圆的切线判定定理及性质定理讲义
- 格式:doc
- 大小:101.23 KB
- 文档页数:3
AT圆的切线判定定理及性质定理讲义一、基础知识归纳1.切线的判定定理切线的判定定理:经过半径的外端并且垂直于这条半径的直 线是圆的切线。
注:定理的题设①“经过半径外端”,②“垂直于半径”,两个 条件缺一不可。
结论是“直线是圆的切线”。
2.切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径。
我们分析:这个定理共有三个条件:一条直线满足(1)垂直于切线 (2) 过切点 (3)过圆心 任意知道两个,这可以推出第三个。
即知2推1。
定理:①过圆心,过切点⇒ 垂直于切线 OA 过圆心,OA 过切点A ,则OA ⊥AT②经过圆心,垂直于切线⇒过切点()()12AB M AB MT ⎫⎪⇒⎬⊥⎪⎭过圆心为切点③ 经过切点,垂直于切线⇒过圆心()()12AM MT AM M ⊥⎫⎪⇒⎬⎪⎭过圆心为切点二、典型例题解析【例1】PB 切⊙O 于B ,OP 交⊙O 于A ,BC ⊥OP 于C ,OA=6cm,OP=10cm,求AC 的长.AAOBPCM【例2】如图,⊙O 的直径AB =6cm ,点P 是AB 延长线上的动点,过点P 作⊙O 的切线,切点为C ,连结AC .若CPA 的平分线交AC 于点M ,你认为∠CMP 的大 小是否发生变化?若变化,请说明理由;若不变,求出∠CMP 的度数【例3】如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长是多少?【例4】如图,AB 为半圆O 的直径,CB 是半圆O 的切线,B 是切点,AC•交半圆O 于点D ,已知CD=1,AD=3,那么cos ∠CAB=________.【例5】设直线ι到⊙O 的圆心的距离为d ,半径为R ,并使x 2-2d x +R=0,BDC试由关于x 的一元二次方程根的情况讨论ι与⊙O 的位置关系.【例6】在Rt ABC △中,90ACB ∠=°,D 是AB 边上一点,以BD 为直径的O ⊙与边AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F . (1)求证:BD BF =;(2)若64BC AD ==,,求O ⊙的面积.。
圆的切线和切线定理圆是几何中常见的形状之一,有很多有趣的性质和定理。
其中一个重要的定理就是圆的切线定理,它描述了切线与圆的关系以及相应的性质。
接下来,我们将详细介绍这个定理。
一、切线的定义在介绍切线定理之前,先给出切线的定义。
对于一个圆,如果从圆外的一点引一条直线,该直线与圆仅有一个交点,那么这个交点与圆的弧上的点之间的线段就是切线。
切线与圆相切于一个点,与该点处的切点重合。
二、切线定理的规定切线定理是关于切线和切线外一点与圆的关系的重要定理。
根据切线定理,以下规定成立:规定1:切线与半径的垂直性。
切线与半径的相交点处的半径垂直于切线。
规定2:切线与切线之间的垂直性。
如果两条切线分别与两个圆相切于同一点,那么这两条切线互相垂直。
规定3:切线长度的规律性。
如果从圆的外一点引两条切线,那么这两条切线的长度相等。
三、切线定理的证明以下是对切线定理的证明:首先,证明规定1。
设圆的半径为r,交点为A。
连接A与圆心的线段,记为OA。
根据垂直定理,如果OA与切线AD垂直,那么OA与圆上任意一点(如点B)处的切线BC也是垂直的。
因此,切线与半径的垂直性得证。
接下来,证明规定2。
设圆的两个切点分别为A和B,切线分别为AD和BC。
连接OA和OB,并延长这两条线段相交于点C。
根据垂直定理,如果AD与BC垂直,那么OA与OB也垂直。
根据垂直线的性质,切线AD与切线BC的垂直性得证。
最后,证明规定3。
设从点P引两条切线分别与圆交于点A和点B,切线长度分别为AD和BE。
连接圆心O与点A、点B,并连接OA和OB。
由于圆心到切点的距离相等,即OA = OB。
通过几何推理,可以得出三角形OAD和三角形OBE是全等的,因此AD = BE。
切线长度的规律性得证。
四、切线定理的应用切线定理在几何问题中的应用十分广泛。
它可以帮助我们解决一些与圆相关的问题,例如求解切线的长度、判断两条切线是否相互垂直等。
总结:切线定理是关于切线和切线外一点与圆的关系的重要定理。
圆的切线的定义和判定定理圆的切线可以通过以下两种方式进行定义和判定定理的解释:
定义:
1. 切线的几何定义,对于圆上的任意一点,通过该点且与圆相切的直线称为圆的切线。
2. 切线的代数定义,如果直线的方程和圆的方程联立成方程组有且只有一个解,且该解恰好是圆上的一点,则该直线即为圆的切线。
判定定理:
1. 切线判定定理一,直线与圆相切的充分必要条件是直线与圆的切点处的切线垂直于半径。
2. 切线判定定理二,直线与圆相切的充分必要条件是直线与圆的切点处的切线的斜率等于圆的半径的斜率的负倒数。
通过这些定义和判定定理,我们可以清晰地理解圆的切线的概念及其性质。
希望这些解释对你有所帮助。
一、切线的性质及判定1.切线的性质2.切线的判定3. 切线长和切线长定理切线的性质及判定()定理:圆的切线垂直于过切点的半径.推论:经过圆心且垂直于切线的直线必经过切点.推论:经过切点且垂直于切线的直线必经过圆心.()注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心过圆心,过切点垂直于切线.过圆心,过切点,则.②过圆心,垂直于切线过切点.过圆心,,则过切点.③过切点,垂直于切线过圆心.,过切点,则过圆心.()定义法:和圆只有一个公共点的直线是圆的切线;()距离法:和圆心距离等于半径的直线是圆的切线;()定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.()切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.()切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.()证明圆切线辅助线的方法:①若给出直线与圆有公共点:连半径、证垂直;②若没给直线与圆的交点:做垂直、证半径;()圆中证明角相等的方法:①同角(或等角)余角相等;爱智康2018/06/121122⇒AB AB M AB ⊥l ⇒AB AB ⊥l AB M ⇒AB ⊥l AB M AB 1231212②圆周角定理;③半径相等出等腰三角形;④平行线出同位角或内错角相等;⑤全等或相似三角形中的对应角相等;⑥在同圆或等圆中,等弧或等弦所对的圆周角相等(常见于弧的等分点)。
()给出圆的切线,作辅助线,连接过切点的半径,则半径垂直于切线.爱智康 2018/06/123。
O A
T
O M
T
A B
圆的切线判定定理及性质定理讲义
一、基础知识归纳
1.切线的判定定理
切线的判定定理:经过半径的外端并且垂直于这条半径的直 线是圆的切线。
注:定理的题设①“经过半径外端”,②“垂直于半径”,两个 条件缺一不可。
结论是“直线是圆的切线”。
2.切线的性质定理及其推论
切线的性质定理:圆的切线垂直于过切点的半径。
我们分析:这个定理共有三个条件:
一条直线满足(1)垂直于切线 (2) 过切点 (3)过圆心 任意知道两个,这可以推出第三个。
即知2推1。
定理:①过圆心,过切点⇒ 垂直于切线 OA 过圆心,OA 过切点A ,则OA ⊥AT
②经过圆心,垂直于切线⇒过切点
()()12AB M AB M T ⎫⎪
⇒⎬⊥⎪⎭
过圆心为切点
③ 经过切点,垂直于切线⇒过圆心
()()12A M M T AM M ⊥
⎫⎪
⇒⎬⎪⎭
过圆心为切点
二、典型例题解析
【例1】PB 切⊙O 于B ,OP 交⊙O 于A ,BC ⊥OP 于C ,OA=6cm,OP=10cm,求AC
的长.
l
A
O
A
O
B P
C
M
【例2】如图,⊙O 的直径A B =6cm ,点P 是A B 延长线上的动点,过点P 作⊙O 的切线,
切点为C ,连结AC .若CPA 的平分线交AC 于点M ,你认为∠CMP 的大 小是否发生变化?若变化,请说明理由;若不变,求出∠CMP 的度数
【例3】如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交
于点D,且⊙O 的半径为2,则CD 的长是多少?
【例4】如图,AB 为半圆O 的直径,CB 是半圆O 的切线,B 是切点,AC•交半圆O 于点D ,
已知CD=1,AD=3,那么cos ∠CAB=________.
B
D
A
C
【例5】设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2d x+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系.
【例6】在Rt ABC
∠=°,D是A B边上一点,以B D为直径的O △中,90
ACB
⊙与边AC相切于点E,连结D E并延长,与BC的延长线交于点F.
(1)求证:B D B F
=;
(2)若64
,,求O
==
BC AD
⊙的面积.。