糖蜜酒精废水微氧厌氧生物脱硫
- 格式:pdf
- 大小:259.52 KB
- 文档页数:4
糖蜜酒精废水治理技术糖蜜酒精废水是一种高化学需氧量(COD)、高色度的有机废水,属于处理难度较大的废水。
本文分析了糖蜜酒精废水的特点以及其对环境的危害,综述国内外糖蜜酒精废水治理的多种方法,分析了各种方法的特点、效果,并进行评价。
酒精是一种重要的工业原料,它广泛应用于化工、食品、军工、日用化工和医药卫生等领域;同时又是最有希望全部或部分替代石油的可再生能源,因此具有十分广泛的应用和发展前景。
但同时酒精工业又是一个污染十分严重的行业,每产一吨酒精排放的高浓度有机废水约为14 吨—15 吨,含总有机物0.17吨—1吨[1],是造成水环境污染最为严重的轻工业废液之一。
1.糖蜜酒精废水的来源、特性及危害糖蜜酒精废水是糖厂酒精车间用糖蜜发酵制取酒精之后排放出的高浓度高色度的有机废水[2],内含有丰富的蛋白质和其它有机物,也含有较多的N、P、K、Ca、Mg等无机盐和较高浓度的SO42- 等。
通常情况,酒精废水的pH 值为4. 0~4. 8、COD 为10~13万mg/ l、BOD为5. 7~6. 7万mg /l 、SS为10. 8~82. 4mg/ l [3]。
此外,此类废水大多呈酸性,并且色度很高,呈棕黑色,主要包括焦糖色素、酚类色素、美拉德色素等[4]。
由于废液含固体物约10% ,浓度低无法利用,如不经过处理直接排出江河、农田中,会严重污染水质、环境,或造成土壤酸化板结、农作物病长等。
如何处理和利用糖蜜酒精废液是当前制糖工业面临的一个严峻环保问题。
2. 糖蜜酒精废水治理及利用技术概况目前, 国内外对于甘蔗糖蜜酒精工业废水主要有以下几种治理方法: ( 1) 农灌法( 2)浓缩法( 3) 厌氧—好氧法( 4) 生产生物制品(5) EM菌技术( 6) 其它方法, 如吸附法、化学絮凝法、磁处理法等。
2.1 农灌法农灌法是最为简单的治理方法,由于糖蜜废水中含有丰富的有机成分以及氮、磷、镁等营养物质,特别是含大量钾盐。
糖蜜酒精废水治理技术糖蜜酒精废水是一种高化学需氧量()、高色度的有机废水,属于处理难度较大的废水。
本文分析了糖蜜酒精废水的特点以及其对环境的危害,综述国内外糖蜜酒精废水治理的多种方法,分析了各种方法的特点、效果,并进行评价。
酒精是一种重要的工业原料,它广泛应用于化工、食品、军工、日用化工和医药卫生等领域;同时又是最有希望全部或部分替代石油的可再生能源,因此具有十分广泛的应用和发展前景。
但同时酒精工业又是一个污染十分严重的行业,每产一吨酒精排放的高浓度有机废水约为14 吨—15 吨,含总有机物0.17吨—1吨[1],是造成水环境污染最为严重的轻工业废液之一。
1.糖蜜酒精废水的来源、特性及危害糖蜜酒精废水是糖厂酒精车间用糖蜜发酵制取酒精之后排放出的高浓度高色度的有机废水[2],内含有丰富的蛋白质和其它有机物,也含有较多的N、P、K、、等无机盐和较高浓度的42- 等。
通常情况,酒精废水的值为4. 0~4. 8、为10~13万 l、为5. 7~6. 7万、为10. 8~82. 4 l [3]。
此外,此类废水大多呈酸性,并且色度很高,呈棕黑色,主要包括焦糖色素、酚类色素、美拉德色素等[4]。
由于废液含固体物约10% ,浓度低无法利用,如不经过处理直接排出江河、农田中,会严重污染水质、环境,或造成土壤酸化板结、农作物病长等。
如何处理和利用糖蜜酒精废液是当前制糖工业面临的一个严峻环保问题。
2. 糖蜜酒精废水治理及利用技术概况目前, 国内外对于甘蔗糖蜜酒精工业废水主要有以下几种治理方法: ( 1) 农灌法( 2)浓缩法( 3) 厌氧—好氧法 ( 4) 生产生物制品(5) 菌技术( 6) 其它方法, 如吸附法、化学絮凝法、磁处理法等。
2.1 农灌法农灌法是最为简单的治理方法,由于糖蜜废水中含有丰富的有机成分以及氮、磷、镁等营养物质,特别是含大量钾盐。
故经简单处理后可以用于灌溉农田,也可作为较好的肥料。
一般,先将废水中有机物含量降到0.61.0%[5],以免对农作物造成伤害。
微氧厌氧处理糖蜜酒精废水的限制因素黄国玲;解庆林;纪宏达;杨永东【摘要】The effect of micro-aerobic anaerobic processes for molasses alcohol wastewater treatment with expanded granular sludge bed (ECSB) reactor was investigated. The best redox potential (ORP), reflux ratio and hydraulic retention time (HRT) were determined. The results show when ORP is -440 mv, reflux ratio is 3:1 and HRT is 15 h, the best treatment effect can be achieved. Under these conditions, the removal efficiency of COD and SOV are 73.4 % and 61.3 %, respectively. The effluent concentrations of COD and SO2-4 are 1 600 and 185 mg/L, respectively.%研究了膨胀颗粒污泥床(EGSB)在微氧厌氧条件下处理糖蜜酒精废液的效果,确定最佳的氧化还原电位(ORP)、回流比及水力停留时间(HRT).结果表明ORP为-440 mv、回流比为3∶1、HRT为15 h时,微氧条件下EGSB生物处理系统的处理效果为最佳.在此条件下,COD、SO42-的去除率分别为73.4%、61.3%,出水浓度分别为1600、185 mg/L.【期刊名称】《净水技术》【年(卷),期】2012(031)004【总页数】4页(P80-83)【关键词】微氧厌氧;膨胀颗粒污泥床(EGSB)反应器;糖蜜酒精废水【作者】黄国玲;解庆林;纪宏达;杨永东【作者单位】桂林理工大学环境科学与工程学院,广西桂林541004;贺州学院,广西贺州 542800;桂林理工大学环境科学与工程学院,广西桂林541004;桂林理工大学环境科学与工程学院,广西桂林541004【正文语种】中文【中图分类】TU992糖蜜酒精废液的主要特点是有机物、硫酸盐离子和悬浮物均较高,如果直接排入江河中会使水质恶化,鱼虾绝迹,污染饮用水源,影响人体健康[1]。
糖蜜废水的处理及发展摘要:糖蜜废水是甘蔗糖厂典型的三大废弃产物之一,也是糖厂综合利用和循环发展的对象。
随着国家不断的注重环境保护,糖厂更加的注重节能减排、清洁生产、废弃物的循环利用。
注重糖蜜酒精废水生产的副产物的利用,并取得了显著的成果。
本文基于糖厂糖蜜废水的组成及理化性质,综述了近年来国内外甘蔗糖厂废水的资源化利用的最新报告,为我国糖业发展研究提供产考。
关键词:糖蜜废水综合利用及发展一.糖蜜废水源及现状1.糖蜜的来源食品糖是天然营养食品, 可提供 1 400 kJ /kg 的热量, 它是直接消费品, 又是食品、医药工业的原料。
在食糖的生产过程中产生很多的糖蜜废水。
糖蜜是制糖过程中不能再结晶糖的残余糖浆, 其主要成分是糖, 大约占干物质的 78%, 另外还有蛋白质、天然矿物质和维生素等多种营养成分。
它是一种深褐色的、粘稠状, 具有较高可溶性的碳水化合物。
2.糖蜜废水特性糖蜜废水的一个突出特点是污染物浓度高,其成分有以下几个特点:2.1糖蜜废水的化学耗氧量 COD 8~12 万mg• L- 1, 生化耗氧量 BOD5 4~6 万 mg•L- 1, SS 值1 163 mg•L- 1 左右[1]1 个日产 20 t 厂每日排放污水相当于 50 万城市人口生活污水污染的程度。
2.2糖蜜废水中的固形物70%为有机质.其中有糖分、蛋白质、氨基酸, 维生素等。
剩余 30%为灰分, 含有氮、磷、钾、钙、镁等无机盐,钾含量高达0.51-1.31[2],重金属痕量,无毒的、无害的。
这些都是动、植物营养元素,是宝贵的资源。
2.3糖蜜废水色度高, 大多呈棕黑色, 其中所含色素为类黑色素、棕色素, 其主要成分为焦糖色素、酚类色素、多糖分解产物和与氨基酸的浓聚产物等色素, 难以被微生物所降解, 耐温、耐光照, 放置时间延长其色值不减。
3.糖蜜废水的现状甘蔗糖蜜废水是以糖厂制糖副产品———糖蜜为原料,在发酵生产酒精过程中产生的高浓度有机废水。
糖蜜酒精废水厌氧消化后的好氧生化和深度处理甘蔗糖蜜酒精废水COD(Chemical oxygen demand)浓度高,有机成分复杂,难以处理,单一使用某种方法难以达到净化效果。
本实验在前期厌氧发酵处理基础上,开展对厌氧出水进行深度处理研究,考查在好氧处理过程中通过添加不同来源的微生物菌群和金属离子对处理效果的影响,为糖蜜酒精废水的彻底净化提供理论和技术依据。
实验在小试条件下进行,反应器运行温度为室温,有效工作体积为8 L,污泥接种量为反应体积1/3,每个实验设计三个平行。
采用批量进样方式,反应周期为8 h,分别是进水、好氧曝气反应6.5 h、沉淀30-35 min、排水5 min,静置50 min。
曝气方式采用曝气盘延伸污泥底部曝气,曝气量控制在DO值(溶解氧)2mg/L 左右。
分别以牛粪、鸡粪、猪粪作为外源微生物菌群接种物,接种量占污泥总重量的1/5,以COD为检测指标。
结果发现,分别添加牛粪、鸡粪、猪粪驯化后,COD平均去除率分别为46%、54%、57%,不添加外源微生物驯化的COD平均去除率52%。
在添加猪粪作为外源微生物群的活性污泥中筛选可以利用糖蜜酒精废水为碳源的菌株6株,经鉴定分别为Bacillus cereus、Proteus sp、Acinetobacter sp、Exiguobacterium sp、Pseudomonassp、Comamonassp。
经混合培养、驯化后,按处理废水体积的5%作为投放量投加入好氧反应器,最终好氧反应器稳定运行时的COD平均去除率为60%。
本实验还以此为基础分别考查了金属离子Fe3+和Mg2+对活性污泥驯化的影响。
实验设计了不同金属离子的浓度,投加量分别0 mg/L、10mg/L、50mg/L和100mg/L。
实验结果表明,在低浓度时,两种金属离子对活性污泥影响微弱,当浓度为100 mg/L时,好氧反应阶段的平均COD去除率反而下降为57%,数据表明金属离子对好氧处理效果没有明显影响。
糖蜜酒精废水微氧厌氧生物脱硫3解庆林 李亚伟 李丽芳(桂林工学院资源与环境工程系,广西541004)摘要 糖蜜酒精废水属于富含硫酸盐的高浓度有机废水,采用微氧厌氧生物脱硫技术进行处理。
在同一反应器中先利用硫酸盐还原菌(SR B )将糖蜜酒精废水中的硫酸盐还原为硫化物,然后利用无色硫细菌(CS B )在微氧状态下将硫酸盐还原产物———硫化物氧化成硫单质,消除了硫化物对产甲烷菌的毒害作用。
研究结果表明,此工艺脱硫效果显著。
关键词 微氧厌氧 硫酸盐还原 生物脱硫 糖蜜酒精废水3教育部留学回国人员科研启动基金(教外司留20022247)和教育部科技重点项目(教技司2002202119)联合资助0 引言糖蜜酒精废水是富含硫酸盐的高浓度有机废水,在进行厌氧生物工艺处理时,会生成大量对产甲烷菌有毒性作用的硫化物,降低甲烷产率。
为了控制硫化物毒性,人们提出了多种方法[124],但这些方法都不理想。
近来研究表明:无论是在厌氧微环境中还是分散的悬浮状态下,厌氧菌均可与好氧菌共存,而且污泥可呈现出高的产甲烷活性[5]。
Z itomer [6]对厌氧F BR反应器和微氧F BR 反应器进行比较研究发现,处理高浓度S O 2-4废水的微氧F BR 反应器比厌氧F BR 反应器C OD Cr 去除率高出60%以上。
K hanal [7]在以葡萄糖为碳源、K 2S O 4为硫酸盐源的人工配水条件下,利用ORP 控制系统,进行了调节供氧量的硫化物在线控制的研究。
结果表明,在废水的C OD Cr 为10000mg ΠL 、S O 2-4浓度为5000mg ΠL ,通过微氧使氧化还原电位控制在-230~-180mV 时,溶解态和气态硫化物全被去除,甲烷产率提高到了5613%,这表明在微氧厌氧处理含高浓度硫酸盐废水时通过ORP 控制进氧量在线控制硫化物是可靠的。
但多数研究均为人工配水实验,直接利用实际废水开展的研究较少。
在国内,董春娟等人[8]分析了微氧产甲烷系统的工艺特点,指出由于加入适量氧而使厌氧菌、好氧菌、兼性菌等共存于同一反应器中,协同代谢污染物,使系统出水C OD Cr 低、污泥产量少、抗冲击负荷能力强,同时能使毒性和难降解物质彻底降解。
糖蜜酒精废液处理中影响微生物量因素的研究
糖蜜酒精废液处理中影响微生物量因素的研究
摘要:试验研究了糖蜜酒精废液处理过程中培养基、培养温度及废液中COD、BOD5、TOC浓度等因素对微生物量的`影响.结果表明,利用糖蜜酒精废液驯化可以得到微生物优势菌种;在废液培养基及培养温度30℃条件下微生物量最高,为4.61g/L;单位COD、BOD5和TOC 的微生物量分别为0.268g/g(COD)、11.92g/g(BOD5)和0.381g/g(TOC),菌体粗蛋白含量可达54.51%.作者:赵芯朱义年廖雷陆燕勤刘辉利张学洪ZHAO Xin ZHU Yi-nian LIAO Lei LU Yan-qin LIU Hui-li ZHANG Xue-hong 作者单位:桂林工学院资源与环境工程系,桂林,541004 期刊:环境科学与技术ISTICPKU Journal:ENVIRONMENTAL SCIENCE & TECHNOLOGY 年,卷(期):2006, 29(12) 分类号:X703 关键词:糖蜜酒精废液培养基微生物量粗蛋白。
酒精行业生物脱硫工作原理
酒精行业生物脱硫工作原理是通过利用特定的微生物菌种,将废气中的二氧化硫转化为无害的硫酸盐盐形式,实现脱硫的过程。
具体工作原理如下:
1. 培养菌种:选择具有较高脱硫能力的微生物菌株,如嗜酸杆菌、硫酸还原菌等,进行培养和增殖。
2. 安装生物反应器:将培养好的菌种置于专门设计的生物反应器中,提供适当的生长条件,如温度、pH值等。
3. 喂料供氧:将含有二氧化硫废气的烟囱气体通入反应器,同时供应适量的营养物质和氧气,以促进菌种的活性和生长。
4. 菌种作用:在反应器内,菌种与二氧化硫发生接触和作用。
菌种通过酶的作用,将二氧化硫转化为硫酸盐盐。
5. 硫酸盐盐形成:转化后的硫酸盐盐溶于液体介质中,成为废水的一部分。
6. 分离和净化:经过一定时间的反应后,将反应器内的废水和菌体进行分离。
分离的废水需要进行后续的处理和净化,以达到环保标准。
而分离后的活性菌种可重复利用,继续进行生物脱硫。
通过以上工作原理,酒精行业中废气中的二氧化硫被微生物菌种有效地转化为无害的硫酸盐盐形式,实现对废气中二氧化硫
的脱硫作用。
生物脱硫具有操作简单、能耗低、对环境友好等优点,因此在酒精行业的废气处理中得到广泛应用。