红外避障小车实验
- 格式:doc
- 大小:66.50 KB
- 文档页数:4
一、实训目的本次实训旨在让学生了解红外线避障技术的原理,掌握红外线避障小车的制作方法,培养学生的动手能力、实践能力和创新精神。
二、实训内容1. 红外线避障原理红外线避障技术是利用红外线发射器和接收器检测前方障碍物,并根据距离调整小车行驶速度和方向的技术。
当红外线发射器发出的红外线遇到障碍物时,部分红外线会被反射回来,被接收器接收,从而实现避障功能。
2. 红外线避障小车制作(1)材料与工具材料:红外线发射器、红外线接收器、STC89C52单片机、电机驱动模块、电源模块、车轮、支架等。
工具:万用表、焊接工具、电烙铁、线路板等。
(2)制作步骤① 设计电路图:根据红外线避障原理,设计电路图,确定各元器件的连接方式。
② 制作线路板:根据电路图,制作线路板,并进行元器件焊接。
③ 安装元器件:将红外线发射器、接收器、单片机、电机驱动模块等元器件安装在车体上。
④ 编写程序:编写单片机程序,实现红外线避障功能。
⑤ 调试与测试:调试程序,测试小车避障效果。
三、实训过程1. 学习红外线避障原理,了解红外线发射器和接收器的工作原理。
2. 根据红外线避障原理,设计电路图,确定元器件连接方式。
3. 制作线路板,进行元器件焊接。
4. 编写单片机程序,实现红外线避障功能。
5. 调试程序,测试小车避障效果。
四、实训结果与分析1. 实训结果通过本次实训,成功制作了一台红外线避障小车,小车能够根据前方障碍物的距离调整行驶速度和方向,实现避障功能。
2. 分析(1)红外线避障原理:红外线避障技术利用红外线发射器和接收器检测前方障碍物,当红外线遇到障碍物时,部分红外线会被反射回来,被接收器接收,从而实现避障功能。
(2)电路设计:电路设计合理,元器件连接正确,程序编写正确,实现了红外线避障功能。
(3)程序调试:程序调试过程中,发现问题并及时解决,提高了小车避障效果。
五、实训总结1. 通过本次实训,使学生掌握了红外线避障技术的原理和制作方法。
智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
一、实验目的本次实验旨在通过设计和搭建一个智能小车系统,学习并掌握智能小车的基本控制原理、硬件选型、编程方法以及调试技巧。
通过实验,加深对单片机、传感器、电机驱动等模块的理解,并提升实践操作能力。
二、实验原理智能小车控制系统主要由以下几个部分组成:1. 单片机控制单元:作为系统的核心,负责接收传感器信息、处理数据、控制电机运动等。
2. 传感器模块:用于感知周围环境,如红外传感器、超声波传感器、光电传感器等。
3. 电机驱动模块:将单片机的控制信号转换为电机驱动信号,控制电机运动。
4. 电源模块:为系统提供稳定的电源。
实验中,我们选用STM32微控制器作为控制单元,使用红外传感器作为障碍物检测传感器,电机驱动模块采用L298N芯片,电机选用直流电机。
三、实验器材1. STM32F103C8T6最小系统板2. 红外传感器3. L298N电机驱动模块4. 直流电机5. 电源模块6. 连接线、电阻、电容等7. 编程器、调试器四、实验步骤1. 硬件搭建:- 将红外传感器连接到STM32的GPIO引脚上。
- 将L298N电机驱动模块连接到STM32的PWM引脚上。
- 将直流电机连接到L298N的电机输出端。
- 连接电源模块,为系统供电。
2. 编程:- 使用Keil MDK软件编写STM32控制程序。
- 编写红外传感器读取程序,检测障碍物。
- 编写电机驱动程序,控制电机运动。
- 编写主程序,实现小车避障、巡线等功能。
3. 调试:- 使用调试器下载程序到STM32。
- 观察程序运行情况,检查传感器数据、电机运动等。
- 调整参数,优化程序性能。
五、实验结果与分析1. 避障功能:实验中,红外传感器能够准确检测到障碍物,系统根据检测到的障碍物距离和方向,控制小车进行避障。
2. 巡线功能:实验中,小车能够沿着设定的轨迹进行巡线,红外传感器检测到黑线时,小车保持匀速前进;检测到白线时,小车进行减速或停止。
3. 控制性能:实验中,小车在避障和巡线过程中,表现出良好的控制性能,能够稳定地行驶。
一、引言随着科技的不断发展,智能化技术逐渐渗透到我们生活的方方面面。
智能避障小车作为一种典型的智能化产品,其设计和实现过程对于培养我们的实践能力和创新思维具有重要意义。
本次实训旨在通过设计、制作和调试避障小车,掌握智能避障技术的基本原理和实现方法。
二、实训目的1. 熟悉智能避障小车的基本原理和组成;2. 掌握单片机编程和驱动电路的设计方法;3. 提高动手实践能力和创新思维;4. 培养团队合作精神。
三、实训内容1. 避障小车原理分析避障小车主要由以下几个部分组成:单片机、传感器、驱动电路、电源和车体。
其中,单片机作为控制核心,负责处理传感器采集到的数据,并控制驱动电路使小车实现避障功能。
传感器负责检测小车周围的环境,将信息反馈给单片机。
驱动电路负责将单片机的控制信号转换为电机驱动信号,使小车运动。
电源为小车提供动力。
2. 避障小车硬件设计(1)单片机:本次实训选用STC89C52单片机作为控制核心,该单片机具有丰富的资源,易于编程和调试。
(2)传感器:本次实训选用红外线传感器作为避障传感器,其优点是成本低、体积小、安装方便。
(3)驱动电路:本次实训选用L298N驱动电路,该电路能够驱动直流电机,实现电机的正反转和调速。
(4)电源:本次实训选用可充电锂电池作为电源,具有体积小、容量大、寿命长的特点。
3. 避障小车软件设计(1)主程序:主程序负责初始化单片机、传感器和驱动电路,设置中断和定时器,以及处理传感器采集到的数据。
(2)中断服务程序:中断服务程序负责处理红外线传感器检测到的障碍物信息,根据障碍物距离和方向控制小车转向。
(3)定时器程序:定时器程序负责控制小车的速度,实现匀速行驶。
四、实训过程1. 硬件制作:根据设计图纸,焊接单片机、传感器、驱动电路等元器件,组装成避障小车。
2. 软件编程:使用Keil软件编写单片机程序,调试并优化程序。
3. 调试与测试:在避障小车上进行测试,观察小车的避障效果和行驶稳定性。
福州大学至诚学院题目:避障小车设计实验报告姓名:学号: 210992044同组者:专业:电气工程及其自动化专业年级: 09级指导教师:2011年04月24日1、实验材料:MultiFLEX™2-A VR控制器;红外线接近传感器两个;红外线测距传感器一个;碰撞传感器一个;轮子四个;舵机四个;结构件若干。
(“创意之星”机器人套件)2、原理:碰撞传感器是由一个按钮开关和外围电路构成,其输出信号为数字信号。
当按钮按下时,信号输出端输出低电平;按钮被释放时,信号输出高电平。
可以充当开关使用。
红外接近传感器是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
当红外线传感器遇到障碍时,信号输出端输出低电平,没有障碍时,信号输出端输出高电平,从而实现小车的避障功能。
红外线测距传感器GP2D12主要是由红外发射器、PSD(位置敏感检测装置)及相关处理电路构成,红外发射器发射一束红外光线,红外光线遇到障碍物被反射回来,通过透镜投射到PSD上,投射点和PSD的中心位置存在偏差值a,GP2D12根据下图所示的a、b、α三个值就可以计算出H的值,并输出相应电平的模拟电压。
利用此功能来实现小车判断前方是否有坑的功能。
3、小车的功能介绍:(1)按下碰撞传感器按钮,小车停止运动,再次按,小车继续运动;(2)检测前方是否有障碍,有则避之;(3)检测前方是否有坑,有则避之;(4)在一个由两堵墙构成的死角,通过左右避障次数的累计绕出死角。
4、步骤:(1)熟悉机器人零件及其应用;(2)搭建小车,调试舵机及其编号;(3)编程——编译——下载程序;(4)检验程序结果,对小车进行调试,并对程序进一步改进。
5、机器人逻辑判断流程:6、总结及心得体会:(1)在对模块化机器人的组装调整中,我们熟悉了各种结构件的使用技巧,为设计更复杂的构型打好了基础;(2)通过“避障小车”的设计实验,我们走过了一个工程设计的简要流程,从需求分析到整体方案设计,再到设备选型和细节设计,最终完成样机调试,且这方法在工程实践中具有一定的通用性;(3)熟悉了用控制器联机调试舵机工作状态编号及其部分传感器的使用。
红外避障小车实验报告一、实验简介在本实验中,我们在“创意之星”模块化学习套件所提供的机械构件基础上,组装出四轮驱动式小车结构。
利用机器人的控制器和系统程序,通过多传感器融合技术结合逻辑判断算法对智能小车的运行状态进行实时调控,最终实现自主探路、判断及选择正确的行进路线功能,完成自主躲避障碍物的任务。
二、实验目的(1)掌握基本构型和传感器的安装方法,并能搭建出能完成一定功能的机器人,利用创意之星组件,进行避障小车的组装,调试,利用红外传感器进行路障感应,完成避障功能。
(2)会用控制器联机调试舵机工作状态,会查询各种传感器的数据。
(3)通过 NorthStar 的流程图功能,实现简单的逻辑控制(4)能通过编程实现智能小车自主躲避障碍物的功能(5)对避障小车的避障原理有充分的理解,掌握其避障的方法,能够对实验过程中出现的问题进行解决,发现问题,解决问题。
三、实验器材计算机( 1 台);标准版控制器( 1 个);红外接近传感器( 2 个);红外测距传感器( 1 个);直流电源( 1 个);充电器( 1 个);数字舵机( 4 个);多功能调试器( 1 个);轮子( 4 个);螺丝刀( 1 个); KD ( 4 个); L3-1 ( 4 个); U3H ( 5 个);I7 ( 1 个);螺丝和垫片(若干)四、实验原理利用红外传感器,其优点是对近距离的障碍物反应速度灵敏,不同方位的传感器之间信号不会相互干扰,最终选择红外传感器作为小车的眼睛,进行避障。
由于本次实验小车轮子没有实现转弯功能,所以通过设定左右两组轮子的不同前进速度来实现转弯功能。
当向右转时,左侧轮子的速度要比右侧轮子的前进速度快,反之实现左转功能,此设计需小心谨慎,防止出现轮子不同步,无法实现转弯功能。
五、实验内容( 1 )搭建智能小车,掌握基本构型的组装方法,主要包括舵机和轮子的连接、传感器的安装以及舵机和传感器的接线( 2 )通过编程控制智能小车的前进、后退、变速以及转向( 3 )将控制策略的流程图用真正的程序语言实现,并下载到控制器上,实现智能小车自主躲避障碍物的功能六、程序设计1.程序流程图当前方没有障碍物的的时候车就一直直走。
智能避障小车实验报告与总结学院:机电工程学院专业年级:09级电气工程及其自动化队员姓名:智能避障小车实验报告与总结摘要:本设计制作的是单片机控制的自动避障小汽车,以单片机为小汽车的“大脑”,红外线探头为小汽车的“眼睛”,电机为小汽车的“双足”。
“大脑”控制“眼睛”去看前方是否有障碍物,当“眼睛”看到障碍后,由大脑来控制“双足”的行动方向。
从而实现小汽车的自动避障。
关键词:单片机红外线传感器避障小车一、设计任务与要求小车从无障碍地区启动前进,感应前进路线上的障碍物后,根据障碍物的位置选择下一步行进方向。
二、方案设计与论证本设计制作的是单片机控制的自动避障小汽车,以单片机为小汽车的“大脑”,红外线探头为小汽车的“眼睛”,电机为小汽车的“双足”。
“大脑”控制“眼睛”去看前方是否有障碍物,当“眼睛”看到障碍后,由大脑来控制“双足”的行动方向。
从而实现小汽车的自动避障。
电路原理简单,结构明了。
如图为整个系统的框图。
根据设计要求,我们的自动避障小车主要由六个模块构成:车体框架、主控模块、探测模块、电机驱动模块组成。
各模块分述如下:1、小车车体在设计车体框架时,我们有两套起始方案,自己制作和直接购买车身。
方案二:自己设计制作车架自己制作小车底盘,用两个直流减速电机作为主动轮,利用两电机的转速差完成直行、左转、右转、左后转、右后转、倒车等动作。
减速电机扭矩大,转速较慢,易于控制和调速,符合避障小车的要求。
而且自己制作小车框架,可以根据电路板及传感器安装需求设计空间,使得车体美观紧凑。
但这种方法费时费力且成本较高。
方案二:购买半成品小车底盘改装,此种方案方便简洁而且价格低廉,小车各个机械部分安装完整,只需稍加改装就可以使用。
而且我们主要是目的是小车控制系统的设计,因此我们采取该方案。
2、主控板小车的主控系统,即小车的大脑,我们采用了STC89C52单片机制作的最小系统。
3、避障模块避障方案选择,方案一:采用超声波避障。
智能避障小车试验报告与总结专业班级:12自动化-3******学号:**********随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。
视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。
视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。
但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。
STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。
内部集成MAX810专用复位电路,2路PWM,8路速10位A/D转换(250K/S),针对电机控制,强干扰场合。
我们采用的就是STC12C5A60S2这种单片机。
避障系统可以采用反射式光电开关或者超声波传感器对前方的障碍物进行检测,前者结构简单,应用方便灵活,但不能获知障碍物与小车间的具体距离;后者结构复杂,但可以测得障碍物与小车间的直线距离。
本系统采用反射式光电开关E3F-DS10C4来检测障碍物。
E3F-DS10C4是漫反射式光电开关,NPN三线输出方式,三线分别为电源线、输出线、地线。
它的灵敏度也可以调节,检测距离比较远,可以达到20cm。
红外发射管,发射50hz调制的38k信号。
当遇到障碍物时,发生漫反射,红外接收头接收到这一信号时,输出端输出50hz的信号。
判断这一信号,即可判断,遇到了障碍物。
避障传感器基本原理,利用物体的反射性质。
在一定范围内,如果没有障碍物,发射出去红外线,因为传播距离越远而逐渐减弱,最后消失,或者反射回来的光很弱时,输出端呈低电平光电开关的检测不受外界干扰。
车辆工程实验报告实验名称:基于Arduino的循迹小车设计姓名:邓玉兵学号:13102000指导老师:宋宇日期:2016/11/27摘要:本设计基于Arduino平台,运用红外发射检测模块让小车实现黑线循迹的功能。
黑色易吸收红外线,白色反射红外线,红外线接收管对反射回来信号进行解调,使电频发生变化。
由此,平台不断控制电机的转动情况,从而使小车沿黑线行驶。
循迹小车是Arduino单片机的一种典型应用。
设计采用Arduino单片机作为小车的控制核心,采用红外传感器作为小车的检测模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被ardiuno单片机识别的数字信号;采用H桥控制直流电机。
其中软件系统采用C程序。
关键词:Arduino红外发射检测避障驱动模块一,实验目的:熟悉arduino单片机和红外传感器,驱动模块等硬件的运用,制作基于arduino的巡线小车。
二,实验器材1、小车底盘+电机+联轴器+轮子+万向轮2、巡线传感器+arduino主控器+电机驱动板+传感器扩板3、尼龙柱+螺丝+螺母+杜邦线4、供电电池(两节3.7V 单节容量2600mah)三,实验过程1,组装小车:先将电机车轮,电池盒装入底盘,再将主板,传感器,驱动电桥,红外检测模块装上,最后由小车原理图将相关元器件用插线连接起来.小车原理图2,对驱动电桥,电机,传感器等电路模块进行硬件测试,硬件测试成功后才能进行下一步3,将编写好的程序导入至单片机4,调试小车,在有黑线的路面上进行实际测试,小车最终完成图如下:小车完成图四,实验现象红外检测模块信号灯不断闪烁,小车轻微左右摇摆,并不断沿黑线行驶.五,结论红外检测模块信号灯不断闪烁,说明红外传感器可以感知黑线位置.小车沿黑线行驶,说明单片机可以根据导入的程序和红外传感器信号不断地控制电机的转动,进而控制小车运动状态,从而使小车不断地沿黑线行驶.说明所设计的方案可以完成设计要求.六,感悟经过努力《基于Arduino的循迹小车设计》设计终于接近尾声。
红外避障小车实验报告
一、实验简介
在本实验中,我们在“创意之星”模块化学习套件所提供的机械构件基础上,组装出四轮驱动式小车结构。
利用机器人的控制器和系统程序,通过多传感器融合技术结合逻辑判断算法对智能小车的运行状态进行实时调控,最终实现自主探路、判断及选择正确的行进路线功能,完成自主躲避障碍物的任务。
二、实验目的
(1)掌握基本构型和传感器的安装方法,并能搭建出能完成一定功能的机器人,利用创意之星组件,进行避障小车的组
装,调试,利用红外传感器进行路障感应,完成避障功能。
(2)会用控制器联机调试舵机工作状态,会查询各种传感器的数据。
(3)通过 NorthStar 的流程图功能,实现简单的逻辑控制(4)能通过编程实现智能小车自主躲避障碍物的功能
(5)对避障小车的避障原理有充分的理解,掌握其避障的方法,能够对实验过程中出现的问题进行解决,发现问题,
解决问题。
三、实验器材
计算机( 1 台);标准版控制器( 1 个);红外接近传感器( 2 个);红外测距传感器( 1 个);直流电源( 1 个);充电器( 1 个);数字舵机( 4 个);多功能调试器( 1 个);轮子( 4 个);螺丝刀( 1 个); KD ( 4 个); L3-1 ( 4 个); U3H ( 5 个);I7 ( 1 个);螺丝和垫片(若干)
四、实验原理
利用红外传感器,其优点是对近距离的障碍物反应速度灵敏,不同方位的传感器之间信号不会相互干扰,最终选择红外传感器作为小车的眼睛,进行避障。
由于本次实验小车轮子没有实现转弯功能,所以通过设定左右两组轮子的不同前进速度来实现转弯功能。
当向右转时,左侧轮子的速度要比右侧轮子的前进速度快,反之实现左转功能,此设计需小心谨慎,防止出现轮子不同步,无法实现转弯功能。
五、实验内容
( 1 )搭建智能小车,掌握基本构型的组装方法,主要包括舵机和轮子的连接、传感器的安装以及舵机和传感器的接线
( 2 )通过编程控制智能小车的前进、后退、变速以及转向( 3 )将控制策略的流程图用真正的程序语言实现,并下载到
控制器上,实现智能小车自主躲避障碍物的功能
六、程序设计
1.程序流程图
当前方没有障碍物的的时候车就一直直走。
如果前方遇到障碍物,左右两个红外判断,左侧有障碍物,则小车做右转运动。
直至左红外感应不到障碍物,这时小车恢复直走。
如果左方,右方均有障碍物,则小车先后退,默认向右转,直至前左方,右方任一方向没有障碍,则此时小车开始直走。
2、设计程序
根据程序流程图,应用程序软件进行小车避障程序设计,通过不同的if,while语句的判断进行小车转弯的程序设计(在进行程序设计时要注意判断条件的设定),设计完成后,下载到控制器,进行小车避障的检测,并发现问题进行相应的改进。
七、实验小结
(1)通过本次红外避障小车实验,使我了解了机器人小车执行各种功能的原理和利用的器件。
了解了小车最基本的前进后退转弯的工作原理,了解了小车如何寻线行驶,了解小车如何避障和寻找目标。
(2)让我亲身感受到传感器在机器人工作中的运用,可以说,机器人每做一个任务都离不开传感器,从避障,找目标物等等任务中完全体现出来。
(3)体验到实际操作与理论的差别,例如,理论上只要调好程序,就可以完全做到精确地寻线行驶,但是实际中会出现外部因素的改变,周围物体对小车判断的各种影响
红外避障小车,经过多次反复的验证,再经过多次的整体软硬件结合的调试,不断地对程序进行优化,小车完成了各项功能。
管脚的设定尤为重要。