-13xy2 -7x2y
2.先化简 ,再求多项式2y² -6y -3y² +5y的 值 ,其中 y = -2.
解:2y² -6y -3y² +5y =〔2y² -3y²〕 +〔5y -6y〕 = -y² -y.
当 y = -2 时 , 原式 = -〔 -2〕² -〔 -2〕
= -4 + 2 = -2.
1、会利用待定系数法求二次函数的表达式; 〔重点〕
2、能根据条件 ,设出相应的二次函数的表达 式的形式 ,较简便的求出二次函数表达式 . 〔难点〕
课前复习
二次函数有哪几种表达式 ?
• 一般式:y =ax2 +bx +c • (顶a≠点0)式:y =a(x -h)2 +k (a≠0)
• 交点式:y =a(x -x1)(x -x2) (a≠0)
所以 ,这个抛物线表达式为 y =(x+1)2 6 即:y =x2 +2x-5
封面 例题
例题选讲
例2
已知点A(-1,6)、B(2,3)和C(2,7), 求经过这三点的二次函数表达式。
解: 设所求的二次函数为 y =ax2 +bx +c y
将A、B、C三点坐标代入得:
a -b +c =6
16a +4b +c =6 9a +3b +c =2
解:(如设以抛以物以线下图为)y ,=求a抛(x物-线20的)2表+达1式6 .
根据题意可知 ∵ 点(0 ,0)在抛物线上 ,
评价
∴ 所求抛物线表达式为
通过利用条件中的顶
点和过原点选用顶点 式求解 ,方法比较灵 活
封面 练习
用待定系数法求函数表达式的一般步骤: