振动与压电陶瓷实验
- 格式:doc
- 大小:57.50 KB
- 文档页数:3
( 实验报告)姓名:____________________单位:____________________日期:____________________编号:YB-BH-004578压电式传感器测振动实验报告Experimental report on vibration measurement with piezoelectric压电式传感器测振动实验报告一、实验目的:了解压电传感器的测量振动的原理和方法。
二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。
双踪示波器。
四、实验步骤:1、压电传感器装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
4、改变低频振荡器的频率,观察输出波形变化。
光纤式传感器测量振动实验一、实训目的:了解光纤传感器动态位移性能。
二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。
三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。
四、实训内容与操作步骤1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。
2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
压电式传感器测振动实验报告篇一:压电式传感器实验报告一、实验目的:了解压电传感器的测量振动的原理和方法。
二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。
双踪示波器。
四、实验步骤:1、压电传感器装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
4、改变低频振荡器的频率,观察输出波形变化。
光纤式传感器测量振动实验一、实训目的:了解光纤传感器动态位移性能。
二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。
三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。
四、实训内容与操作步骤1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。
2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。
4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。
5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。
1.1压电材料概述 1.1.1压电效应1880年法国物理学家皮埃尔和雅各居里兄弟在研究石英晶体的物理性质时 发现:当沿着晶片的某些方向施加作用力使晶片发生变形后, 晶片上相对的两个 表面会出现等量的正负电荷,电荷的密度与施加的力的大小有关, 这种现象称为 压电现象,具有压电现象的介质称为压电体。
压电效应反应了晶体的弹性性能与介电性能之间的耦合。
当对压电陶瓷施加一个与极化方向平行的压力F ,如图1.1( a )所示,陶瓷片将产生压缩变形,片 内的正、负束缚电荷之间的距离变小,极化强度也变小。
因此,原来吸附在电极 上的自由电荷,有一部分被释放,片内的正、负电荷之间的距离变大,极化强度 也变大,因此电极上又吸附一部分自由电荷而出现充电现象。
这种由机械效应转变为电效应的现象就是压电效应。
压电效应包括正压电效应和逆压电效应。
如图 所示: 图1.1压电效应示意图:(a )正压电效应(b )负压电效应正压电效应:当压电晶体在外力作用下发生形变时,在它的某些相对应的面 上产生异号电荷,这种没有电场作用,只是由于形变产生的极化现象称为正压电 效应。
逆压电效应:当压电晶体施加一电场时,不仅产生了极化,同时还产生了形 变,这种由电场产生形变的现象称为逆压电效应。
1.1.2压电陶瓷的诞生与发展具有压电效应性能的陶瓷称为压电陶瓷, 1942年美国麻省理工学院绝缘研究室发现,在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电 场方向择优取第一章绪论向,除去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞生了压电陶瓷。
钛酸钡(BaTiO s )陶瓷的发现促进了压电材料的发展,它不但使压电材料从一些单晶体材料发展到压电陶瓷等多晶体材料,而且在压电性能上也有了大幅度提高。
当今广泛应用的压电陶瓷是PZT,即Pb Zr,Ti O3压电陶瓷,其压电效应强,稳定性好。
它是由美国学者B.贾菲等人于1954年发现的PbZrO3 - PbTiO3二元系固溶体压电陶瓷,其机械品质因数约为钛酸钡(BaTiO 3)陶瓷的两倍。
压电式传感器测振动实验报告了解压电传感器的测量振动的原理和方法。
压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。
双踪示波器。
1、压电传感器装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
4、改变低频振荡器的频率,观察输出波形变化。
了解光纤传感器动态位移性能。
光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。
利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。
1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。
2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。
4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。
5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。
保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。
保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。
了解压电传感器的测量振动的原理和方法。
压电陶瓷特性及振动的干涉测量
具有压电效应的材料叫压电材料,可将电能转换成机械能,也能将机械能转换成电能,它包括压电单晶、压电陶瓷、压电薄膜和压电高分子材料等。
压电陶瓷制造工艺简单,成本低,而且具有较高的力学性能和稳定的压电性能,是当前市场上最主要的压电材料,可实现能量转换、传感、驱动、频率控制等功能。
由压电陶瓷制成的各种压电振子、压电电声器件、压电超声换能器、压电点火器、压电马达、压电变压器、压电传感器等在信息、激光、导航和生物等高技术领域得到了非常广泛的应用。
本实验通过迈克尔逊干涉方法测量压电陶瓷的压电常数及其振动的频率响应特性。
【实验目的】
1.了解压电材料的压电特性;
2.掌握用迈克尔逊干涉方法测量微小位移。
3. 测量压电陶瓷的压电常数。
4. 观察研究压电陶瓷的振动的频率响应特性。
【实验原理】
1. 压电效应
压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。
晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。
(1)正压电效应
压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。
对于各向异性晶体,对晶体施加应力j T 时,晶体将在X ,Y ,Z 三个方向出现与j
T 成正比的极化强度, 即: j mj m T d P =, 式中mj d 称为压电陶瓷的
压电应力常数。
(2)逆压电效应
当给压电晶体施加一电场E 时,不仅产生了极化,同时还产生形变S ,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应。
这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。
存在如下关系n ni i E d S =,式中ni d 称为压电应变常数 ,对于正和逆压电效应来讲,d 在数值上是相同的。
压电晶体的压电形变有厚度变形型、长度变形型、厚度切变型等基本形式。
当对压电晶体施加交变电场时,晶体将随之在某个方向发生机械振动。
在不同频率区间压电陶瓷阻抗性质(阻性、感性、容性)不同,对某一特定形状的压电陶瓷元件,在某一频率处(谐振频率),呈现出阻抗最小值,当外电场频率等于谐振频率时,陶瓷片产生机械谐振,振幅最大;而在另一频率处(反谐振频率),呈现出阻抗最大值。
2. 迈克耳逊干涉仪
迈克耳逊干涉仪可以测量微小长度。
图1是迈克耳逊干涉仪的原理图。
光源部分包括半
图1 迈克耳逊干涉仪
导体激光器和二维调节架。
玻璃板G 的第二表面上涂有半透射膜,能将入射光分成两束,一束透射,一束反射,故称为分光镜。
分光镜G 与光束中心线成45°倾斜角。
M1和M2为互相垂直并与G 都成45°角的平面反射镜,其中反射镜M1后附有压电陶瓷材料。
由激光器发出的光经分光镜G 后,光束被分成两路,反射光射向反射镜M1(附压电陶瓷),透射光射向测量镜M2(固定),两路光分别经M1、M2反射后,分别经分光镜反射和透射后又会合,经扩束镜到达白屏P ,产生干涉条纹。
M1和M2与分光镜中心的距离差决定两束光的光程差。
因而通过给压电陶瓷加电压使M1随之振动,干涉条纹就发生变化。
由于干涉条纹变化一级,相当于测量镜M1移动了入/2,所以通过测出条纹的变化数就可计算出压电陶瓷的伸缩量。
【实验仪器】
光学平台、半导体激光器(波长650nm )、分束镜、反射镜、压电陶瓷附件、扩束镜、白屏、驱动电源(10—250V )、光电探头。
本实验中采用的压电陶瓷为管状,在内外壁上分别镀有电极,以施加电压,在陶瓷管的一端装有激光反射镜,可在迈克耳逊干涉仪中作反射镜使用。
【实验内容】
1.将驱动电源分别与光探头,压电陶瓷附件和示波器相连,其中压电陶瓷附件接驱动电压插口,光电探头接光探头插口,驱动电压波形和光探头波形插口分别接入示波器CH1和CH2。
2. 在光学实验平台上搭制迈克尔逊干涉光路,使入射激光和分光镜成45度,反射镜M1和M2与光垂直,M1和M2与分光镜距离基本相等。
3.打开激光器,手持小孔屏观察各光路,适当调整各元件位置和角度,保证经分光镜各透射和反射光路的激光点不射在分光镜边缘上。
4.遮住M1,用小孔屏观察扩束镜前有一光点,再遮住M2分辨另一光点,分别调整
M1
和 M2的倾角螺丝直至两光点重合,并调整扩束镜位置使其与光点同轴,观察白屏上出现干涉条纹,再反复调整各元件,最好能达到扩束光斑中有2到3条干涉条纹。
5. 打开驱动电源开关,将驱动电源面板上的波形开关拨至左边“—”直流状态,旋转电源电压旋钮,可发现条纹随之移动;每移动一条干涉条纹,代表压电陶瓷伸缩位移变化了半个波长,即650/2nm=325nm用笔在白屏上做一参考点。
将直流电压降到最低并记录,平静一段时间,等条纹稳定后,缓慢增加电压,观察条纹移动,条纹每移过参考点一条,就记录下相应的电压值;测到电压接近最高值时,再测量反方向降压过程条纹反方向移动对应的电压变化数据。
由所测数据做出电压-位移关系图,并求出压电常数。
6. 取下白屏,换上光电探头,打开示波器。
将示波器至于双踪显示,CH1触发状态。
将驱动电源波形拨至右侧“m”三角波,CH1观察到驱动三角波电信号,CH2观察到一系列类似正弦波的波形代表干涉条纹经光电探头转换的信号,条纹移动的级数多少反映压电陶瓷伸缩长度的大小,即在三角波一个周期内正弦信号周期的数量反映压电陶瓷的振幅。
将驱动幅度调到最大,光放大旋钮调到最大,改变驱动频率,记录随驱动三角波频率(周期)变化的正弦信号周期数量,体会压电陶瓷的频率响应特性。
表1 压电常数测量
表2 频率特性测量
【注意事项】
1.实验中不得用眼直视激光束,以免损坏眼睛。
2.各光学玻璃镜要轻拿轻放,不要碰到表面。
【思考题】
⒈压电陶瓷伸缩量大小与条纹移动级数有何关系?
⒉从实验结果分析压电陶瓷在不同频率驱动电压下振幅是否相同?。