第三章 金属的断裂韧度综述
- 格式:ppt
- 大小:3.49 MB
- 文档页数:3
金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
金属的断裂韧性
§1线弹性条件下断裂韧性K I C
一、传统设计思路与断裂力学:
1.传统设计:
一般传统设计要求:ζ工≤[ζ] = ζ0.2/n,然而该条件只能保证材料不发生塑性变形及其以后产生的塑性断裂,不能防止脆性断裂尤其是低应力脆断;对构件的脆性断裂及材料的脆性断裂倾向的检测,依传统的设计方法,比较难以解决。
为此,还须对材料的塑性指标δ、ψK、冲击韧性αK、冷脆转变温度T K指标等作一定的要求(根据经验及积累的大量数据资料)。
实验证明,该法行之有效。
然而据经验,由于对各种服役条件不能完全地定性确认,对于一些构件(尤其是中、小截面的构件)的设计,常提出过高要求,形成浪费(原材料、机械加工均以吨来计算产量,以及能耗、人力运输等);而一些高强度材料(ζb>1000kgl/mm2)及重型、大型截面构件,该法又不完全安全可靠。
曾发生①火箭发动机壳体(高强钢),其αK值合格,而水压试验时脆断;②120T氧气项吹转炉主轴(40C r)发生突然断裂(在使用61次后)的重大事故。
一般地,工作应力远低于ζ0.2发生的脆性断裂,叫低应力脆断,常导致重大安全事故。
金属的断裂韧性§1线弹性条件下断裂韧性KI C一、传统设计思路与断裂力学:1.传统设计:一般传统设计要求:ζ工≤[ζ] = ζ0.2/n,然而该条件只能保证材料不发生塑性变形及其以后产生的塑性断裂,不能防止脆性断裂尤其是低应力脆断;对构件的脆性断裂及材料的脆性断裂倾向的检测,依传统的设计方法,比较难以解决。
为此,还须对材料的塑性指标δ、ψK 、冲击韧性αK、冷脆转变温度TK指标等作一定的要求(根据经验及积累的大量数据资料)。
实验证明,该法行之有效。
然而据经验,由于对各种服役条件不能完全地定性确认,对于一些构件(尤其是中、小截面的构件)的设计,常提出过高要求,形成浪费(原材料、机械加工均以吨来计算产量,以及能耗、人力运输等);而一些高强度材料(ζb>1000kgl/mm²)及重型、大型截面构件,该法又不完全安全可靠。
曾发生①火箭发动机壳体(高强钢),其αK 值合格,而水压试验时脆断;②120T氧气项吹转炉主轴(40Cr)发生突然断裂(在使用61次后)的重大事故。
一般地,工作应力远低于ζ0.2发生的脆性断裂,叫低应力脆断,常导致重大安全事故。
2.低应力脆断原因:构件或材料内部存在有一定尺寸的宏观裂纹,而该裂纹发生失稳扩展的力学条件则成为该构件或材料的强度设计基础。
即:断裂力学————断裂强度设计理论:分析和讨论材料对裂纹扩展的抗力与裂纹尺寸、工作应力之间的关系以及裂纹失稳扩展的条件,并在该基础上建立的表征材料抵抗裂纹扩展的能力的力学性能指标,称之为材料的断裂韧性或断裂韧度,这是一个综合的力学性能指标:反应了塑性与强度的综合。
3.裂纹扩展的三种基本方式裂纹沿裂纹面扩展方式:张开型(Ⅰ型) 滑(移)推开型(Ⅱ型) 撕开型(Ⅲ型)引起裂纹扩展的应力:拉应力切应力剪切应力其中:Ⅰ型扩展方式最为危险,最易引起低应力脆断,材料对该型裂纹扩展的抗力最低,故其它型式或混合型式的裂纹扩展也常按Ⅰ型裂纹处理,会更安全。
金属材料的断裂韧性作者:文彬羽陈丁华来源:《科技传播》2013年第01期摘要不同的金属材料的断裂韧性是不一样的,对不同金属材料的断裂韧性进行研究并找出影响的因素对提高金属材料断裂韧性具有非常重要的意义。
根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。
关键词金属材料;失效;断裂韧性;影响因素中图分类号TG14 文献标识码A 文章编号1674-6708(2013)82-0057-020引言随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。
通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。
根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。
1影响金属材料断裂韧性的外部因素1.1几何因素的影响几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。
几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析:1)试样厚度目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。
金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类办法不合而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属资料断裂前所产生的宏观塑性变形的年夜小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前产生明显的宏观塑性变形,脆性断裂在断裂前基本上不产生塑性变形,是一种突然产生的断裂,没有明显征兆,因而危害性很年夜。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;年夜于5%为韧性断裂。
可见,金属资料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的修改,资料的韧性与脆性行为也将随之变更。
多晶体金属断裂时,裂纹扩展的路径可能是不合的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(高温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐化、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合产生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属资料在一定条件下(如体心立方金属、密排六方金属、合金处于高温或冲击载荷作用),当外加正应力达到一定命值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或概略能最低的晶面。
对面心立方金属来说(比方铝),在一般情况下不产生解理断裂,但面心立方金属在很是苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属资料在切应力作用下,沿滑移面别离而造成的滑移面别离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常产生滑断断裂;钢铁等工程资料多产生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典范的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。