实验2压电陶瓷特性及振动的干涉测量
- 格式:ppt
- 大小:164.50 KB
- 文档页数:3
摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。
通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。
关键词:压电陶瓷;等效电路模型;电特性;可靠性0 引言压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。
它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。
与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。
利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。
通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。
为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。
我国对生态环境的保护也是相当重视的。
因此,近年来对无铅压电陶瓷进行了重点发展和开发。
但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。
因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。
本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。
1 测量参数和实验方法依据目前我国现有的关于压电陶瓷材料的测试标准主要有以下:GB/T 3389-2008 压电陶瓷材料性能测试方法GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法GB/T 16304-1996 压电陶瓷电场应变特性测试方法GB 11387-89 压电陶瓷材料静态弯曲强度试验方法GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。
压电陶瓷及其测量原理近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。
由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。
同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。
(一)压电陶瓷得主要性能及参数(1)压电效应与压电陶瓷在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。
这两种正、逆压电效应统称为压电效应。
晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。
在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。
(2)压电陶瓷得主要参数1、介质损耗介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。
在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。
介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。
图1 交流电路中电压电流矢量图(有损耗时)2、机械品质因数机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。
机械品质因数越大,能量得损耗越小。
产生能量损耗得原因在于材料得内部摩擦。
机械品质因数得定义为:机械品质因数可根据等效电路计算而得式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。
压电陶瓷微位移性能测量实验报告一、实验目的:1、了解压电陶瓷的性能参数;2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法;3、掌握压电陶瓷微位移测量方法;二、实验仪器:电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根三、实验原理:(一)利用测微台架标定电容测微仪在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。
这样得到一组数据即可对电容测微仪进行标定。
图1 电容侧微仪标定原理图(二)用标定后的电容测微仪测量压电陶瓷管的线性度在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。
图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲四、实验步骤(一)标定电容测微仪的线性度1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。
2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。
3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。
4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。
(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。
)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。
材料测试方法举例——压电陶瓷压电陶瓷是一种能够产生压电效应的陶瓷材料,具有压电、电致伸缩和压电声发射等特性。
为了评估压电陶瓷的性能和质量,需要进行一系列的材料测试方法。
下面是针对压电陶瓷的几种常用测试方法举例,供参考。
1.压电常数测试:压电常数是评价压电陶瓷的重要指标之一,用于描述材料对外力作用下电荷产生的比例关系。
测试之前,首先需将压电陶瓷样品制成规定的尺寸,然后通过设备施加压力,测量在不同压力下的电荷大小,进而计算压电常数。
常用的测试方法包括电荷常数法、弯曲法和悬臂梁法等。
2.电机械耦合系数测试:电机械耦合系数是反映压电陶瓷在电场作用下的振动和机械功率输出之间关系的指标。
测试时,将压电陶瓷样品固定在振动台上,通过施加电压激励材料振动,测量振动的频率和幅值,然后计算电机械耦合系数。
3.管路声发射测试:压电陶瓷可以应用于声发射传感器,用于检测管路中的泄漏或其他故障。
测试时,将压电陶瓷传感器安装在管路上,并进行正常运行的测试过程。
通过监测传感器产生的压电信号变化,可以识别管路中是否存在泄漏或故障。
4.微观结构分析:压电陶瓷的微观结构对其性能具有重要影响,因此需要进行微观结构分析。
常用的方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)等。
通过这些技术,可以观察到材料的晶粒结构、晶格畸变和缺陷等信息,从而评估材料的质量和性能。
5.稳态和瞬态性能测试:为了确定压电陶瓷的稳态和瞬态性能,需要进行相应的测试。
稳态性能测试主要包括电压-位移曲线测试和电压-电荷曲线测试,通过施加不同的电压并测量相应的位移或电荷,来评估材料对电场刺激的响应。
瞬态性能测试主要包括步进响应测试和冲击响应测试,通过输入瞬态电压或冲击信号,测量材料的响应时间和能量转换效率。
上述仅是压电陶瓷测试方法的一小部分举例,实际测试方法应根据具体应用和需求进行选择和设计。
测试方法的选取应考虑准确性、重复性、可靠性和可操作性等因素,以确保对压电陶瓷材料进行准确全面的评估。
六 干涉法量微小位移实验测一、实验目的1.通过实验熟悉激光测长仪(迈克尔逊干涉仪)的基本工作原理。
2.学会搭设激光光路的基本方法与技巧。
3. 掌握利用光的干涉原理测量物体微小位移方法。
4. 掌握压电陶瓷的特性及正确使用方法。
二、实验内容1.根据迈克尔逊干涉仪原理,设计一测量压电陶瓷膨胀(收缩)特性实验系统并搭设激光光路。
2.推导位移L与条纹变化数N的关系式。
3.测量压电陶瓷工作电压U变化与位移L关系,并Excel绘制 U-L曲线。
4.计算出电压为300伏时压电陶瓷最大位移量L max。
三、实验原理测量物体微位移是迈克尔逊干涉仪的典型应用,测量原理如下图6-1所示:图6-1 迈克尔逊干涉仪原理图由He-Ne激光器发出的光经透镜L扩束后入射到分光镜G,光束被分成两路,反射光射向参考镜M1(固定),透射光射向测量镜M2(可移动),两路光分别经M1、M2反射后,在分光镜处会合,并在接受屏P处产生干涉条纹,所以通过测量条纹的变化数就可计算出微小位移量,这就是激光测长仪的基本原理。
本实验是利用压电陶瓷的特性,通过施加工作电压使压电陶瓷产生膨胀,从而推动固定在一维导轨上的反射镜(动镜)移动致使干涉条纹发生变化。
四、实验仪器减震光学平台、He-Ne激光器(波长0.6328μm)、可调反射镜、分光镜、接收屏、可调高压直流电源(调节范围0 — 350V)、 一维导轨、被测压电陶瓷一块、光电探测器和干涉条纹自动采集实验系统。
五、实验步骤1.调整激光器使之发出的光与平台平行2.用自准直法分别调节反射镜和分光镜与激光束垂直(即与光学平台垂直)。
3.搭设实验光路(1)放置动镜M2(M2与被测压电陶瓷一起固定在一维移动导轨上)使之激光束垂直。
(2)放置扩束透镜,使透镜光轴与激光束同轴。
(3)放置分光镜G与定镜M1,并分别调节G和M1使观察屏P上出现等倾干涉条纹。
4.撤掉观察屏P换上光电探测器,使干涉环中心暗(亮)斑对准光探测器接收窗,开启计算机进入“干涉条纹自动采集实验系统”5.测量开始,给压电陶瓷缓慢加电升压,根据测量曲线,记录电压与干涉条纹变化数量相关数据。
压电陶瓷制备与测试实验报告一、实验要求1、了解压电陶瓷的基本性能、结构、用途、制备方法。
2、了解压电陶瓷常见的表征方法及检测手段。
3、掌握压电陶瓷材料压电、介电性能等性能测试方法。
4、掌握压电陶瓷的性能分析方法。
二、压电陶瓷材料制备过程主要包括以下步骤:配料-混合-预烧-粉碎-成型-排胶-烧结-被电极-极化-测试。
1、配料:Bi2O3···14.1244113464136 Sc2O3···4.13930659262249 PbO···23.339070300907 TiO2···8.397211760056962、原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度进行修正计算,然后进行原料的称量。
按化学配比配料以后,使用行星式球磨机将各种配料混合均匀。
实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,此外还有气流粉碎法等混合方法。
3、混合球磨后的原料进行预烧。
预烧是使原料间发生固相化学反应以生成所需产物的过程,预烧过程中应注意温度和保温时间的选择。
将预烧反应后的材料使用行星式球磨机粉碎。
4、成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。
轧膜成型适用于薄片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静水压成型适合于异形或块状元件。
除了静水压成型外,其他成型方法都需要有粘合剂,粘合剂一般占原料重量的3%左右。
成型以后需要排胶。
粘合剂的作用只是利于成型,但它是一种还原性强的物质,成型后应将其排出以免影响烧结质量。
5、烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。
烧结过程的机制是组成该物质的原子的扩散运动。
烧结的推动力是颗粒或者晶粒的表面能,烧结过程主要是表面能降低的过程。
利用迈克尔逊干涉仪研究压电陶瓷的动态特性通过对迈克尔逊干涉仪光路的调整,使光电探头的响应电压与三角波驱动电压的频率一致且峰-峰值最大。
这样不断改变驱动电压就可准确的找到响应电压、伸长位移量随驱动电压的关系。
标签:迈克尔逊干涉仪;压电陶瓷;峰-峰值;伸长位移引言压电材料具有压电效应和逆压电效应,在外加电场作用下,逆压电效应将使压电材料发生形变,通过控制驱动电压,压电材料能实现精密的位移输出,可获得较高的位移分辨率。
同时,压电材料输出具有频率响应高,动态反应快,性能稳定,不发热,不产生噪声及受外力干扰小等优点。
目前对逆压电效应的静态特性研究较多,而对动态特性研究相对较少,且测量的设备装置较复杂,响应电压、伸长位移量随驱动电压的变化关系也无准确的定量描述[1]。
然而随着压电陶瓷在光盘驱动器、计算机硬盘驱动器、光通信器件等动态控制方面的应用越来越广泛,对压电陶瓷动态位移特性的研究也越来越重视[2]。
本文基于迈克尔逊干涉仪平台,利用干涉法测量压电陶瓷动态特性,其装置简单,易操作,测量准确。
通过寻找与驱动电压同频率且峰-峰值最大的一个完整响应电压波形,来研究响应电压、伸长位移量随驱动电压的变化关系。
1 实验设计实验装置如图1所示,其中半导体激光器的激光波长为650nm,波形发生器可产生驱动电压为1~20V的三角波电压。
实验中采用的压电陶瓷材料为管状,长为40mm,壁厚为1mm,在内、外壁上镀电极,用来施加电压,在陶瓷管的一端装反射镜,可在迈克尔逊干涉仪中充当反射镜使用。
将光电探头信号和波形发生器信号连入数字示波器,可比较驱动电压、光电探头响应电压的峰-峰值和频率。
在未施加驱动电压前,调节迈克尔逊干涉仪两臂的光路,在光屏上可看见清晰的干涉图样。
干涉条纹将是一个以透镜光束为圆心的一组内疏外密、明暗相间的同心圆环,即为等倾干涉条纹(条纹间距,条纹粗细都不等),其中干涉条纹中心是最大级干涉,即i=0°。
当用光电探头替代光屏,并施加周期性的驱动电压信号时,压电陶瓷将发生周期性的振动,迈克尔逊干涉仪所产生的干涉条纹也将发生周期性的移动,干涉条纹所对应的光场强度也会发生相应的变化。
干涉压电陶瓷微位移纳米1.概述干涉是一种重要的光学现象,它在科学研究和工程应用中具有广泛的应用。
而微位移测量是其中的一个重要研究领域,对于各种微观结构的研究具有重要意义。
在微位移测量领域,压电陶瓷作为一种重要的传感器材料,具有灵敏度高、响应速度快、功耗小等优点,被广泛应用于微位移测量领域。
而随着纳米技术的发展,微位移测量的精度要求越来越高,对传感器材料的要求也越来越严格。
研究压电陶瓷在纳米级微位移测量中的应用具有重要意义。
2.压电陶瓷的基本原理压电陶瓷是一种具有压电效应的材料,它能够将机械能和电能相互转换。
当施加外力或者在其表面施加外电场时,压电陶瓷会产生微小的形变,并伴随着电荷的分布,从而产生电压信号。
这种压电效应使得压电陶瓷成为一种理想的位移传感器材料,广泛应用于微位移测量中。
3.纳米级微位移测量的要求随着纳米技术的发展,微位移测量的精度要求越来越高。
传统的微位移测量技术已经无法满足对纳米级位移的测量需求。
研究开发一种能够满足纳米级微位移测量要求的传感器材料成为了当下的研究热点。
压电陶瓷作为一种传感器材料,具有灵敏度高、响应速度快等优点,被认为是一种能够满足纳米级微位移测量需求的材料。
4.纳米级微位移测量中压电陶瓷的应用在纳米级微位移测量中,压电陶瓷被广泛应用于各种微位移传感器中。
通过将压电陶瓷与光学干涉技术相结合,可以实现对纳米级微位移的高精度测量。
当压电陶瓷感应到微小的位移时,会产生微弱的电压信号,通过放大、滤波等处理后,可以得到与位移大小相关的电信号。
然后利用光学干涉技术,将电信号转换为光学干涉信号,最终实现对纳米级微位移的测量。
5.压电陶瓷在纳米级微位移测量中的优势相比于传统的微位移传感器材料,压电陶瓷在纳米级微位移测量中具有诸多优势。
压电陶瓷具有较高的灵敏度和响应速度,在纳米级微位移的测量中能够满足高精度、高速度的要求。
压电陶瓷的功耗较小,可以降低能耗,延长传感器的使用寿命。
压电陶瓷的制备工艺成熟,成本较低,便于大规模生产和应用。
第31卷第3期 红外与激光工程 2002年6月Vol.31No.3 Infrared and Laser Engineering J un.2002用干涉法测量压电陶瓷的动态频率响应特性3吴新民1,2,陈进榜1,朱日宏1,程丽君1,王 青1,朱应时2(1.南京理工大学电光学院,江苏南京 210094;2.中国科学院长春光所,吉林长春 130022) 摘要:理论分析了用干涉法测量压电陶瓷的动态频率响应特性的方法,建立了由泰曼2格林干涉仪和光电转换测量系统组成的实验装置,只要电源允许,测量的频率可以达到5kHz。
实验结果表明,测量方法简便可行,易于实现,测量范围大、误差小。
关 键 词: 干涉; 压电陶瓷; 动态频率响应中图分类号:TB32 文献标识码:A 文章编号:100722276(2002)0320257204Measuring the dynamic frequency response ofpiezoelectric ceramic by interference method3WU Xin2min1,2,CHEN Jin2bang1,ZHU Ri2hong,CHEN G Li2jun1,WAN G Qing1,ZHU Y ing2shi2(1.Institute of Electric Engineering&Photoelectric Technology,Nanjing University of Science and Technology,Nanjing210094,China;2.Institute of Changchun Optics and Fine Mechanics,Chinese Academy of Science,Changchun130022,China)Abstract:New method of measuring dynamic frequency response of piezoelectric ceramic with in2 terference is put forward.The theoretical analysis and experimental method are discussed and the ex2perimental set2up is established.The system consists of a Twyman2Green interferometer and a photo2electric conversion and measuring system.It allows operation frequency up to5kHz.The experimentalresults show that the method is simple,easy to achieve,and can be used to measure the dynamic fre2quency response property of piezoelectric ceramic in wide range with high precision.K ey w ords: Interference; Piezoelectric ceramic; Dynamic frequency response 收稿日期:2001208201; 修订日期:2001212206基金项目:国防科工委“九五”计量测试资助项目(J181999B001)作者简介:吴新民(19662),男,安徽太湖县人,博士研究生,主要从事光学干涉测试和光学设计等方面的研究。
压电陶瓷晶片位移测量方法1 前言压电陶瓷晶片是应用于传感和控制领域的重要元件之一,其具有高精度、快速响应和可靠性等优点。
在压电陶瓷晶片应用的过程中,了解其位移变化情况非常重要,这需要通过相应的测量方法来实现。
本文主要介绍压电陶瓷晶片位移测量方法。
2 压电陶瓷晶片位移原理压电陶瓷晶片是一种具有特殊性质的陶瓷材料,它能够在电场作用下发生形变,即称之为压电效应。
将电极粘贴在陶瓷表面上,当施加电场时,陶瓷晶片中会形成一定的应力,在电场的作用下,陶瓷晶片会发生微小的位移变化。
这种位移变化与施加的电场大小和方向有关。
3 压电陶瓷晶片位移测量方法压电陶瓷晶片位移的测量是通过测量电场的变化来实现的,具体的测量方法如下:3.1 电容式测量法电容式测量法是最常见的压电陶瓷位移测量方法之一。
在电容式测量法中,将一块金属板贴在压电陶瓷晶片的表面,形成一个电容器。
当压电陶瓷晶片受到外界作用力时,电容器的电容值会受到影响,这时可以通过测量电容器的电容值来确定压电陶瓷晶片的位移量。
3.2 激光干涉测量法激光干涉测量法是一种高精度的压电陶瓷位移测量方法。
在激光干涉测量法中,利用激光干涉原理,通过激光光束与反射光束的干涉来确定压电陶瓷晶片的位移量。
这种方法具有精度高、响应速度快、测量范围广等特点,广泛应用于压电陶瓷晶片位移测量中。
3.3 声光阻抗测量法声光阻抗测量法是一种基于声光效应的压电陶瓷位移测量方法。
在声光阻抗测量法中,通过施加一定的电场和机械力,使压电陶瓷晶片产生声波,这时会引起压电陶瓷晶片与周围介质之间的声阻抗变化。
通过测量声波的振动幅度和频率来确定压电陶瓷晶片的位移量。
4 总结通过以上介绍可知,压电陶瓷晶片位移测量方法有多种,每种方法都有其特点和适用范围。
在实际应用中,需要根据具体情况选择相应的测量方法。
压电陶瓷晶片是应用广泛的一种传感器元件,在位移测量方面的应用相当重要,对于提高传感器元件的性能有着不可估量的作用。
实验二压电式传感器测量振动一、实验目的(1)了解压电式传感器原理和测量振动的方法。
(2)了解虚拟仪器的组成和使用。
二、基本原理压电式传感器是一种典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。
压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛应用。
压电加速度传感器测量振动的实验原理如图1所示。
其中,电荷放大器原理如图2所示。
图1 压电加速度传感器测量振动原理图图2 电荷放大器原理图三、需用器件与单元主机箱±15V直流稳压电源、低频振荡器;压电传感器、压电传感器实验模板、移相/相敏检波器/滤波器模拟板;振动源、双踪示波器。
四、实验步骤1、按图3所示将压电传感器安装在振动台面上(与振动台面中心的磁钢吸合),振动源的低频输入接主机箱中的低频振荡器,其它连线按图示意接线。
图3 压电传感器测量振动安装、接线示意图2、将主机箱上的低频振荡器幅值旋钮逆时针转到底(低频输出幅值为零),调节低频振荡器的频率在6~8Hz左右。
检查接线无误后合上主机箱电源开关。
再调节低频振荡器的幅值使振动台明显振动(如振动不明显可调频率)。
注意:振动源振动幅度合适即可,不可让其振幅过大,以免损坏设备。
3、用示波器的两个通道(正确选择双踪示波器的“触发”方式,TIME/DIV在50mS~20mS范围内选择,VOLTS/DIV在0.5~50mV范围内选择)同时观察低通滤波器输入端和输出端波形,在振动台正常振动时用手指敲击振动台同时观察输出波形变化。
4、改变低频振荡器的频率(调节主机箱低频振荡器的频率),观察输出波形变化。
记录几组波形曲线。
5、将低通滤波器输入端和输出端的信号分别接到数据采集卡的A、B两个端口。
运行虚拟仪器软件。
用虚拟示波器替代示波器,改变低频振荡器的频率(调节主机箱低频振荡器的频率),观察输出波形的变化。
(虚拟仪器软件的使用,课堂上详细讲解。