28.悬臂梁固有频率测量实验
- 格式:docx
- 大小:82.55 KB
- 文档页数:3
说明:在下面的数据处理中,如1A,11d T,1δ,1ξ,1n T,1nω:表示第一次实1验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。
第二次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平方,三次方会引起误会,请老师见谅!!Ap0308104 陈2006-7-1 实验题目:悬臂梁一阶固有频率及阻尼系数测试一、实验要求以下:1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;2. 了解小阻尼结构的衰减自由振动形态;3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。
二、实验内容识别悬臂梁的二阶固有频率和阻尼系数。
三、测试原理概述:1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。
2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。
信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。
3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。
频率:不同的频率成分反映系统内不同的振源。
通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率4、阻尼比的测定自由衰减法: 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。
一阶固有频率和阻尼比的理论计算如下:113344423.515(1)2=210;70;4;285;7800;,1212,, Ix= 11.43 cm Iy= 0.04 cm 0.004 2.810,,1x y y f kg E pa b mm h mm L mm mab a bI I I m m E L πρρ-----------⨯======⨯=⨯固x y =式惯性矩:把数据代入I 后求得载面积:S =bh=0.07m 把S 和I 及等数据代入()式,求得本41.65()HZ 固理悬臂梁理论固有频率f =阻尼比计算如下:2221111220,2,........ln ,,22;n d n n nd n d n T ii i j ji i i i j i i i j i n d i jn d n d d d d x dx c kx dt dtc e A A A A A T A T T ξωξωωξωωωξωωηηδξωωωωωπδπξ++-++++++++=++===≈==⨯⨯⨯==≈2二阶系统的特征方程为S 微分方程:m 很少时,可以把。
悬臂梁固有频率的测量实验用具:1、计算机2、LabVIEW 虚拟仪器平台3、USB 数据采集卡4、加速度传感器5、信号调理设备6、悬臂梁7、开关电源8、脉冲锤实验目的:1、掌握用瞬态激振方式,进行机械阻抗测试的仪器使用方法。
2、了解瞬态激振时的数据处理方法。
3、测出悬臂梁的固有频率和阻尼系数。
实验原理:悬臂梁是一个连续弹性体,具有无限多个自由度,即有无限多个固有频率和主振型。
在一般情况下,梁的振动是无限多个主振型的叠加。
如果给梁施加一个大小合适的激振力,其频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率的确定的振动形态叫做这一阶的主振型,这时其他各阶振型的影响可以忽略不计。
用共振法测定梁的固有频率和主振型时,只要连续调节激振力的频率,使梁出现某阶纯振型且振动幅值达到最大(产生共振),就可以认为这时的激振频率是悬臂梁的该阶固有频率。
实际上,人们关心的通常是最低的几阶固有频率和主振型,本实验采用共振法测定悬臂梁的一、二、三阶固有频率和振型。
由弹性振动理论,悬臂梁横向振动固有频率的理论解为:(Hz )式中: 梁的长度L弹性常数E=2╳106 kg/cm 2。
材料重度0.0078kg/cm 3。
轴惯性矩4312cm hb I z =。
悬臂梁横向振动的各阶固有频率之比为1:6.25:17.5,横向振动的一、二、三阶振型如图所示。
ρA EJ L f 25.17==ρ=321::f f f(a ) (b ) (c )图示为悬臂梁横向振动的一阶主振型(a )、二阶主振型(b )和三阶主振型(c )由弹性体振动理论可知,对于悬臂梁,横向振动固有频率理论解为)3,2,1()(42⋯⋯==i lEI l l i i ρβω 各阶频率为 π=2ii f ω式l i β——频率方程+1=0的解,前三个根 (i =1,2,3)依次为1.875,4.694,7.855;E ——材料的弹性模量(Pa );I ——梁横截面对z 轴的惯性矩(m4);——材料线密度(kg/m ),其中 ——材料密度(kg/m3); A ——梁横截面面积(m2);对矩形截面,弯曲惯性矩123hb I =式中 b ——梁横截面宽度(m );h ——梁横截面高度(m )。
实验十二 连续弹性体悬臂梁各阶固有频率及主振型测定一、一、实验目的1、 1、 用共振法确定连续弹性体悬臂梁的各阶固有频率和主振型。
2、 2、 观察分析梁振动的各阶主振型。
情况下,梁的振动是无穷多个主振型的迭加。
如果给梁施加一个合适大小的激扰力,且该力的频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率确定的振动形态叫做这一阶主振型,这时其它各阶振型的影响小得可以忽略不计。
用共振法确定梁的各阶固有频率及振型,我们只要连续调节激扰力,当梁出现某阶纯振型且振动幅值最大即产生共振时,就认为这时的激扰力频率是梁的这一阶固有频率。
实际上,我们关心的通常中最低几阶固有频率及主振型,本实验是用共振法来测定悬臂梁的一、二、l i β①根据《振动力学》,刘延柱,陈文良,陈立群著,1998版。
136页,例6.2-2式(g)A — A — 梁横截面积(m 2)l ρ—材料线密度(kg/m) l ρ=ρAρ—材料密度(kg/m 3) I —梁截面弯曲惯性矩(m 4)对矩形截面,弯曲惯性矩:123bhI = (m 4) (2)式中: b —梁横截面宽度(m) h —梁横截面高度(m) 本实验取l =( ) m b=( ) m h=( ) mE=20×1011Pa ρ=7800kg/m 3 各阶固有频率之比:f 1:f 2:f 3:f 4……=1:6.27:17.55 (3)理论计算可得悬臂梁的一、二、三阶固有频率的振型如图(3)所示:0.10.20.30.40.50.60.70.80.91-10120 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2020 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.511.5beam transvers vibration with one end clasped四、四、实验方法1、 1、 选距固定端L/4之处为激振点,将激振器端面对准悬臂梁上的激振点,保持初始间隙δ=6~8mm 。
固有频率测量实验报告固有频率测量实验报告引言固有频率是物体在没有外力作用下自由振动的频率。
在工程和科学领域中,准确测量固有频率对于设计和分析结构的动态响应至关重要。
本实验旨在通过使用简单的装置和方法来测量固有频率,并探讨其在不同条件下的变化。
实验装置本实验使用了一个简单的弹簧振子装置。
装置由一个固定在支架上的弹簧和一个连接在弹簧末端的质量块组成。
质量块可以通过调整位置来改变弹簧振子的质量。
实验中使用了一个光电传感器和计算机软件来测量振子的运动。
实验步骤1. 将弹簧振子装置固定在实验台上,并调整质量块的位置,使其与弹簧保持水平。
2. 将光电传感器安装在弹簧振子的一侧,并将其连接到计算机。
3. 打开计算机上的测量软件,并进行校准。
4. 将振子拉至一侧,并释放,观察振子的自由振动。
5. 记录振子的振动时间和光电传感器的读数。
6. 重复步骤4和5,进行多次测量。
实验结果通过多次测量,我们得到了振子在不同质量条件下的固有频率。
结果显示,随着质量块的增加,振子的固有频率减小。
这是因为质量块的增加增加了振子的惯性,使其振动变得缓慢。
我们还发现,振子的固有频率受到环境条件的影响。
在不同温度和湿度下,振子的固有频率会发生变化。
这是因为温度和湿度的变化会导致弹簧的刚度和振子的质量发生变化,从而影响固有频率的测量结果。
讨论与分析本实验结果表明,固有频率是一个重要的物理参数,可以用于分析和设计结构的动态响应。
通过测量固有频率,我们可以了解结构的振动特性,并采取相应的措施来避免共振和破坏。
然而,本实验使用的装置和方法存在一些限制。
首先,弹簧振子的简化模型并不能完全代表复杂的实际结构。
其次,由于环境条件的变化,测量结果可能存在一定的误差。
因此,在实际应用中,需要综合考虑其他因素,并采用更精确的测量方法。
结论本实验通过简单的装置和方法成功测量了弹簧振子的固有频率,并探讨了其在不同条件下的变化。
结果表明,质量和环境条件对固有频率有重要影响。
梁的振动实验报告实验目的改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。
对比理论计算结果与实际测量结果。
正确理解边界条件对振动特性的影响。
实验内容对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。
实验原理1、固有频率的测定悬臂梁作为连续体的固有振动,其固有频率为:()1,2,.......r r l r ωλ==其中,其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、、、 简支梁的固有频率为:()1,2,.......r r l r ωλ==其中其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。
试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3)横截面积:A =4.33*10-4 (m 2),截面惯性矩:J =312bh =2.82*10-9(m 4)则梁的各阶固有频率即可计算出。
2、实验简图图1 悬臂梁实验简图图2简支梁实验简图实验仪器本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。
图3和图4分别为悬臂梁和简支梁的实验装置图。
图5为YE6251数据采集仪。
图3 悬臂梁实验装置图图4 简支梁实验简图图5 YE6251数据采集分析系统实验步骤1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。
2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。
3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。
实验报告悬臂梁的模态实验姓名: xxx学号: xxx专业: xxx系别: xxx一、试验装置二、实验原理本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~,∑=+-==ni i i i k i s i r s r rs i k F X H 12)()()(0)21(~~λζλϕϕ (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为:∑=+--=-=ni i i i k i s i r s r a rs i kF X H 12)()()(202)21(~~λζλϕϕωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为:,22)(~)()()()()()(2kk k s k r k k k sk r k k a rs m i k i H ζϕϕζϕϕωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m kk k 2()(ω)式中=为各阶主质量...n k ,3,2,1=。
改变s 点的位置,在不同点激振,可以得到不同点与点r之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为:∑=+--=ni i i i i i r i r a rr i k H 12)()()(2)21(~λζλϕϕω (4) 它的第k 个峰值为:,2)(~)()()(2kk k r k r k k a rr k i H ζϕϕωωω-== (5)由(3)/(5)得到:(6)若另1)(=k rϕ,就可得到:(7)由(7)式,另s=1,2,3,......n,就可得到第k 阶主振型的各个元素。
实验报告
实验名称:悬臂梁固有频率测试
实验目的:
1)熟悉基于Labview的数据采集过程
2)掌握时频域的信号分析
实验仪器设备:
1)悬臂梁实验模型:钢尺(宽:mm,厚:mm);涡流传感器;前置放大电路及电源
2)数据采集卡,计算机,示波器,改锥等
3)基于Labview的数据采集程序及分析程序
实验过程:
1)准备工作:接好涡流传感器,加合适激励观察示波器输出波形;连接采样系统的硬件部分后,应用计算机中的采集程序观测输出波形是否正常。
2)调节悬臂梁实验模型即钢尺的长度(20cm,24cm,28cm),三个不同长度上加入两种激励方式(冲激、阶跃),应用采集系统采集两种激励方式下的涡流传感器输出数据,存储。
冲激:应用改锥敲击实现;阶跃:应用手按动实现。
3)应用数据分析软件进行数据分析。
实验结果及分析:
1)不同长度不同激励方式下采集的数据如下:
图a1钢尺长度:20cm,改锥敲击
图a2钢尺长度:20cm,手按动
图b1钢尺长度:24cm,改锥敲击
图b2钢尺长度:24cm,手按动
图c1钢尺长度:28cm,改锥敲击
图c2钢尺长度:28cm,手按动
2)数据分析及思考
思考题:
1)总结在实验和数据处理操作时需要注意的问题?
2)不同激励方式造成测试结果的误差有多大?哪种最好?
3)在上面实验中,最高能够找到第几阶固有频率?
4)比较悬臂梁频率测量的理论值和实验值,分析误差及来源?
5)查找一篇相关文献,该文献的测试对象以悬臂梁为原型,简要总结它的测试方案。
悬臂梁固有频率测试一、实验目的(1)了解加速度传感器的工作原理和安装方式(2)了解振动参量的测试(3)掌握信号的频谱分析二、实验原理瞬态信号可以用三种方式产生,分述如下:一是快速正弦扫频法。
将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频。
从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号。
是脉冲激励。
用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。
信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。
三是阶跃激励。
在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力。
用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗。
三、结构组成悬臂梁实验台的结构示意如图1所示,结构总体尺寸为375×37×2.75mm(长×宽×高),主要包括的零件为悬臂和底座。
12运用悬臂梁实验台进行实验教学所需准备的实验设备为:(1)、悬臂梁实验台 1套(2)、加速度传感器 1套(3)、加速度传感器变送器 1台(4)、数据采集仪 1台(5)、开关电源 1套(6)、脉冲锤 1只四、实验步骤(1) 备齐所需的设备后,将加速度传感器安装在悬臂梁前端;(2) 将加速度传感器与信号调理模块相连,通过接线盒1通道连接,数据采集仪与P C 机连接。
在保证接线无误的情况下,可以开始进行实验。
(3) 设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。
悬臂梁振动参数测试实验悬臂梁是一种常见的结构,广泛应用于工程领域。
在实际应用中,悬臂梁的振动参数对结构的稳定性和性能有重要影响。
因此,进行悬臂梁振动参数测试实验具有重要意义。
悬臂梁的振动参数主要包括自然频率、阻尼比和模态形态等。
自然频率是指悬臂梁在无外界力作用下固有振动的频率。
阻尼比是描述悬臂梁振动衰减速度的参数。
模态形态是指悬臂梁不同振型下的振动特征。
悬臂梁的振动参数测试实验可以通过使用加速度传感器和激励源等测量设备进行。
实验流程如下:首先,确定悬臂梁的几何尺寸和材料参数。
将悬臂梁固定在实验平台上,并保证其支座位置与实际使用条件相同。
接下来,以悬臂梁的自然频率为目标进行实验。
采用激励源施加不同频率的激励信号,并通过加速度传感器测量相应的振动响应。
利用悬臂梁的振幅-频率响应曲线,可以得到悬臂梁的自然频率。
然后,以阻尼比为目标进行实验。
在悬臂梁上施加周期性激励信号,在加速度传感器的测量下获取悬臂梁的振动响应。
利用悬臂梁的振幅-时间曲线,可以计算出悬臂梁的阻尼比。
最后,以模态形态为目标进行实验。
通过在悬臂梁不同位置施加冲击或连续激励信号,可以观察到悬臂梁的振动模态。
利用高速摄像机或激光干涉仪等设备,可以记录下悬臂梁不同振型的形态,从而得到悬臂梁的模态形态。
实验完成后,可以对悬臂梁的振动参数进行分析和评价。
如果实测值与设计值或理论值相符,则说明实验结果准确可靠;如果存在较大偏差,则可能需要重新检查实验方法或设计参数。
总之,悬臂梁振动参数测试实验是一个关键的工程实验,可以用于评估和改进悬臂梁的振动性能。
通过合理设计实验方案和选用合适的测量设备,可以得到准确的振动参数,为悬臂梁的设计和应用提供有力支持。
实验二十八悬臂梁固有频率测量实验1. 简介悬臂梁实验台主要是针对高校工程测试课程实验教学需要而设计的,结合drvi快速可重组虚拟仪器开发平台、振动测量传感器和数据采集仪,可以开设悬臂梁固有频率测量实验。
2. 结构组成悬臂梁实验台的结构示意如图1所示,结构总体尺寸为120×110×150mm(长×宽×高),主要包括的零件有:图1 悬臂梁实验台结构示意图1. 悬臂2. 底座3. 操作说明3.1 实验准备运用悬臂梁实验台进行实验教学所需准备的实验设备为:1. 悬臂梁实验台(lxbl-a)1套2. 加速度传感器(yd-37)1套3. 加速度传感器变送器(lbs-12-a)1台4. 蓝津数据采集仪(ldaq-epp2)1台5. 开关电源(ldy-a)1套6. 脉冲锤1只7. 5芯对等线1条备齐所需的设备后,将加速度传感器安装在悬臂梁前端的安装孔上,然后将加速度传感器与变送器相连,变送器通过5芯对等线与数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接,加速度传感器调理电路模块接线如图2所示。
在保证接线无误的情况下,可以开始进行实验。
图2 加速度传感器调理电路接线示意图3.2 实验操作悬臂梁固有频率测量实验利用加速度传感器来测量悬臂振动的信号,经过频谱变换(fft)处理后得到悬臂梁的一阶固有频率,需要注意的是该实验数据采集采用预触发方式,数据采集仪的触发电平要根据现场情况进行设置,实验过程如下:1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行服务器和数据采集仪之间的注册。
联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。
图3 悬臂梁固有频率测量实验样本图2. 启动drvi中的“悬臂梁固有频率测量”实验脚本,然后设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。
两端悬挂梁各阶固有频率及主振形的测定试验一、实验目的1、用共振法确定两端悬挂梁横向振动时的前五阶固有频率;2、熟悉和了解两端悬挂梁振动的规律和特点;3、观察和测试两端悬挂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。
二、仪器和设备两端悬挂支座;脉冲锤1个;圆形截面钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。
三、实验基本原理实验基本同悬臂梁实验四、实验结果记录前五阶固有频率表阶数固有频率(Hz)1 8.47352 54.69353 152.16244 295.96015 490.4713实验测得前5阶振型图如下:1阶振型图2阶振型图3阶振型图4阶振型图5阶振型图五、ANSYS有限元模拟仿真结果5.1前五阶固有频率仿真数据5.2前五阶振型仿真图1阶振型仿真图2阶振型仿真图3阶振型仿真图4阶振型仿真图5阶振型仿真图六、结果误差分析悬臂梁理论计算固有频率理论值、有限元仿真值与实测值表 梁几何尺寸 梁长 L=1m梁直径D=12mm固有频率(Hz ) 1f 2f3f4f5f实验值 8.4735 54.6935 152.1624 295.9601 490.4713 有限元仿真值 053.884148.43290.69479.87结论:由以上表可以看梁一阶频率的实验值和仿真值完全不同,并且仿真值为0,其余四阶的数值比较接近,推测出现此结果的原因是:(1)有限元仿真中梁为无约束梁,其六个自由度均未约束,因此会出现前六个仿真值均接近0的情况,即悬挂梁不存在一阶振型。
(2)由于悬挂梁的六个自由度都未约束,实际震动中会将能量分散到整个空间,因此难以测得悬挂梁的一阶固有频率。
锤击法测量悬臂梁的固有振动参数试验报告悬臂梁是工程中常用的一种结构形式,在实际应用中,了解悬臂梁的固有振动参数对于设计和分析都非常重要。
锤击法是一种常见的测量悬臂梁固有振动参数的实验方法,本文将通过锤击法测量悬臂梁的固有振动参数,并撰写一份试验报告。
1.实验目的:本实验的目的是采用锤击法测量悬臂梁的固有振动参数,包括固有频率和振动模态。
2.实验设备和材料:-悬臂梁:长度为L的悬臂梁-锤子:质量为m的锤子-支座:用于支撑悬臂梁和固定激振点的支座-多功能振动测试仪:用于采集实验数据和分析振动模态-实验室测量器具:如电子天平、尺子等3.实验步骤:3.1准备工作-准备好悬臂梁和支座,并确保悬臂梁能够在支座上稳定地放置。
-将多功能振动测试仪连接到计算机上,并打开测试软件。
3.2测量固有频率-将锤子在悬臂梁上的不同位置进行轻微的敲击,记录每次敲击的时间和位置。
-根据记录的数据,计算出各个位置的固有频率,即悬臂梁的自由振动频率。
-重复上述操作,至少进行五次测量以获得准确结果。
3.3测量振动模态-在悬臂梁的敏感点上安装合适的加速度计。
-通过多功能振动测试仪采集加速度计的数据,并进行实时分析。
-在分析软件中观察和记录悬臂梁的振动模态,包括节点位置和相应的模态形态。
-重复上述操作,至少进行五次测量以获得准确结果。
4.数据处理与分析:4.1固有频率的计算根据实际测量的数据,可以计算出悬臂梁的固有频率。
根据振动理论,悬臂梁的固有频率与其几何尺寸和材料属性有关,可以使用以下公式计算:fn = αn * sqrt(E/(ρ*L^4))其中,fn为第n个固有频率,αn为与振动模态相对应的常数,E为悬臂梁的杨氏模量,ρ为悬臂梁的质量密度,L为悬臂梁的长度。
4.2振动模态的分析通过振动测试仪采集的振动信号,可以进行振动模态的分析。
根据振动模态的特点,可以确定悬臂梁的节点位置和相应的模态形态。
通过多次测量和分析,可以进一步验证实验结果的准确性。
说明:在下面的数据处理中,如1A,11d T,1δ,1ξ,1n T,1nω:表示第一次实1验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。
第二次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平方,三次方会引起误会,请老师见谅!!Ap0308104 陈2006-7-1 实验题目:悬臂梁一阶固有频率及阻尼系数测试一、实验要求以下:1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;2. 了解小阻尼结构的衰减自由振动形态;3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。
二、实验内容识别悬臂梁的二阶固有频率和阻尼系数。
三、测试原理概述:1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。
2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。
信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。
3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。
频率:不同的频率成分反映系统内不同的振源。
通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率4、阻尼比的测定自由衰减法: 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。
一阶固有频率和阻尼比的理论计算如下:113344423.515(1)2=210;70;4;285;7800;,1212,, Ix= 11.43 cm Iy= 0.04 cm 0.004 2.810,,1x y y f kg E pa b mm h mm L mm mab a bI I I m m E L πρρ-----------⨯======⨯=⨯固x y =式惯性矩:把数据代入I 后求得载面积:S =bh=0.07m 把S 和I 及等数据代入()式,求得本41.65()HZ 固理悬臂梁理论固有频率f =阻尼比计算如下:2221111220,2,........ln ,,22;n d n n nd n d n T ii i j ji i i i j i i i j i n d i jn d n d d d d x dx c kx dt dtc e A A A A A T A T T ξωξωωξωωωξωωηηδξωωωωωπδπξ++-++++++++=++===≈==⨯⨯⨯==≈2二阶系统的特征方程为S 微分方程:m 很少时,可以把。
实验题目:悬臂梁固有频率测试实验数据处理一、实验要求以下:1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;2. 了解小阻尼结构的衰减自由振动形态;3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。
二、实验内容识别悬臂梁的二阶固有频率和阻尼系数。
三、测试原理概述:1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。
2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。
信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。
3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。
频率:不同的频率成分反映系统内不同的振源。
通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率实验步骤及内容1,按要求,把各实验仪器连接好接入电脑中,然后在悬臂梁上粘紧压电式加速度传感器打开计算机,。
2,打开计算机,启动计算机上的“振动测试及谱分析.vi ”。
3,选择适当的采样频率和采样点数以及硬件增益。
点击LabVIEW 上的运行按钮(Run )观察由脉冲信号引起梁自由衰减的曲线的波形和频谱。
4,尝试输入不同的滤波截止频率,观察振动信号的波形和频谱的变化。
5,尝试输入不同的采样频率和采样点数以及硬件增益,观察振动信号的波形变化。
6,根椐最合适的参数选择,显示最佳的结果。
然后按下“结束按钮,完成信号采集。
最后我选择f为512HZ,采样点数N为512点。
的参数是:采样频率s7,记录数据,copy读到数据的程序,关闭计算机。
第一次实验数据记录及分析:为了准确读取数据,可以在原程序中增加一个可以读取框图。
是第一组衰减振荡信号的数据图。
任意选取其中幅值较大的连续的7个幅值,得到如下数据及处理如下:111111112345671111112340.13806;0.12707;0.11365;0.10632;0.09167;0.09045;0.0818413;331815;473314;614714;d d d d A A A A A A A T s T s T s T s ========-==-==-==-=234567幅值:时间:T =4s ,T =18s ,T =33s,T =47s,T =61s, T =74s, T =88s;1156746113;887414d d T s T s=-==-=11171222110.053980.089510.08951;0.014253770.034452 6.2814,11410.01425313.99858()1HZ 1n d d n A IN IN A T s T S T δδξπξξωωω=========-=⨯-=-=11d d n n d 从得到的周期可知,T ,而T 得T 为有阻尼的信号周期,T 为无阻尼信号的周期。
上海第二工业大学名称:传感器与测试技术技能实习专业:机械电子工程班级:13机工A1姓名:学号:2013481指导老师:杨淑珍孙芳方实训地点:14#407目录一、技能实习内容及要求 (1)二、总体方案设计 (2)2-1. 测量原理 (2)2-2. 测试系统组成 (2)2-3. 激励方法 (3)三、实验硬的件选用 (3)3-1、悬臂梁 (3)3-2.传感器 (4)3-3、电荷放大器 (5)3-4、采集卡 (6)四、硬件电路的设计 (6)五、测量软件设计 (9)六、小结和体会 (16)一、技能实习内容及要求1-1. 内容:设计一个测试悬臂梁固有频率的自动测试系统,悬臂梁如下所示:具体技术要求:能显示相应所采集到的波形图、频谱图等相关图能显示固有频率能对固有频率进行超限报警,上下限制用户可设定生成当前测试报告,(包括相应波形图和固有频率值以及合格状态)1-2. 实训要求:1、提出设计方案(提出测量原理,传感器选用和安装,构建测试系统)2、设计测量电路(包括放大,滤波电路,制作滤波电路)3、测试软件设计:利用Labview或其它开发程序(VB、VC等),设计测量软件进行数据采集和分析4、调试5、撰写实训报告1-3. 报告要求:1.实训内容2.撰写总体设计方案3.硬件选用(包括传感器、采集卡的选用和安装等)4.电路设计(包括测量电路设计,系统总电路)5.测量软件设计(包括软件设计流程图,各功能实现方法和代码,包括个主程序,子程序描述以及相应的重要参数设置如采样通道,采样频率,采样点数)6.小结和体会(可包含调试中遇到的问题)二、总体设计方案2-1.测量原理:在测试的过程中,通过脉冲锤敲击悬臂梁的横梁产生一个脉冲信号。
信号会逐渐衰减,在衰减过程中会有一个时刻衰减到的频率和悬臂梁的固有频率相同,我们要找到的就是这个相同的频率,这个频率与悬臂梁固有频率形成共振,那时候的复制达到最大,用labview分析这个值,就可以测出悬臂梁的固有频率。
实验五 悬臂梁各阶固有频率及主振形的测定试验一、实验目的1、用共振法确定悬臂梁横向振动时的各阶固有频率。
2、熟悉和了解悬臂梁振动的规律和特点。
3、观察和测试悬臂梁振动的各阶主振型。
分析各阶固有频率及其主振型的实测值与理论计算值的误差。
二、基本原理悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。
对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。
运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。
梁各阶固有园频率为AEIi i n 2ρβω= (5-2)对应i 阶固有频率的主振型函数为),3,2,1()sin (sin cos cos )( =-++--=i x x sh LL sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3)对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。
各阶固有园频率之比1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4)A B x 图5-1 悬臂梁振动模型表(5-1)给出了悬臂梁自由振动时i =1~4阶固有园频率及其相应主振型函数。
除了悬臂梁固定端点边界位移始终为零外,对于二阶以上主振型而言,梁上还存在一些点在振动过程中位移始终为零的振型节点。
i 阶振型节点个数等于i -1,即振型节点个数比其振型的阶数小1。
实验测试对象为矩形截面悬臂梁(见图5-2所示)。
在实验测试时,给梁体施加一个大小适当的激扰作用力,其频率正好等于梁体的某阶固有频率,则梁体便会产生共振,这时梁体变形即为该阶固有频率所对应的主振型,其它各阶振型的影响很小可忽略不计。
悬臂梁实验报告悬臂梁实验报告引言:悬臂梁是工程力学中常见的结构之一,广泛应用于桥梁、建筑和机械工程等领域。
本实验旨在通过悬臂梁的静力学实验,研究其受力特性和变形规律。
通过实验数据的采集和分析,可以进一步了解悬臂梁的力学性能,为工程实践提供参考。
实验装置:本次实验使用的悬臂梁实验装置由一根长而细的横梁固定在一端,另一端悬空,形成一个悬臂结构。
实验中使用了称重传感器、测力计、测量仪器等设备,用于测量悬臂梁的受力情况。
实验过程:1. 在实验开始前,首先将悬臂梁装置固定在实验台上,并保证其水平。
2. 将称重传感器安装在悬臂梁上,用于测量悬臂梁的受力。
3. 使用测力计测量悬臂梁上的外力,包括静力和动力。
4. 通过测量仪器记录悬臂梁的变形情况,包括挠度和角度。
5. 逐步增加悬臂梁上的外力,记录相应的受力和变形数据。
实验结果:通过实验数据的采集和分析,我们得到了以下结果:1. 受力特性:随着外力的增加,悬臂梁上的受力呈线性增长。
在小负荷情况下,悬臂梁的受力主要集中在固定端,随着外力的增加,受力逐渐向悬臂端转移。
当外力达到一定阈值时,悬臂梁会发生破坏。
2. 变形规律:悬臂梁在受力过程中会发生挠度和角度变化。
挠度是指悬臂梁在受力下产生的弯曲变形,随着外力的增加,挠度逐渐增大。
角度变化则是指悬臂梁在受力下产生的转动变形,同样随着外力的增加,角度变化逐渐增大。
3. 影响因素:悬臂梁的受力和变形受多种因素影响,包括外力的大小、悬臂梁的材料性质、悬臂梁的几何形状等。
在实验中,我们可以通过改变这些因素来研究其对悬臂梁性能的影响。
结论:通过本次实验,我们深入了解了悬臂梁的受力特性和变形规律。
悬臂梁在受力过程中呈现出线性增长的受力特性,同时产生挠度和角度变化。
这些实验结果对于工程实践具有重要意义,可以为桥梁、建筑和机械工程等领域的设计和施工提供参考。
未来研究方向:本实验只是对悬臂梁的基本受力特性和变形规律进行了研究,还有许多方面有待深入探索。
实验二十八悬臂梁固有频率测量实验
1. 简介
悬臂梁实验台主要是针对高校工程测试课程实验教学需要而设计的,结合drvi快速可重组虚拟仪器开发平台、振动测量传感器和数据采集仪,可以开设悬臂梁固有频率测量实验。
2. 结构组成
悬臂梁实验台的结构示意如图1所示,结构总体尺寸为120×110×150mm(长×宽×高),主要包括的零件有:
图1 悬臂梁实验台结构示意图
1. 悬臂
2. 底座
3. 操作说明
3.1 实验准备
运用悬臂梁实验台进行实验教学所需准备的实验设备为:
1. 悬臂梁实验台(lxbl-a)1套
2. 加速度传感器(yd-37)1套
3. 加速度传感器变送器(lbs-12-a)1台
4. 蓝津数据采集仪(ldaq-epp2)1台
5. 开关电源(ldy-a)1套
6. 脉冲锤1只
7. 5芯对等线1条
备齐所需的设备后,将加速度传感器安装在悬臂梁前端的安装孔上,然后将加速度传感器与变送器相连,变送器通过5芯对等线与数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接,加速度传感器调理电路模块接线如图2所示。
在保证接线无误的情况下,可以开始进行实验。
图2 加速度传感器调理电路接线示意图
3.2 实验操作
悬臂梁固有频率测量实验利用加速度传感器来测量悬臂振动的信号,经过频谱变换(fft)处理后得到悬臂梁的一阶固有频率,需要注意的是该实验数据采集采用预触发方式,数据采集仪的触发电平要根据现场情况进行设置,实验过程如下:
1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行服务器和数据采集仪之间的注册。
联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。
图3 悬臂梁固有频率测量实验样本图
2. 启动drvi中的“悬臂梁固有频率测量”实验脚本,然后设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。
3. 用脉冲锤敲击悬臂梁,产生脉冲激振。
敲击的力幅要适当,着力点要准确,迅速脱开。
如检测不到冲击振动信号,则适当修改采集仪中的预触发电平,然后点击面板中的“开始”按钮再次进行测量,此时,信号分析窗口中应显示出悬臂梁受瞬态激励后输出的信
号波形。
4. 移动光标至基频的峰值点,读出该处的频率值x和谱高y,再移动光标,测处该基频处谱峰的谱宽。
4. 实验报告要求
1. 简述实验原理和目的
2. 根据实验原理和要求整理出本实验的设计原理图。
6. 思考题
1. 振动信号是如何转换成电信号的?
2. 若要了解振动对机械的影响,如何选择测点位置?
3. 在实际的工程测试中,怎样消除环境带来的低频或高频振动的影响?
附录:
1. 该实验的实验信号处理框图如图4所示
图4 悬臂梁固有频率测量实验信号处理流程图。