第六单元第19讲遗传的物质基础3
- 格式:ppt
- 大小:7.01 MB
- 文档页数:113
《遗传的物质基础》讲义一、遗传的奥秘当我们审视周围的生命世界,无论是五彩斑斓的花朵、形态各异的动物,还是我们人类自身,都无法回避一个神奇而又深远的现象——遗传。
从父母传给子女的不仅仅是相似的外貌特征,还有性格、天赋甚至某些疾病的易感性。
那么,究竟是什么在幕后操纵着这一神秘的遗传过程呢?答案就隐藏在遗传的物质基础之中。
二、遗传物质的探寻之旅在科学的长河中,对于遗传物质的探索经历了漫长而曲折的道路。
早期,科学家们对于遗传的本质知之甚少。
直到 19 世纪,孟德尔通过豌豆杂交实验,发现了遗传的基本规律,为后来的研究奠定了基础。
进入 20 世纪,科学家们开始逐步将目光聚焦在细胞内部的微观世界。
当时,有两种主要的物质被认为可能是遗传物质,那就是蛋白质和核酸。
蛋白质具有复杂的结构和多样的功能,一度被认为是遗传信息的携带者。
然而,随着一系列实验的进行,核酸逐渐崭露头角。
其中,最为著名的实验当属格里菲斯的肺炎双球菌转化实验。
他发现,无毒的 R 型肺炎双球菌在与有毒的 S 型肺炎双球菌共同培养后,竟然能够转化为有毒的 S 型。
这一现象暗示着,在 S 型细菌中存在着某种能够改变 R 型细菌遗传特性的物质。
随后,艾弗里等人进一步对这个实验进行了改进和深化。
他们通过一系列精细的化学处理,将 S 型细菌中的各种成分逐步分离出来,最终证明了是 DNA(脱氧核糖核酸)而非蛋白质,才是导致 R 型细菌发生转化的关键物质。
但这一结论在当时并没有被立刻广泛接受,因为很多科学家认为实验中 DNA 的纯度不够,无法完全排除蛋白质的干扰。
直到赫尔希和蔡斯的噬菌体侵染细菌实验,为 DNA 是遗传物质提供了更为确凿的证据。
他们利用放射性同位素标记技术,分别标记噬菌体的蛋白质外壳和 DNA 内核,然后让噬菌体去侵染细菌。
结果发现,进入细菌体内的是噬菌体的 DNA,而不是蛋白质,子代噬菌体的产生也是由亲代噬菌体的 DNA 所决定的。
至此,DNA 作为遗传物质的地位才得以确立。
遗传的物质基础遗传是生物界中一项重要的自然现象,它决定了生物种群多样性和演化的方向。
遗传的物质基础是遗传信息的传递与保存的载体,称为遗传物质。
本文将从DNA(脱氧核糖核酸)的结构和功能、遗传物质的传递与保持以及遗传物质在生物界中的重要性三个方面,介绍遗传的物质基础。
一、DNA的结构和功能DNA是生物体内遗传物质的主要成分,也是遗传信息的承载者。
DNA分子由两条互补的链组成,呈现出双螺旋的结构。
这两条链通过氢键连接,其中腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
这种碱基配对方式赋予了DNA分子稳定性和互补性。
DNA还具有复制和转录的功能,通过复制可以传递遗传信息,通过转录则可以使遗传信息转化为蛋白质。
二、遗传物质的传递与保持遗传物质的传递与保持是遗传的基本过程。
在有性生殖中,双亲的遗传物质通过生殖细胞的结合而传递给子代。
经过受精后,双亲的DNA分子会重新组合,形成新的个体。
同时,在无性生殖中,遗传物质则通过细胞分裂进行复制,从而保持遗传信息的完整性。
此外,DNA分子的稳定性对于遗传物质的长期保存也非常重要。
细胞通过一系列的修复和检测机制来保证DNA分子的完整性,从而确保遗传信息的准确传递。
三、遗传物质在生物界中的重要性遗传物质是决定生物遗传特征的关键因素,对生物界的多样性和演化起着重要作用。
通过遗传物质的传递,不同个体之间的遗传信息差异得以保留,从而形成种群的多样性,并为物种的适应和进化提供基础。
遗传物质还决定了个体的表型特征,如身高、眼睛颜色等。
此外,遗传物质还参与调控生物体内的许多生理过程和功能,如代谢、免疫反应等。
遗传物质的重要性不仅在于它本身承载了丰富的遗传信息,也在于它与环境的相互作用,共同决定了生物的生存与繁衍。
综上所述,DNA作为遗传的物质基础,在生物界中发挥着关键的作用。
通过对DNA的结构和功能的研究,我们能够更深入地了解遗传物质的传递与保持机制,以及其在生物界中的重要性。
《遗传的物质基础》讲义在生命的奥秘中,遗传无疑是最为神奇和引人入胜的部分之一。
我们每个人都从父母那里继承了各种各样的特征,从外貌到性格,从生理机能到对疾病的易感性。
那么,究竟是什么在背后操控着这一神奇的遗传过程呢?答案就是遗传物质。
遗传物质是生命遗传信息的携带者,它决定了生物的性状、特征和发展。
在大多数生物中,遗传物质主要是脱氧核糖核酸(DNA),在某些病毒中,则可能是核糖核酸(RNA)。
DNA 是一种双螺旋结构的大分子,由两条相互缠绕的链组成。
这两条链通过碱基之间的互补配对相互连接,腺嘌呤(A)与胸腺嘧啶(T)配对,鸟嘌呤(G)与胞嘧啶(C)配对。
这种精确的配对方式确保了遗传信息在复制和传递过程中的准确性。
DNA 中的碱基序列就像是一种独特的密码,包含了生物体构建和运作所需的所有信息。
这些信息被划分成一个个的基因,基因是具有特定功能的 DNA 片段。
比如,有的基因负责编码蛋白质,蛋白质在生物体内执行着各种重要的功能,如催化化学反应、构成组织结构、运输物质等。
基因的表达是一个复杂而精细的过程。
首先,在细胞核中,DNA会通过转录过程形成信使RNA(mRNA)。
mRNA 携带了基因的信息,从细胞核转移到细胞质中。
在细胞质中,核糖体根据 mRNA 上的密码子,将氨基酸连接成多肽链,最终形成具有特定结构和功能的蛋白质。
除了 DNA 自身的结构和基因的表达,遗传物质的传递也是遗传过程中的关键环节。
在有性生殖中,父母双方的生殖细胞(精子和卵子)分别携带了一半的遗传物质。
当精子和卵子结合形成受精卵时,新生命就获得了来自父母双方的遗传信息,从而继承了父母的特征。
遗传物质并非一成不变的。
在生物的生命过程中,可能会发生基因突变。
基因突变是指 DNA 序列中的碱基发生了改变。
有些基因突变可能不会对生物体产生明显的影响,但有些可能会导致疾病或改变生物体的性状。
例如,镰状细胞贫血就是由于基因突变导致血红蛋白结构异常而引起的。