判别分析简介
- 格式:pdf
- 大小:211.46 KB
- 文档页数:3
判别分析导言判别分析是统计学中一种常用的数据分析方法,用于区分不同群体或类别之间的差异。
它通过寻找最佳的分类边界,帮助我们预测或判定未知样本的分类。
判别分析常用于模式识别、数据挖掘、生物学、医学等领域。
本文将介绍判别分析的基本概念、应用领域和算法。
一、判别分析的基本概念判别分析旨在通过构造合适的判别函数,将不同群体或类别的样本区分开来。
判别函数的建立是判别分析的核心任务,而判别函数的类型通常根据问题的特点来选择。
常见的判别函数有线性判别函数、二次判别函数、贝叶斯判别函数等。
判别分析的目标是使得样本在不同类别的判别函数值有较大差异。
二、判别分析的应用领域1. 模式识别判别分析在模式识别中的应用非常广泛。
通过判别分析,我们可以建立能够识别不同模式的模型。
例如,在人脸识别任务中,我们可以使用判别分析来建立一个分类器,能够将不同人脸的图像正确分类。
2. 数据挖掘在数据挖掘领域,判别分析可以帮助我们发现变量之间的关系,并进行预测。
通过对已有数据进行判别分析,我们可以预测未知样本的分类。
例如,在市场营销中,通过对消费者进行判别分析,我们可以预测消费者的购买行为,从而制定更精准的营销策略。
3. 生物学和医学判别分析在生物学和医学领域中也有广泛的应用。
例如,在癌症诊断中,通过对患者的临床数据进行判别分析,我们可以建立一个分类器,能够判断该患者是否患有癌症。
三、判别分析的算法判别分析的算法根据问题的特点和要求选择。
下面介绍两种常见的判别分析算法:1. 线性判别分析(LDA)线性判别分析是一种常见且简单的判别分析算法。
它的核心思想是通过将高维数据映射到低维空间中,使得不同类别的样本在投影空间中有较大的差异。
在LDA算法中,我们需要计算类内散度矩阵和类间散度矩阵,并求解其特征值和特征向量,从而确定投影向量。
2. 二次判别分析(QDA)二次判别分析是一种更为复杂的判别分析算法。
它假设不同类别的样本的协方差矩阵不相等,即每个类别内部的变化程度不同。
判别分析判别分析是一种统计学方法,用于区分并分析不同组别之间的差异性。
它被广泛应用于各个领域,如医学、社会科学、运营管理等,以提供有关数据背后潜在关系的洞察。
判别分析的主要目标是通过输入变量对观测结果进行分类。
输入变量也被称为预测变量或自变量,而观测结果则被称为响应变量或因变量。
判别分析试图确定一组输入变量,这些变量在不同组别之间具有最大的差异性,并能够最好地将观测结果分类。
判别分析的基本原理是将观测结果(例如两个或多个不同的组别)映射到一个或多个输入变量的函数空间。
这个函数空间可以是线性的,也可以是非线性的。
通过对函数空间进行合理的选择和优化,判别分析能够实现对不同组别之间差异性的最大化。
判别分析的常见方法包括线性判别分析(LDA)、二元判别分析(BDA)和多元判别分析(MDA)。
线性判别分析试图找到一个线性函数,将不同组别之间的距离最大化,并将观测结果正确地分类。
而二元判别分析和多元判别分析则扩展了线性判别分析的范围,使其适用于更复杂的多类别问题。
判别分析在实践中有许多应用。
例如,在医学领域,判别分析可以用于将患者分为不同的疾病组别,以便更好地进行诊断和治疗。
在社会科学领域,判别分析可以帮助研究人员了解不同人群之间的差异,并对这些差异进行解释。
在运营管理领域,判别分析可以用于预测客户行为、市场细分等。
判别分析有其局限性和假设前提。
例如,判别分析假设输入变量是独立分布的,并且对方差具有相同的协方差矩阵。
此外,判别分析对异常值敏感,对于噪声和离群值的处理需要额外的注意。
总之,判别分析是一种强大的统计学方法,可用于识别和解释不同组别之间的差异性。
它在科学研究、医学诊断、市场调研等领域具有广泛的应用前景。
虽然判别分析有其限制和假设前提,但通过合理的数据处理和解释,可以充分利用判别分析的优势,提供有关数据背后潜在关系的深刻洞察。
第19章判别分析判别分析是一种多变量统计分析方法,用于确定两个或多个已知类别的样本在一组变量上的差异程度,从而将未知样本分到合适的类别。
在实际应用中,判别分析具有广泛的应用场景,如医学诊断、金融风险评估、图像识别等领域。
判别分析的目标是确定一个判别函数,该函数可以将样本正确地分类到已知的类别中。
判别分析主要通过以下几个步骤来实现:1.数据准备:首先需要收集并准备训练样本,这些样本包括已知类别的观测值和相关变量的测量值。
2.变量选择:在判别分析中,需要选择与类别之间具有显著差异的变量。
常用的方法包括t检验和方差分析等。
3.建立判别函数模型:判别函数模型是用来将样本正确分类的函数。
常见的判别函数模型包括线性判别函数、二次判别函数、多项式判别函数等。
4.模型评估和选择:需要对模型进行评估和选择,以确保模型的稳定性和准确性。
常见的评估指标包括准确率、召回率、精确率等。
5.判别函数应用:通过判别函数,可以将未知样本分类到合适的类别中,从而实现对未知观测值的预测。
判别分析有几个重要的假设前提:首先,假设样本来自正态分布;其次,假设各个类别的协方差矩阵相等;最后,假设各个类别的先验概率相等。
判别分析的优点在于可以通过变量选择来减少数据的维度,提高判别函数的准确性;同时,判别分析对异常值的鲁棒性较好,不会对判别结果产生较大影响。
然而,判别分析也存在一些限制,如对数据分布的假设较为严格,对样本大小要求较高。
在实际应用中,判别分析可以用于多个领域。
例如,在医学诊断中,可以利用判别分析将病人分为患病和健康两类,从而提供更准确的诊断结果;在金融风险评估中,可以通过判别分析将客户分为高风险和低风险,以便制定相应的风险管理策略;在图像识别中,可以利用判别分析将图像分为不同类别,实现图像的自动分类和识别。
总而言之,判别分析是一种多变量统计分析方法,通过确定样本在一组变量上的差异程度来实现对未知样本的分类。
在实际应用中,判别分析具有广泛的应用场景,可以用于医学诊断、金融风险评估、图像识别等领域。
判别分析一、理论部分(一)判别分析概述判别分析产生于20世纪30年代,是利用已知类别的样本建立判别模型,为未知类别的样本判别的一种统计方法。
近年来,判别分析在自然科学、社会学及经济管理学科中都有广泛的应用。
1.什么是判别分析所谓的判别分析是根据观测到的某些指标对所研究的对象进行分类的一种多元统计分析方法。
判别分析在主要目的是识别一个个体所属类别的情况下有着广泛的应用。
潜在的应用包括预测产品的成功或失败,决定学生是否别录取,按职业兴趣对学生分组,确定某人信用风险的种类,预测一个公司是否成功。
这些都可以通过判别分析来实现。
2.判别分析的特点判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。
3.判别分析用用的领域判别分析的应用领域非常广泛,例如:(1)用户和非用户;(2)经常购买者和非经常购买者;(3)新用户、流失用户和忠实用户;(4)忠诚用户和非忠诚用户;(5)新产品早期使用者和后期使用者;(6)消费者心目中喜欢的品牌和不喜欢的品牌;(7)消费者对我们的品牌和竞争品牌的不同属性偏好;(8)偏好图;(9)市场细分;(10)新产品开发等;4.判别分析与聚类分析的比较判别分析和聚类分析是不同的,很多人不知道两者的区别,为更好阐明两者的区别在此做出比较:聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程。
(1)基本思想不同聚类分析的基本思想。
我们所研究的样品或指标( 变量) 之间存在程度不同的相似性( 亲疏关系) , 于是根据一批样品的多个观测指标, 具体找出一些能够度量样品或指标之间相似程度的统计量, 以这些统计量作为划分类型的依据。
把一些相似程度较大的样品( 或指标) 聚合为一类, 把另外一些相似程度较大的样品( 或指标) 又聚合为另一类; 关系密切的聚合到一个小的分类单位, 关系疏远的聚合到一个大的分类单位, 直到把所有的样品(或指标)聚合完毕。
判别分析判别分析(discriminant analysis)是一种分类技术。
它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类。
判别分析的方法大体上有三类,即Fisher判别(线性判别)、Bayes判别和距离判别。
Fisher判别思想是投影降维,使多维问题简化为一维问题来处理。
选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。
对这个投影轴的方向的要求是:使每一组内的投影值所形成的组内离差尽可能小,而不同组间的投影值所形成的类间离差尽可能大。
Bayes判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
距离判别思想是根据已知分类的数据计算各类别的重心,对未知分类的数据,计算它与各类重心的距离,与某个重心距离最近则归于该类。
接下来将通过例题展示不同的判别方法。
例1:在某市场抽取20种牌子的电视机中,5种畅销,8种平销,另外7种滞销。
按电视质量评分、功能评分和销售价格三项指标衡量,销售状态:1为畅销,2为平销,3为滞销。
数据集:d6.3> X=read.table("clipboard",header=T) #读取数据存入X中> plot(X$Q, X$C); #做横坐标为Q,纵坐标为C的散点图> text(X$Q, X$C, X$G,adj=-0.8,cex=0.75) #在上一句的散点图中为每个点加文本;Q,C,G表示依据Q和C加上G的文本名字;adj为调整文字与点距离的选项,+为向左,-为向右;cex为调整文字的大小;>plot(X$Q, X$P);text(X$Q, X$P, X$G,adj=-0.8,cex=0.75) #同上> plot(X$C, X$P);text(X$C, X$P, X$G,adj=-0.8,cex=0.75) #同上1.线性判别(等方差)R中线性判别和贝叶斯判别的函数为lda()。
判别分析四种方法判别分析(Discriminant Analysis)是一种用于分类问题的统计方法, 它通过分析已知分类的样本数据,构造出一个判别函数,然后将未知类别的样本数据带入判别函数进行分类。
判别分析可以用于研究变量之间的关系以及确定分类模型等方面。
在判别分析中,有四种主要的方法,包括线性判别分析(Linear Discriminant Analysis, LDA)、二次判别分析(Quadratic Discriminant Analysis, QDA)、多重判别分析(Multiple Discriminant Analysis, MDA)和正则化判别分析(Regularized Discriminant Analysis, RDA)。
1.线性判别分析(LDA):线性判别分析是最常用的判别分析方法之一、它假设每个类别的样本数据都服从多元正态分布,并且各个类别具有相同的协方差矩阵。
基于这些假设,LDA通过计算类别间离散度矩阵(Sb)和类别内离散度矩阵(Sw),然后求解广义瑞利商的最大化问题,得到最佳的线性判别函数。
线性判别分析适用于样本类别数量较少或样本维度较高的情况。
2.二次判别分析(QDA):二次判别分析是基于类别的样本数据服从多元正态分布的假设构建的。
与LDA不同的是,QDA没有假设各个类别具有相同的协方差矩阵。
相反,QDA为每个类别计算一个特定的协方差矩阵,并将其带入到判别函数中进行分类。
由于QDA考虑了类内协方差矩阵的差异,因此在一些情况下可以提供比LDA更好的分类效果。
3.多重判别分析(MDA):4.正则化判别分析(RDA):正则化判别分析是近年来提出的一种改进的判别分析方法。
与LDA和QDA不同的是,RDA通过添加正则化项来解决维度灾难问题,以及对输入数据中的噪声进行抑制,从而提高分类的准确性。
正则化项的引入使得RDA可以在高维数据集上进行有效的特征选择,并获得更鲁棒的判别结果。
判别分析技术沈浩判别分析(Discriminate Analysis)是市场研究的重要分析技术,也是多变量分析技术。
判别分析是一种进行统计判别和分类的统计技术手段。
它可以就一定数量的个体的一个分类变量和相应的其它多元变量的已知信息,确定分类变量与其它多元变量之间的数量关系,建立判别函数,并利用判别函数构建Biplot二元判别图(概念图)。
同时,利用这一数量关系对其他已知多元变量的信息、但未知分组的子类型的个体进行判别分组。
判别分析属于监督类分析方法,例如:市场细分研究中,常涉及判别个体所属类型的问题,也常涉及不同品牌在一组产品属性之间的消费者偏好和认知概念,判别分析可以很好地对这种差异进行鉴别。
并在低维度空间表现这种差异。
一般来讲,利用判别分析首先要明确变量测量尺度及变量的类型和关系;因变量(dependent variable):分组变量——定性数据(个体、产品/品牌、特征,定类变量)。
自变量(independent variable):判别变量——定量数据(属性的评价得分,数量型变量)。
明确因变量后:我们需要明确我们分析的目的;▪确定分组变量与判别变量间的关系建立判别函数,找到自变量的最佳区分因变量的各个类别的线性组和。
▪可以确定后验概率,计算每个个体落入各个类别的概率。
▪确定哪些判别变量x1、x2、x3…、xk对区分类别差异的影响最大。
▪考察各个类别在判别变量方面是否存在显著差异。
▪确定判别变量是以什么形式影响因变量的,即D是x1 x2 x3 … xk 什么形式的函数。
▪根据判别变量的值对个体进行分类。
▪对分析的准确程度进行评价。
判别分析的应用领域非常广泛,例如:▪用户和非用户▪经常购买者和非经常购买者▪新用户、流失用户和忠实用户▪忠诚用户和非忠诚用户▪新产品早期使用者和后期使用者▪消费者心目中喜欢的品牌和不喜欢的品牌▪消费者对我们的品牌和竞争品牌的不同属性偏好▪偏好图▪市场细分▪新产品开发等一般来讲,判别变量是数量型测量尺度变量,分析样本个数至少比判别变量多两个,我们为了得到判别函数,经常需要把样本随机分成训练样本和检验样本等工作!判别函数=分组数-1(一般情况)下面我们通过案例来操作判别分析并得到判别分析图!注:分别用第一和第二个判别函数为坐标轴作个体和中心的散点图——偏好图我们得到数据集,描述了100家用户对某公司产品的7项指标的满意度打分,因变量Y-客户类型:1-新客户、2-犹豫后再次购买、3-再次直接购买;我们分析的目的是期望得到不同类型的客户,在选购该公司产品方面的影响因素和偏好结构!这样我们可以根据客户类型进行有针对性的改进和营销策略!7个自变量,也就是影响客户类型的因素指标:当数据收集好后,这时候要考虑数据集是否有缺省值、是否有未分类等基本描述性统计分析;我们接下来选择判别分析:判别分析在分析菜单的分类子菜单下在对话框中,我们分别定义自变量和分组变量,其中分组变量要说明组编码取值范围!(我们有三类)判别分析与多元回归分析一样,都有逐步进入方式,主要目的是通过软件程序和统计算法决定进入判别函数的自变量重要性程度,我们因为需要进行判别图分析,我采用一起全部进入判别方程。