﹣1)=﹣,m(t)=f(1)=﹣∴g(t)=M(t)﹣m(t)=综上,函数g(t)在区间[﹣3,﹣1]上的最小值为.点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,正确求导与分类讨论是解题的关键.。
第一部分 单元知识复习 第三章 函 数 第1讲 函数与图象 考点梳理 一、考试要求: 1.通过简单实例,了解常量、变量的意义. 2.能结合实例,了解函数的概念和三种表示方法,能举出函数的实例. 3.能结合图象对简单实际问题中的函数关系进行分析. 4.能确定简单的整式、分式和简单实际问题中的函数自变量取值范围,并会求出函数值. 5.能用适当的函数表示法刻画某些实际问题中变量之间的关系. 6.结合对函数关系的分析,尝试对变量的变化规律进行初步预测. 考点梳理 二、广东省省卷近五年中考统计: 考试内容 2009 2010 2011 2012 2013 题型 直角坐标系、函数 第7题 4分 填空、选择 第13题 6分 第22题9分 第13题6分 第21题9分 第17题7分 第22题9分 第23题9分第25题9分 解答 考点梳理 1.平面直角坐标系 (1)平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系.在平面直角坐标系内的点和___________之间建立了一一对应的关系. (2)点P (x,y) 坐标的几何意义: ①点P (x,y) 到x轴的距离是_________;②点P (x,y) 到y轴的距离是__________; ③点P (x,y) 到原点的距离是____________. (3)关于坐标轴、原点对称的点的坐标的特征: ①点P (a,b) 关于x轴的对称点是_________;②点P (a,b) 关于y轴的对称点是__________; ③点P (a,b) 关于原点的对称点是___________. 三、知识梳理 (-a,-b) 有序数对 考点梳理 2.函数的概念 (1)常量和变量:在某一变化过程中可以取不同数值的量叫做________;保持数值不变的量叫做_________. (2)函数:一般地,设在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是_________量,y是x的___________. 三、知识梳理 变量 函数 自变 常量 课堂精讲 例1.如图,在平面直角坐标系中有四个点A (1,1),B (?1,1),C (?1,?2),D (1,?2),把一条长为2012个单位长度且没有弹性的细线 (线的粗细 忽略不计) 的一端固定在点A处,并按 A—B—C—D—A—…的规律紧绕在四 边形ABCD的边上,则细线另一端所在 位置的点的坐标是 ( ) A.(1,?1) B.(?1,1)C.(?1,?2) D.(1,?2) 考点:点的坐标、找规律 【方法点拨】先求四边形ABCD的周长即可. 课堂精讲 例2.(2012·江西) 某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y (升) 与时间t (小时) 之间函数的大致图象是 ( )考点:函数图象 【方法点拨】注意:休息时间油箱存油不会减少 课堂精讲 【变式】 (2013·佛山) 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是() 考点:函数图象 课堂精讲 【方法点拨】连接OB,OB′,∠BOB′=105° 例3.(2012·泰安) 如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为 ( ) A. B. C. D. 考点:坐标与图形变化-旋转;菱形的性质 课堂精讲 考点:坐标与图形变化-旋转;菱形的性质。
2012年天津高考数学卷解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数7i3iz -==+ ( )A .2i + B.2i - C .2i -+ D .2i --【测量目标】复数代数形式的四则运算.【考查方式】直接给出复数的分式形式求其值. 【难易程度】容易 【参考答案】B 【试题解析】7i (7i)(3i)217i 3i 12i 3i (3i)(3i)10z ------====-++- 2.设ϕ∈R ,则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】三角函数的奇偶性,充分、必要条件.【考查方式】判断三角函数初相参数取值与函数奇偶性的关系. 【难易程度】容易 【参考答案】A【试题解析】∵0ϕ=⇒()cos()()f x x x ϕ=+∈R 为偶函数,反之不成立,∴“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的充分而不必要条件.3.阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 ( ) A.1- B.1 C.3 D.9第3题图【测量目标】循环结构的程序框图.【考查方式】阅读程序框图得出程序运算结果. 【难易程度】容易 【参考答案】C 【试题解析】根据图给的算法程序可知:第一次4x =,第二次1x =,则输出2113x =⨯+=.4.函数3()22xf x x =+-在区间(0,1)内的零点个数是 ( )A.0B.1 C .2 D .3 【测量目标】函数零点的求解与判断.【考查方式】直接给出函数的解析式判断其零点的个数. 【难易程度】容易 【参考答案】B【试题解析】解法1:因为(0)1021f =+-=-,3(1)2228f =+-=,即(0)(1)0f f <且函数()f x 在()0,1内连续不断,故()f x 在()0,1内的零点个数是1.解法2:设3122,2,x y y x ==-在同一坐标系中作出两函数的图像如图所示:可知B 正确.第4题图5.在251(2)x x-的二项展开式中,x 的系数为 ( ) A.10 B.10- C.40 D.40- 【测量目标】二项式定理.【考查方式】直接给出一个二项展开式求某项的系数. 【难易程度】容易 【参考答案】D【试题解析】∵2515103155C (2)()2(1)C r r r r r r rr T x x x ----+=-=-,∴ 1031r -=,即3r =,∴x 的系数为40-.6.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,已知85,2b c C B ==,则cos C =( ) A.725B.725-C.725±D.2425【测量目标】正弦定理,三角函数中的二倍角公式.【考查方式】已知三角形角与边的关系运用正弦定理求一角的余弦值. 【难易程度】容易 【参考答案】A【试题解析】∵85b c =,由正弦定理得8sin 5sin B C =,(步骤1)又∵2C B =,∴8sin 5sin 2B B =,(步骤2)所以8sin 10sin cos B B B =,易知sin 0B ≠,(步骤3)∴4cos 5B =,27cos cos 22cos 125C B B ==-=.(步骤4) 7.已知ABC △为等边三角形,2AB =,设点,P Q 满足,AP AB λ=(1),AQ AC λ=-λ∈R ,若32BQ CP =-,则λ=( )A.12B.122±C.1102±D.3222-±【测量目标】平面向量在平面几何中的应用.【考查方式】给出三角形边的向量关系式,运用平面向量的知识求解未知参数. 【难易程度】中等 【参考答案】A【试题解析】∵(1),BQ AQ AB AC AB λ=-=--CP AP AC AB AC λ=-=-,(步骤1) 又∵32BQ CP =-,且2AB AC ==,,60AB AC ︒<>=,cos602AB AC AB AC ︒==(步骤2),∴3(1)()2AC AB AB AC λλ⎡⎤---=-⎣⎦,2223(1)(1)2AB AB AC AC λλλλ+--+-=,(步骤3)所以2342(1)4(1)2λλλλ+--+-=,解得12λ=. (步骤4)第7题图8.设,m n ∈R ,若直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是 ( ) A.13,13⎡⎣ B.(),1313,⎡-∞++∞⎣C.222,222⎡-+⎣D.(),222222,⎤⎡-∞-++∞⎦⎣【测量目标】直线与圆的位置关系.【考查方式】已知一直线与圆的位置关系求未知参数的取值范围. 【难易程度】中等 【参考答案】D【试题解析】∵直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,(步骤1)∴圆心(1,1)到直线的距离为22(1)(1)21(1)(1)m n d m n +++-==+++,所以212m n mn m n +=++()(步骤2)设t m n =+,则2114t t +,解得(),222222,t ⎤⎡∈-∞-++∞⎦⎣.(步骤3)二、填空题:本大题共6小题,每小题5分,共30分.9.某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校. 【测量目标】分层抽样.【考查方式】运用分层抽样里的按比例抽样知识解决实际问题. 【难易程度】容易 【参考答案】18,9【试题解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取75309250⨯=. 10.―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .第10题图【测量目标】由三视图求几何体的表面积与体积.【考查方式】给出一个几何体的三视图求其原几何体的体积. 【难易程度】容易 【参考答案】189π+ 【试题解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为: 3433612π()189π32V =⨯⨯+⨯⨯=+3m . 11.已知集合{}23A x x =∈+<R ,集合{}()(2)0B x x m x =∈--<R ,且(1,)A B n =-,则m = ,n = .【测量目标】集合的基本运算,集合间的关系.【考查方式】给出含有未知参数的集合通过它们直接的关系求出未知参数. 【难易程度】容易 【参考答案】1-,1【试题解析】∵{}{}2351A x x x x =∈+<=-<<R ,又∵(1,)A B n =-,画数轴可知1,1m n =-=.12.己知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若EF ME =,点M 的横坐标是3,则p = . 【测量目标】抛物线的简单几何性质.【考查方式】给出抛物线的参数方程,运用其简单的几何性质求未知数. 【难易程度】中等 【参考答案】2【试题解析】∵22,2,x pt y pt ⎧=⎨=⎩可得抛物线的标准方程为22(0)y px p =>,(步骤1)∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,6)M p ±,(步骤2)所以点(,6),2p E p -±222()(06)22p pEF p =++±(步骤3)由抛物线得几何性质得2213,,63924p ME EF MF p p p p =+=∴+=++,解得2p =.(步骤4)13.如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,33,1,,2AF FB EF ===则线段CD 的长为 .第13题图【测量目标】圆的性质的应用.【考查方式】给出与圆相关的直线与线段由圆的性质求未知线段. 【难易程度】中等 【参考答案】43【试题解析】∵33,1,,2AF FB EF ===由相交弦定理得AF FB EF FC =,所以2FC =,(步骤1)又48//,,233AF FC ABBD CE BD FC AB BD AF∴===⨯=,(步骤2)设CD x =,则4AD x =,再由切割线定理得2BD CD AD =,即284()3x x =,解得43x =,故43CD =.(步骤3)14.已知函数211x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是 .【测量目标】函数图像的应用.【考查方式】已知两个函数的图像的位置关系求解未知参数的取值范围. 【难易程度】中等 【参考答案】(0,1)(1,4)【试题解析】∵函数2y kx =-的图像直线恒过定点(0,2)B -,且(1,2),(1,0),(1,2)A C D --,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知(0,1)(1,4)k ∈.第14题图三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数2ππ()sin(2)sin(2)2cos 1,33f x x x x x =++-+-∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【测量目标】三角函数的周期性、最值.【考查方式】给出三角函数的函数解析式求解其最小正周期和在某个区间内的最值. 【试题解析】(Ⅰ)2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-ππ2sin 2cos cos 22)34x x x =+=+ (步骤1)函数()f x 的最小正周期为2ππ2T ==(步骤2)(Ⅱ)ππππ3π2π2sin(2)11()24444424x x x f x -⇒-+⇒-+⇔-(步骤3) 当πππ2()428x x +==时,max ()2f x =πππ2()444x x +=-=-时,min ()1f x =-(步骤4)16.(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.【测量目标】互斥事件与相对独立事件的相关性质、数学期望.【考查方式】针对实际问题运用互斥事件与相对独立事件的性质求解概率问题. 【难易程度】中等【试题解析】(Ⅰ)每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -=(步骤1)这4个人中恰有2人去参加甲游戏的概率为22248C (1)27p p -=.(步骤2)(Ⅱ)44(4,)()C (1)(0,1,2,3,4)k k kXB p P X k p p k -⇒==-=,(步骤3) 这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+==(步骤4) (Ⅲ)ξ可取0,2,48(0)(2)2740(2)(1)(3)8117(4)(0)(4)81P P X P P X P X P P X P X ξξξ=======+=====+==(步骤5)随机变量ξ的分布列为84017148024********E ξ=⨯+⨯+⨯=(步骤6)17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,,,45,2,1AC AD AB BC BAC PA AD AC ︒⊥⊥∠====.(Ⅰ)证明:PC AD ⊥;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30︒,求AE 的长.第17题图【测量目标】线线垂直、异面直线所成的角的正弦值. 【考查方式】通过空间几何体中的线线,线面直接的位置角度关系求证线线垂直以及异面直线所成角的正弦值. 【难易程度】较难【试题解析】(Ⅰ)以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角坐标系A xyz -.(步骤1)则11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -(步骤2) (0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥(步骤3)第17题(1)图(Ⅱ)(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)x y z =n则0202200PC y z y z x y x z CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩n n 取1(1,2,1)z =⇒=n (步骤4)(2,0,0)AD =是平面PAC 的法向量 630cos ,sin ,66AD AD AD AD <>==⇒<>=n n n n得:二面角A PC D --(步骤5)(Ⅲ)设[]0,2AE h =∈;则(0,0,2)AE =,11(,,),(2,1,0)22BE h CD ==-cos ,10BE CD BE CD hBE CD<>=⇔=⇔=即AE =(步骤6)18.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且1144442,27,10a b a b S b ==+=-=(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)记112231n n n n n T a b a b a b a b --=++++…;证明:12210()n n n T a b n ++=-+∈N . 【测量目标】等差等比数列的通项及性质.【考查方式】给出等差等比数列中已知项之间的关系求解数列的通项,由两种数列结合成的新数列的性质运用与证明. 【难易程度】较难【试题解析】(Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为q ;则34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩(步骤1)得:31,2nn n a n b =-=(Ⅱ)121122311211...2222()22n n n n n n n n n n n a a T a b a b a b a b a a a a ----=++++=+++=+++……111213132352222n n n n n n n a n n n c c ------++==-=-(步骤2)[]1223112()()()2()n n n n n n T c c c c c c c c -=-+-++-=-…1022(35)1021212102n n n n n n n b a T b a =⨯-+=--⇔+=-(步骤3)19.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点. (Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若AP OA =,证明:直线OP 的斜率k 满足k >【测量目标】椭圆的标准方程、椭圆的简单几何性质、直线与椭圆的位置关系. 【考查方式】由椭圆的简单几何性质求解椭圆的标准方程以及椭圆的参数,判断椭圆与直线的位置关系求解未知数的取值范围.【难易程度】较难 【试题解析】(Ⅰ)取(0,),(,0),(,0)P b A a B a -;则221()22AP BP b b k k a b a a ⨯=⨯-=-⇔=(步骤1)222212a b e e a -==⇔=(步骤2)(Ⅱ)设(cos ,sin )(02π)P a b θθθ<;则线段OP 的中点(cos ,sin )22ab Q θθ(步骤3)1AQ AP OA AQ OP k k =⇔⊥⇔⨯=- sin sin cos 22cos AQ AQ AQb k b ak ak a a θθθθ=⇔-=+(步骤4)2223AQAQ ak b a k k ⇒+<⇔<⇔>(步骤5)20.(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (Ⅰ)求a 的值;(Ⅱ)若对任意的[)0,x ∈+∞,有2()f x kx 成立,求实数k 的最小值;(Ⅲ)证明:*12ln(21)2()21ni n n i =-+<∈-∑N .【测量目标】运用导数的相关性质求函数的最值,证明与推理最值问题. 【考查方式】给出函数解析式运用导数的相关性质求解其函数最值. 【难易程度】较难【试题解析】(Ⅰ)函数()f x 的定义域为(,)a -+∞(步骤1)11()ln()()101x a f x x x a f x x a a x a x a+-'=-+⇒=-==⇔=->-++ (步骤2)()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(步骤3)(Ⅱ)设22()()ln(1)(0)g x kx f x kx x x x =-=-++则()0g x 在[)0,x ∈+∞上恒成立min ()0(0)g x g ⇔=(*)(步骤4)(1)1ln 200g k k =-+⇒>1(221)()2111x kx k g x kx x x +-'=-+=++(步骤5)①当1210()2k k -<<时,0012()00()(0)2k g x x x g x g k -'⇔=⇒<与(*)矛盾②当12k 时,min ()0()(0)0g x g x g '⇒==符合(*)(步骤6)得:实数k 的最小值为12(Ⅲ)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立 取[]222(1,2,3,,)ln(21)ln(21)2121(21)x i n i i i i i ==⇒+--<---…(步骤7)当1n =时,2ln32-< 得:12ln(21)221n i n i =-+<-∑ 当2i 时,2211(21)2321i i i <---- 得:121ln(21)ln(21)2ln 3122121n i i i i n =⎡⎤-++-<-+-<⎢⎥--⎣⎦∑(步骤8)。
2012年天津高考数学卷解析(理)一.选择题1.【答案】B.【命题透析】本题考查了复数的四则运算.以商的形式给出,意在考查考生对复数的乘除法的基本运算能力.【思路点拨】解题的基本思路是复数分母的实数化,即给分式上下同乘以分母的共轭复数,并化简即可..2)3)(3()3)(7(37i i i i i i i -=-+--=+-故正确答案为B ,在运算过程中要注意正负符号与12-=i ,否则会出现选A 、C 、D 项的错误答案.2.【答案】A.【命题透析】本题考查了充分必要条件问题,并以三角函数的奇偶性为载体.意在考查考对知识间的内化能力.【思路点拨】若0=ϕ,则x x f cos )(=是偶函数,故充分性成立,排除B ,D 项;若)cos()(ϕ+=x x f 为偶函数,则),(Z k k ∈=πϕ故必要性不一定成立,排除C 项,所以正确答案为A.【总结归纳】此类问题的解答分两步骤:一判断充分性,二判断必要性,要明确题中哪个作条件,哪个做结论,若q p ⇒,则p 是q 的充分条件,q 是p 的心要条件.3.【答案】C.【命题透析】本题考查了循环结构的程序框图,由输入值来求输出值,意在考查考生的识图,析图,用图的能力.【思路点拨】由题可知,当输入25-=x 时,1>x ,415=-=x,14> ,∴循环得112=-=x ,11> 不成立,∴循环结束,则输出3112=+⨯=x ,故正确答案为C ;而B 项是因没注意到输入表达式12+⨯=x x,则误认为直接输出1=x ;D 项是第一次得4=x ,忽略判断语句1>x ,没进入循环直接输出结果,A 项把判断语句1>x 理解错误,多循环一次而输出结果值.4.【答案】B.【命题透析】本题考查了函数的零点分布.考查考生的化归与转化能力.【思路点拨】以数形结合思想来解答问题.原题可以转化为函数221-=x y 与32x y -=的图象在区间(0,1)内的交点个数问题.由作图可知在正区间内最多有一个交点,故排除C 、D 项;当0=x 时,0121=<-=y y ,当1=x 时,1021-=>=y y ,因此在区间(0,1)内一定会有一个交点,所以A 项错误,正确答案为B.【考场雷区】考生要避免用导数思想来解答试题,这样会进入运算的盲区中,即使能运算出来,也是量大费时,作为小题而言有些大作之味.5.【答案】D.【命题透析】本题考查了二项展开式中的项系数的求解.意在考查考生对基础知识的理解及基本技能的掌握.【思路点拨】通过观察将5次分别给xx 1,23-分配2次、3次即可得含x 的项,即x 40)1()2(32335-=-⋅xx C ,所以x 的系数为-40;而C 项错在将“—”号勿略;A 项错在分配次数为1次、4次,其实得到的是21x的系数,D 项错在上述两类错误的基础上.故正确答案为D ;【技巧点拨】此类类问题的解答一般有两种方法:一是通项法;二是观察法,作为小题往往观察法是高效之法,即通过观察要得什么的系数,需将次进行前后如何分配,然后再列式化简即得.6.【答案】A【命题透析】本题考查了解三角形、正弦定理、倍角公式,意在考查考生的综合分析、解决问题的能力.【思路点拨】由c b 58=,得B C B 2sin 5sin 5sin 8==,即54cos =B ,所以53sin =B ,所以2571cos 22cos cos 2=-==B B C .而B 项错对公式记为B B 2cos 212cos -=,C 项错在考虑了两类情况,D 项用错公式B B B sin cos 22cos =.7.【答案】A【命题透析】本题考查了向量的数量积、向量的基本定理.命题以求参数的形式给出,意在考查考生的方程思想的掌握,逆向思维的解题能力.【思路点拨】先用向量的基本定理将CP BQ ,用AC AB ,分解,然后以23-=⋅,列关于参数λ的方程,解即之即可.因为AB AC AB AQ BQ --=-=)1(λ,-=-=λ,且23-=⋅,ABC ∆是等边三角形,所以得01442=+-λλ,解得21=λ.故正确答案为A. 8.【答案】D【命题透析】本题考查了直线与圆的位置关系,以直线与圆相切为据,列关于n m +的等式关系,再借用重要不等式放缩,转化为不等式关系来解答问题,意在考查考生的综合思维能力与数学转化能力.【思路点拨】根据直线与圆相切,圆心到直线的距离等于半径列式,再利用重要不等式放缩出关于n m +的不等关系,解之即可.由题得1)1()1(22=++++n m n m ,即,2)2()1)1()(22(22++≥++=++n m n m n m 令n m t +=,得0442≥--t t ,解得222+≥t 或222-≤t ,故n m +的取值范围为(]222,-∞- [)∞+-,222.而C 项错在化简中将不等符号改变了,A 、B 项错在转化中误用了重要不等式.【考场雷区】考生易出现在等式的情况下不知如何求参数的取值范围,事实上这里需要由等到不等的转化,此题就用到重要不等的放缩来达到转化目的. 二.填空题9.【答案】9,18【命题透析】本题考查统计初步中的分层抽样法.【思路点拨】先求每个学校被抽取的概率,然后求各自学校的样本容量.设小学、中学各抽取y x ,所学校,则有75150257515030yx ==++,解得9,18==y x .10.【答案】)2(9+π【命题透析】本题考查了三视图,空间几何体的体积..【思路点拨】先由三视图还原几何体,后求其体积.由题可知此几何体为两球相切,上面放一柱体,其体积为)2(9136)23(3423+=⨯⨯+⨯⨯⨯ππ. 11.【答案】-1,1【命题透析】本题考查了集合的交集运算,解不等式.试题以求参数的值给出,意在考查学生的逆向思维能力.【思路点拨】先化简集合在最简形式,然后由交集可知-1是方程0)2)((=--x m x 的一根,求得1-=m ,此时{}15|<<-=x x A ,{}21|<<-=x x B ,则)1,1(-=B A ,所以1=n .【考场雷区】也许考生会对集合B 中的参数m 分2>m ,2<m 进行分类讨论,再对应求参数的值,事实上,会使运算更繁,费时更多.12.【答案】2【命题透析】本题考查抛物线的方程与性质,两点间的距离公式.以求值为目的,意在考查考生的方程思想.【思路点拨】消参得抛物线方程为px y 22=,因为MF EF =,所以32)6()32(22+=+-pp p ,得2=p .13.【答案】34【命题透析】本题考查了平面几何知识,以圆为载体,涉及到圆的切线定理,相交弦定理,相似三角形等知识,考查考生的综合思维能力与运算能力.【思路点拨】由相交弦定理得FC EF FB AF ⨯=⨯,得2=FC ,其次由AFC ABD ∆∆相似于得38=⨯=AF CF AB BD ,DC DA 4=,再由切线定理得9642=⨯=DC DA BD ,最后求得34=DC .14.【答案】(0,1)或(1,4)【命题透析】本题考查了函数的图象,以两图象相交于两点为载体,求实数k 的取值范围,意在考杳考生的数形结合思想与综合分析问题的能力.【思路点拨】先简化函数为⎩⎨⎧>+<+-=,1,11,1x x x x y ,再在同一直角坐标系下画出两函数的图象,(略),在1>x 时,有两交点的实数k 的取值范围为(1,4),当1<x 时,有两交点的实数k 的取值范围为,所以实数实数k 的取值范围为(0,1)或(1,4). 【技巧点拨】画图寻找两图象有两交点的位置是解题的关键,其次以平行线为依据或以个别特殊点对就的斜率值作为解题的基本点. 三.解答题15.【命题透析】【思路点拨】【总结归纳】三角函数的求最小值,一般先化简使其成为)sin()(ϕω+=x A x f 的形式,在简化的过程中一般要用到三角函数的公式式、同角三角函数的关系、二倍角公式、和、差角公式,考生要做到胸有成竹,熟练的进行运算.求此类函数的最值问题,一般用到整体角的思想.16.【命题透析】【思路点拨】【总结归纳】概率应用题的特点为文字叙述长,解题首先要做到读懂题意、明确事实、提取数知(数学问题)、化归(概率)类型.其次考虑问题要周全、细心,数值计算要仔细,离散型变随机变量的分布列列好后,回头再检验是否概率的和为1.17.【命题透析】【思路点拨】【总结归纳】立几解答题,一般在传统与向量法中找平衡点.在传统证明线面位置关系时,需要明确要证什么,得需证什么的思维线索;直线与平面所成角,从传统上解需找角、证角、算角,而向量法首先建系,然后写相关向量的坐标,最后进行代数解答,思维单一,公式化强,但运算易错.考生一般遵循先传统后向量的方法选择,也就是在传统法难做下去时,不防换用向量法.18.【命题透析】【思路点拨】【考场雷区】一等差数列与一等比数列的积数列求和,一般用到错位相减法,在两边同乘以等比的公比后,两式的相减上易出现错误,经常出现于不知如何相减,保留项弄丢,正负号弄错,需考生仔细、认真对待.19.【命题透析】【思路点拨】【总结归纳】求离心率的方法有:一是求c a ,的值,二是求关于c b a ,,的齐次方程;求参数的取值范围问题,一般以寻找关于参数的不等关系,在题目明确的前提下直接列出即可,但要考虑所有受限条件,在题目没有明确的前提下往往由等到不等的转化来实现,至于如何转化,要因宜而论.20.【命题透析】【思路点拨】【思维拓展】函数与导数的综合作为高考的重头戏,多以能力为立意,计算为基础,主要考查函数的单调性、切线、极(最)值、零点分布、参数(值)范围、不等式恒成立证明等知识,此类问题解答时,运用导数这把有利工具,探索函数的有关性质,突破解题思维防线.函数中引参变量是命题的焦点,使得试题增加了宽度与深度,通常需对参变量进行分类讨论.。
2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数ii+-37=(A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件 (3)阅读右边的程序框图,运行相应的程序,当输入x 的值 为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9 (4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40 (6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,, 已知8b=5c ,C=2B ,则cosC=(A )257 (B )257-(C )257± (D )2524(7)已知ABC ∆为等边三角形,AB=2,设点P ,Q 满足AB AP λ=,开 始 输入x|x|>1?1||-=x x x = 2x+1 输出x结 束是否AC AQ )1(λ-=,R ∈λ,若∙CPBQ 23-= ,则λ=(A )21(B )221±(C )2101± (D )2223±- (8)设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞ (C )]222,222[+- (D )),222[]222,(+∞+⋃--∞第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校 对学生进行视力调查,应从小学中抽取_________所 学校,中学中抽取________所学校.(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________m 3.(11)已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.(12)已知抛物线的参数方程为⎩⎨⎧==pty pt x 2,22(t 为参数),其中p>0,焦点为F ,准线为l . 过抛物线上一点M 作l 的垂线,垂足为E. 若|EF|=|MF|,点M 的横坐标是3, 则p = _________. (13)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D. 过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF=3, FB=1,EF=23,则线段CD 的长为____________. (14)已知函数112--=x x y 的图象与函数2-=kx y 的图象恰有两个交点,则实数k 的取值范围是_________.31363223侧视图俯视图正视图FE C D B A三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记Y X -=ξ,求随机变量ξ的分布列与数学期望ξE .(17)(本小题满分13分)如图,在四棱锥P-ABCD 中,P A ⊥平面ABCD ,AC ⊥AD , AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC ⊥AD ;(Ⅱ)求二面角A-PC-D 的正弦值; (Ⅲ)设E 为棱PA 上的点,满足异面 直线BE 与CD 所成的角为30°,求AE 的长.(18)(本小题满分13分)已知}{n a 是等差数列,其前n 项和为S n ,}{n b 是等比数列,且27,24411=+==b a b a , 1044=-b S .(Ⅰ)求数列}{n a 与}{n b 的通项公式;(Ⅱ)记n n n n b a b a b a T 1211+++=- ,*N n ∈,证明n n n b a T 10212+-=+(*N n ∈).DCBAP(19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为21-,求椭圆的离心率; (Ⅱ)若|AP|=|OA|,证明直线OP 的斜率k 满足.3>k (20)(本小题满分14分)已知函数)ln()(a x x x f +-=的最小值为0,其中.0>a (Ⅰ)求a 的值;(Ⅱ)若对任意的),,0[+∞∈x 有)(x f ≤2kx 成立,求实数k 的最小值; (Ⅲ)证明∑=<+--ni n i 12)12ln(122(*N n ∈).参考答案 一、选择题B AC BD A A D1.B 【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i - 2.A【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.3.C 【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯. 4.B【解析】解法1:因为(0)=1+02=1f --,3(1)=2+22=8f -,即(0)(1)<0f f ⋅且函数()f x 在(0,1)内连续不断,故()f x 在(0,1)内的零点个数是1.解法2:设1=2x y ,32=2y x -,在同一坐标系中作出两函数的图像如图所示:可知B 正确.4224685105.D【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r r C x -,∴103=1r -,即=3r ,∴x的系数为40-.6.A 【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8s i n =10B B B ,易知s i nB ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725.7.A【解析】∵=BQ AQ AB - =(1)AC AB λ-- ,=CP AP AC -=AB AC λ- ,又∵3=2BQ CP ⋅- ,且||=|=2AB AC ,<,>=60AB AC ,0=||||cos 60=2AB AC AB AC ⋅⋅ ,∴3[(1)]()=2AC AB AB AC λλ---- ,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅- ,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.CBAPQ8.D【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为22|(1)+(1)2|==1(1)+(1)m n d m n ++-++,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,222][2+22,+)t ∈-∞-∞ .二、填空题9. 18,9 10. 18+9π 11. -1,,1 12. 2 13.4314.(0,1)(1,4)9.18,9【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所,所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.10.18+9π【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m .11.1-,1【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n . 12.2【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,6)M p ±,所以点(,6)2p E p -±,222=()+(06)22p p EF p -由抛物线得几何性质得=+32p MF ,∵=EF MF ,∴221+6=+3+94p p p p ,解得=2p .13.43【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD∥CE,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=CD x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD .14.(0,1)(1,4)【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知(0,1)(1,4)k ∈ .4224681012510AOBCD三、解答题15.解.(1)x x x x x x f 2cos 3sin2cos 3cos 2sin 3sin2cos 3cos2sin )(+-++=ππππ)42sin(22cos 2sin π+=+=x x x所以()f x 的最小正周期为ππ==22T . (2)因为()f x 在区间⎥⎦⎤⎢⎣⎡84-ππ,上是增函数,在区间⎥⎦⎤⎢⎣⎡48ππ,上是减函数,又1)4(,2)8(,1)4(==-=-πππf f f ,故函数()f x 在区间[,]44ππ-上的最大值为2,最小值为-1.16.解:依题意这4个人中,每个人去参加甲游戏的概率为31,去参加乙游戏的概率为32.设“这4个人中恰有i 人去参加甲游戏”为事件)4,3,2,1,0(=i A i ,则iii i C A P -⎪⎭⎫ ⎝⎛=44)32(31)(,(1) 这4个人中恰有2人去参加甲游戏的概率278)32(31)(22242=⎪⎭⎫ ⎝⎛=C A P(2) 设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则43A A B =,由于3A 与4A 互斥,故91)31()32()31()()()(44433443=+=+=C C A P A P B P所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为91. (3)ξ的所有可能值为0,2,4,由于1A 与3A 互斥,与0A 4A 互斥,故8140)()()2(,278)()0(312=+=====A P A P P A P P ξξ 8117)()()4(40=+==A P A P P ξ 所以ξ的分布列为ξ 02 4p278 8140 8117 随机变量ξ的数学期望8114881174814022780)(=⨯+⨯+⨯=ξE . 17.解:如图,以点A 为原点建立空间直角坐标系,依题意得)2,0,0(),0,21,21(),0,1,0(),0,0,2(),,0,0(P B C D A -(1)证明:易得)(),,(0,2,2AD 2-1,0PC ==于是0AD PC =⋅,所以CD PC ⊥(2)),(),,(0,1-2CD 2-1,0PC ==,设平面PCD 的法向量),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅00CD n PC n 即⎩⎨⎧=-=-0202y x z y ,不妨设1=zDCBAP可得)1,2,1(=n可取平面PCD 的法向量)0,0,1(=m于是66,cos =⋅⋅>=<nm n m n m ,从而630,sin >=<n m 所以,二面角D PC A --的正弦值为630.(3)设点),(h ,0,0E ,其中[]2,0∈h ,由此得),21,21(h BE -= 由)0,1,2(-=CD ,故222010352123,cos hh CDBE CD BE CD BE +=⨯+=⋅⋅>=<所以2330cos 201032==+ h ,解得1010=h ,即1010=AE .18.解析(1) 解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由211==b a 得d S q b d a 68,2,324344+==+=,由条件得方程组⎪⎩⎪⎨⎧=-+=++102682723233q d q d 解得⎩⎨⎧==23q d 所以*∈=-=N n b n a n n n ,2,13 (2) 证明:由(1)得112n 222T a a a n n n +++=- ……① 11132n 2222T a a a n n n +-+++= …………① ②-①得2322)222(3)13(2++++++--=n n n n T10621026221)21(1221--⨯=+-+--=+-n n n n n而10621012210)13(212102--⨯=-⨯+--=-+-n n b a n n n n 故*∈+-=+N n b a T n n n ,1021219.解析(1)解:设点),(00y x P ,由题意得1220220=+by a x ① 由)0,(),0,(a B a A -得ax y k a x y k BP AP -=+=0000, 由21-=⋅BP AP k k 可得202202y a x -=代入①并整理得0)2(2022=-y b a ,由于00≠y ,故222b a =,于是212222=-=a b a e ,所以椭圆的离心率为22=e(2)证明:依题意直线OP 的方程kx y =,设点),(00y x P ,有条件得⎪⎩⎪⎨⎧=+=122022000b y ax kx y 消去0y 并整理得 2222220ba kb a x +=② 由)0,(,a A OA AP -=及00kx y =得22220)(a x k a x =++整理得 02)1(02022=++ax x k 而00≠x ,于是2012kax +-=,代入②整理得 4)(412222+=+ab k k )(,由0>>b a ,故441222+>+k k )( 即32>k ,所以3>k .20.解:(1))(x f 的定义域为),(+∞-aax a x a x x f +-+=+-='111)(,由0)(='x f ,得a a x ->-=1 当x 变化时变化时,)(x f ',)(x f 的不好情况如下表: 因此,)(x f 在a x -=1处x),1(a - a ),(+∞a)(x f ' - 0 +)(x f极小值取得最小值,故由题意,01)1(=-=-a a f 所以.1=a(2)当0≤k 时,取1=x ,有02ln 1)1(>-=f ,故0≤k 不合题意.当0>k 时,令2)()(kx x f x g -=,即2)1ln()(kx x x x g -+-=1)21(221)(2+-+-=-+='x xk kx kx x x x g 令0)(='x g 得1221,021->-==kkx x ①当21≥k 时, 0)(,0221<'≤-x g kk 在),0(+∞上恒成立,因此)(x g 在),0[+∞上单调递减,从而对于任意的),0[+∞∈x ,总有0)0()(=≤g x g ,即2)(kx x f ≤在),0[+∞上恒成立.故21≥k 符合题意. ②当210<<k 时, 0221>-k k ,对于0)(),221,0(>'-∈x g k kx故)(x g 在)221,0(k k -内单调递增,因此,当取)221,0(0kkx -∈时,0)0()(0=>g x g ,即200)(kx x f ≤不成立.故210<<k 不合题意. (3)证明:当1=n 时,不等式左边=<-=23ln 2右边,所以不等式成立.当2≥n 时,∑∑==⎥⎦⎤⎢⎣⎡-+--=-ni ni i i i f 11)1221ln(122)122( []∑∑==--+--=ni ni i i i 11)12ln()12ln(122)12ln(1221+--=∑=n i ni在(2)中取21=k 得)0(2)(2≥≤x x x f ,从而)2,()12)(32(2)12(2)122(2≥*∈--<-≤-i N i i i i i f 所以有∑∑==-=+--ni ni i f n i 11)122()12ln(122∑∑==--+-<-+=ni ni i i i f f 22)12)(32(23ln 2)122()2( ∑=---+-=ni i i 2)121321(3ln 2 212113ln 2<--+-=i 综上∑=*∈<+--ni N n n i 1.2)12ln(122。
说一说“独特的我” 我的性格: 我的兴趣: 我的特长: 我的——: 1.人具有无穷的智慧和巨大的创造力。
2.每个人的生命都是独一无二的。
人的生命独特性的表现 多彩的生命世界 世界因生命而精彩 人的生命的独特性1.生命是大自然的奇迹 2.众多生命都以自己独特的形式生活着 3.人类必须善待大自然 1.人有无穷的智慧和巨大的创造力 2.每个人的生命都是独一无二的 学习了本课后,你有哪些收获和感想?告诉大家好吗? 生命是来之不易的,生命是独特的,生命是有限的,因而生命是可贵的。
所以,我们应当珍惜大自然赋予我们的生命,让我们珍惜生命,热爱生活吧! 人生如一本书,愚蠢者草草翻过,聪明人细细阅读。
为何如此?因为他们只能读它一次。
——保罗 第1单元 珍爱生命 热爱生活 第1课 生命最宝贵 第1框 多彩的生命世界 1、了解神奇的生命世界,感受生命之美;懂得生命的独特性,认识到人类是具有智慧与创造力的生命。
2、体会生命世界的多彩、神奇、珍贵,培养爱护自然、欣赏自然、保护环境的能力。
3、树立新的生态道德观、自然观,善待大自然,尊重其他生命。
板块一:世界因生命而精彩 以下幻灯片都是正文内容,幻灯片的数量有正文多少决定 看了这些图片,大家交流一下自己的感受。
这组图片为我们展示了一个生机盎然的世界:在蔚蓝色的大海边,海豚在飞跃;一只海鸥在蓝天展翅翱翔;草地上,长颈鹿正踱着悠闲的步子……这个世界因生命的存在而变得如此美丽,生机盎然。
同学们,世界上的生命是多种多样的,你们知道世界上有哪些生命存在吗? 请同学们交流后回答。
世界因生命而精彩! 世界上有动物、植物、微生物等等。
没有生命的世界 会是什么样? 然而现在…… 讨论: 我们为什么要关爱其他的生命,与他们和谐相处呢? 众多生命构成一个共存共荣、息息相关的生命大系统。
人类必须善待大自然,爱护环境,保护动植物,否则,将会危及自身的生存。
自从地球上有了生命,世界就变得如此美好。
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积, H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+I (C )1+I (D )-1-i【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B. 【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C. 【答案】C(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以ab <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y=cos2x ,x ∈R(B ) y=log 2|x|,x ∈R 且x ≠0(C ) y=2xxe e --,x ∈R(D ) y=x3+1,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B. 【答案】B(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(s i n =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ∈R 。
2012年天津市高考数学试卷(理科)及解析数学(理工类)名师简评该套试卷整体上来说与往年相比,比较平稳,试题中没有偏题和怪题,在考查了基础知识的基础上,还考查了同学们灵活运用所学知识的解决问题的能力。
题目没有很多汉字的试题,都是比较简约型的。
但是不乏也有几道创新试题,像选择题的第8题,填空题的13题,解答题第20题,另外别的试题保持了往年的风格,入题简单,比较好下手,但是做出来并不是很容易。
整体上试题由梯度,由易到难,而且大部分试题适合同学们来解答体现了双基,考查了同学们的四大思想的运用,是一份比较好的试卷。
本试卷分为第I 卷(选择题〉和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟 第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数7=3i z i -+=(A )2i + (B)2i - (C)2i -+ (D)2i --1.B【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算.【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i -(2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 2.A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为(A )1- (B)1 (C)3 (D)93.C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算. 【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯.(4)函数3()=2+2x f x x -在区间(0,1)内的零点个数是 (A )0 (B)1 (C)2 (D)34.B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.【解析】解法1:因为(0)=1+02=1f --,3(1)=2+22=8f -,即(0)(1)<0f f ⋅且函1. B并借助于通项公式分【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r rC x -,∴103=1r -,即=3r ,∴x 的系数为40-.(6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725 (B)725- (C)725±(D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8si n =5s i n 2B B ,所以8s i n=10B B B ,易知sin 0B ≠,∴4c o s=5B ,2cos =cos 2=2cos 1C B B -=725.(7)已知△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ(A )12(B)(C)(D)7.A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB -=(1)AC AB λ--,=CP AP AC -=AB AC λ-,又∵3=2B Q CP⋅-,且||=|A B A C,0<,>=60AB AC ,=||||cos 60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2A C AB A BA C λλ----,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.C(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是(A)[1-(B)(,1[1+3,+)-∞-∞(C)[2-(D)(,2[2+22,+)-∞-∞8.D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,2[2+22,+)t ∈-∞-∞.二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取所学校.9.18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算. 【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所,所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.(10)―个几何体的三视图如图所示(单位:m),则该几何体的体积为3m.10.18+9π【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32Vπ⨯⨯⨯⨯=18+9π3m.(11)已知集合={||+2|<3}A x R x∈,集合={|()(2)B x R x m x∈--,且=(1,)A B n-,则=m,=n.11.1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x∈={||5<<1}x x-,又∵=(1,)A B n-,画数轴可知=1m-,=1n.(12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .12.2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质.【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2p F ,∵点M 的横坐标是3,则(3)M ,所以点(,)2p E -,222=()+(06)22p p EF p -由抛物线得几何性质得=+32pMF ,∵=EF M F ,∴221+6=+3+94p p p p ,解得=2p .(13)如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,则线段CD 的长为.13.43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质. 【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD ∥CE ,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=C D x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD . (14)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 . 14.(0,1)(1,4)【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知.2)=sin (2+)+sin(2)+2cos 133x x x ππ--,(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.【命题意图】本试题主要考查了 【参考答案】【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可. (16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.【命题意图】本试题主要考查了 【参考答案】【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,=45ABC ∠,==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.【命题意图】本试题主要考查了 【参考答案】【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.(18)(本小题满分13分)已知{na }是等差数列,其前n 项和为nS ,{nb }是等比数列,且1a = 1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{na }与{nb }的通项公式;(Ⅱ)记1121=+++n n n n T a b a b a b -,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈.【命题意图】本试题主要考查了 【参考答案】 【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则.(19)(本小题满分14分)设椭圆2222+=1x y ab (>>0)a b 的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率;(Ⅱ)若||=||AP OA ,证明直线OP 的斜率k满足|k 【命题意图】本试题主要考查了 【参考答案】【点评】(20)(本小题满分14分)已知函数()=ln(+)f x x x a-的最小值为0,其中>0a.(Ⅰ)求a的值;(Ⅱ)若对任意的[0,+)x∈∞,有2()f x kx≤成立,求实数k的最小值;(Ⅲ)证明=12ln(2+1)<2 21nin i--∑*()n N∈.【命题意图】本试题主要考查了【参考答案】【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.。
绝密★启用前2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至6页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2. 本卷共8小题,每小题5分,共40分. 参考公式:如果事件A ,B 互斥 ,那么 如果事件A ,B 相互独立,那么 ()()()P AB P A P B =+()()()P AB P A P B =⋅棱柱的体积公式V Sh =球的体积公式34π3V R =其中S 表示锥体的底面积,h 表示锥体的高 其中R 表示球的半径 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数7i3i-=+( )A. 2i +B. 2i -C. 2i -+D. 2i --2. 设ϕ∈R 则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3. 阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 ( ) A. 1- B. 1 C. 3D. 94. 函数3()22x f x x =+-在区间(0,1)内的零点个数是 ( ) A. 0 B. 1 C. 2D. 35. 在251(2)x x-的二项展开式中,x 的系数为 ( )A. 10B. 10-C. 40D. 40-6. 在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知85b c =,2C B =,则cos C =( )A. 725B. 725-C. 725±D. 24257. 已知ABC △为等边三角形,2AB =,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,λ∈R ,若32BQ CP ⋅=-,则λ=( )A. 1B.C. D. 8. 设,m n ∈R ,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n+的取值范围是( )A. [1B. [,1[13,]-∞++∞ C. [2-+D. [,2[222,]-∞-++∞第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题纸上.2. 本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9. 某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取_________所学校.10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m .11. 已知集合{|23}A x x =∈+<R ,集合{|()(2)3}B x x m x =∈--<R ,且(1,)A B n =-,则m =_________,n =_________.12. 已知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若||||EF MF =,点M 的横坐标是3,则p =_________.13. 如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为_________.14. 已知函数2|1|1x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是_________.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程,或演算步骤. 15.(本小题满分13分)已知函数2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间ππ[,]44-上的最大值和最小值.16.(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC AD ⊥,AB BC ⊥,45BAC ∠=,2PA AD ==,1AC =.(Ⅰ)证明PC AD ⊥;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30,求AE 的长.18.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=,4410S b -=.(Ⅰ)求数列{}n a 与{}n b 的通项公式; (Ⅱ)记1121n n n n T a b a b a b -=+++,*n ∈N ,证明*12210()n n n T a b n +=-+∈N .19.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若||||AP OA =,证明直线OP 的斜率k满足||k >.20.(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (Ⅰ)求a 的值;(Ⅱ)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明1*2ln(21)2()21ni n i n =-+-∈∑N <.2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)答案解析)(1)0f<,且函在同一坐标系中作出两函数的图像如图所示:可知B1()2r rx--=【提示】由题意,可先由公式得出二项展开式的通项A【解析】∵(1)BQ AQ AB AC ABλ=-=--,CP AP AC AB ACλ=-=-,又∵32BQ CP=-,且2A B A C==,,60AB AC<>=,cos60AB AC AB AC︒==3[(1)]()2AC AB AB ACλλ---=-,2223(1)(1)2AB AB AC ACλλλλ+--+-=,2(1)4(1)2λλλ+--+-=,解得2λ=.(1)BQ AQ AB AC ABλ=-=--,CP AP AC AB ACλ=-=-进而根据数量积的定义求出BQ CP再根据32BQ CP=-即可求出λ.2][222,+,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形.第Ⅱ卷(1,AB n =-213,34EF MF p p p ==++2.AF FB EF FC =,所以FC 又48//,,233AF FC AB BD CE BD FC AB BD AF ∴===⨯=,设CD x =,则4AD =再由切割线定理得2BD CD AD =,即2843x x ⎛⎫= ⎪⎝⎭,解得4x =42FC =,由相似比求出CD AD 求解.【考点】圆的性质的应用. (0,1)(1,4)2y kx =-的图像直线恒过定点010=-,10BC k --10-(0,1)(1,4).2(4,)B p ⇒人中去(4)P X +=【考点】互斥事件与相对独立事件的相关性质,数学期望.(Ⅰ)以,,AD AC AP 为,x y 则(2,0,0),(0,1,0),(0,0,2)D C P(0,1,2),(2,0,0)PC AD PC AD PC AD=-=⇒⇔⊥(Ⅱ)(0,1,2),(2,1,0)PC CD =-=-的法向量(,,)n x y z =0200n PC x y n CD ⎧=⎪⇔⇔⎨⎨⎨-==⎩⎩⎪⎩(1,2,1)n ⇒=(2,0,0)AD =是平面PAC 的法向量630cos ,sin ,6AD n AD n AD n AD n<>==⇒<>=得:二面角A PC D --的正弦值为306. ;则(0,0,2)AE =,11,,,(2,1,0)BE h CD ⎛⎫==- ⎪3310,2101020BE CDBE CD h BE CD <>=⇔⇔=+,10=.为原点,建立空间直角坐标系,通过得出PC AD ,证出的一个法向量,利用两法向量夹角求解.3,BE CD <>=,得出关于h 的方程求解即可.。
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积, H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+I (C )1+I (D )-1-i【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B. 【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C. 【答案】C(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以ab <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y=cos2x ,x ∈R(B ) y=log 2|x|,x ∈R 且x ≠0(C ) y=2xxe e --,x ∈R(D ) y=x3+1,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B. 【答案】B(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ∈R 。
天津卷考试要求:对知识的要求依次是了解、理解、掌握三个层次。
1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作出正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力。
3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论、运用、解决问题等。
高考大纲:1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集②了解全集与空集的含义(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集②理解在给定集合中一个子集的补集的含义,会求给定子集的补集③能使用韦恩图表达集合的关系及运算2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域或值域;了解映射的概念②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数③了解简单的分段函数,并能简单应用④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质(2)指数函数①了解指数函数模型的实际背景②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点④知道指数函数是一类重要的函数模型(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点③知道对灵敏函数是一类重要的函数模型④了解指数函数y=a x与对数函数y=log a x互为反函数(a>0且a≠1)(4)幂函数①了解幂函数的概念②结合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况(5)函数与方程①结合二次函数的图像,判断一元二次方程根的存在性及根的个数②了解函数的零点与方程根的联系③根据具体函数的图象,能运用二分法求相应方程的近似解(6)函数模型及应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用3.立体几何初步(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体结构②知道平行投影与中心投影的概念,了解空间图形的不同表示形式③能画出简单空间图形(长方体、棱柱、圆柱、圆锥、球等及其简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下的公理和定理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在此平面内公理2:过不在同一条直线上的三点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线互相平行定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补②理解空间中线面平行、垂直的有关性质与判定定理理解以下判定定理:·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行·如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行·如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直·如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题④能根据定义解决两条异面直线所成的角、直线和平面所成的角、二面角的简单计算问题4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,掌握确定直线位置的几何要素②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式③能根据两条直线的斜率判定这两条直线平行或垂直④掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系⑤能用解方程组的方法求两条相交直线的交点坐标⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系③能用直线和圆的方程解决一些简单的问题④了解用代数方法处理几何问题的思想(3)空间直线坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置*②会推导空间两点间的距离公式5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想②理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构(2)基本算法语句理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义6.统计(1)随机抽样会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法(2)总体估计①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点②理解样本数据标准差的意义和作用,会计算数据标准差③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释④会用样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别②了解两个互斥事件的概率加法公式(2)古典概型①理解古典概型及其概率计算公式②会计算一些随机事件所含的基本事件数及事件发生的概率(3)随机数与几何概型①了解随机数的意义②了解几何概型的意义8.基本初等函数Ⅱ(三解函数)(1)任意角的概念、弧度制①了解任意角的概念②了解弧义制的概念,能进行弧度与角度的互化(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义②掌握﹣ɑ,π/2±ɑ,π±ɑ的正弦、余弦、正切的诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三解函数的周期性③理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间(﹣π/2,π/2)内的单调性④理解同角三角函数的基本关系式:sin2x+cos2x=1,sinx/cosx=tanx⑤了解函数y=Asin(ωx+ϕ)的物理意义;能画出y=Asin(ωx+ϕ)的图像,了解参数A,ω,ϕ对函数图像变化的影响⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题9.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景②理解平面向量的概念,理解两个向量相等的含义③理解向量的几何表示(2)向量的线性运算①掌握向量加法、减法的运算,并理解其几何意义②掌握向量数乘的运算及其意义,理解向量共线的含义③了解向量线性运算的性质及其几何意义(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义②掌握平面向量的正交分解及其坐标表示③掌握平面向量的加法、减法与数乘的坐标运算④理解用坐标表示的平面向量共线的条件(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义②了解平面向量的数量积与向量投影的关系③掌握数量积的坐标表达式,会进行平面向量数量积的运算④能运用数量积表示两个向量的夹角,会用数量积判断丙个平面向量的垂直关系(5)向量的应用①会用向量方法解决某些简单的平面几何问题②知道向量是解决简单的力学问题与其他一些实际问题的工具之一10.三解恒等变换(1)和与差的三解函数公式①会用向量的数量积推导出两角差的余弦公工②能利用两角差的余弦公式导出两角差的正弦正切公式③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)11.解三角形(1)正弦定理和余弦定理掌握正弦定理和余弦定理,并能解决一些简单的三解形度量问题(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式、递推公式)②了解数列是自变量为正整数的一类函数(2)等差数列、等比数列①理解等差数列、等比数列的概念②掌握等差数列、等比数列的通项公式与前n项和公式③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题④了解等差数列与一次函数、等比数列与指数函数的关系13.不等式(1)一元二次不等式①了解一元二次不等式与相应的二次函数、一元二次方程的联系②会解一元二次不等式(2)二元一次不等式组与简单线性规划问题①了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组②会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(3)基本不等式:(a+b)/2≥ab(a>0,b>0)①了解基本不等式的证明过程②会用基本不等式解决简单的最大(小)值问题选修课程14.常用逻辑用语(1)命题及其关系①理解命题的概念②了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系③理解必要条件、充分条件与充要条件的意义(2)简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义(3)全称量词与存在量词的意义①理解全称量词与存在量词的意义②能正确地对含有一个量词的命题进行否定15.圆锥曲线与方程(1)圆锥曲线①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现现实世界和解决实际问题中的作用②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质③了解双曲线的定义、几何图形、标准方程及简单几何性质④了解圆锥曲线的简单应用⑤理解数形结合的思想(2)曲线与方程了解方程的曲线与曲线的方程的对应关系16.空间向量与立体几何(1)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示②掌握空间向量的线性运算及其坐标表示③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直(2)空间向量的应用①理解直线的方向向量与平面的法向量的概念②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)④能用向量方法解决两条异面直线所成的角、直线和平面所成的角、二面角的计算问题,了解向量方法在研究立体几何问题中的应用17.导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背景②理解导数的几何意义(2)导数的运算①能根据导数定义求函数y=C,y=x,y=x2,y=x3,y=1/x,y=x的导数②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数(3)导数在研究函数中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求给定闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)(4)生活中的优化问题会利用导数解决某些实际问题(5)定积分与微积分基本定理①了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念②了解微积分基本定理的含义18.推理与证明(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用②掌握演绎推理的基本模式,并能运用它进行一些简单推理③了解合情推理与演绎推理之间的联系和差异(2)直接证明与间接证明①了解直接证明的两种基本方法――分析法和缩合法,了解分析法和缩合的思考过程、特点②了解间接证明的一种基本方法――反证法,了解反证法的思考过程、特点(3)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题19.数系的扩充与复数的引入(1)复数的概念①理解复数的有关概念②理解复数相等的充要条件③了解复数的代数表示法及其几何意义(2)复数的四则运算①会进行复数代数形式的四则运算②了解复数代数形式的加减运算的几何意义20.计数原理(1)分类加法计数原理、分步乘法计数原理理解分类加法计数原理、分步简洁计数原理会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题(2)排列与组合理解排列组合的概念能利用计数原理推导排列数公式、组合数公式能解决简单的实际问题(3)二项式定理能用计数原理证明二项式定理会用二项式定理解决与二项展开式有关的简单问题21.(1)概率①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性②理解超几何分布及其导出过程,并能进行简单的应用③了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题④理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题⑤利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义(2)统计案例①回归分析了解回归分析的基本思想、方法及其简单应用②独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用22.几何证明选讲(1)了解平行线截割定理,会证明直角三角形的射影定理(2)会证圆周角定理、圆的切线的判定定理及性质定理(3)会证明相交弦定理、切割线定理、圆内接四边形的性质定理与判定定理(4)能应用上述定理解决简单平面几何问题(5)知道平面与圆柱面的截线是椭圆(特殊情形是圆)23.坐标系与参数方程(1)坐标系①理解坐标系的作用②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况③能在极标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。