闪蒸过程计算
- 格式:pdf
- 大小:270.96 KB
- 文档页数:14
闪蒸干燥机的工艺计算及优缺点闪蒸干燥机工艺计算:1干燥能力:G2= G1 (1-ω1)/( 1-ω2)式中G2——干燥物料产量,kg/h;G1——湿物料的处理量,kg/h;ω1——湿物料的湿基含水量,kg/kg;ω2———出干燥器物料的湿基含水量,kg/kg。
2水分蒸发量:W= GC(X1- X2 )=L(Y1 –Y2)式中 W一水分蒸发量,kg/h;GC一绝干物料质量流量,kg/h;X1一进干燥器物料的干基含水量,kg/kg;X2一出干燥器物料的干基含水量,kg/kg;Y1一进干燥器空气的湿度,kg水/kg干空气;Y2一出干燥器空气的湿度,kg水/kg干空气;L一绝干空气流量,kg/h。
闪蒸干燥机特点:1.多种加料装置供选择,加料连续稳定,过程中间不会产生架桥现象。
2.闪蒸干燥机底部设置特殊的冷却装置,避免了物料在底部高温区产生变质现象。
3. 特殊的气压密封装置和轴承冷却装置,有效延长传动部分的使用寿命。
4. 特殊的分风装置,降低了设备阻力,并有效提供了干燥器的处理风量。
5.闪蒸干燥机的干燥室装有分级环及旋流片,物料细度和终水份可调。
(如碳酸钙终水份可调节器至≤0.1%)6. 相对其它干燥方法而言,可有效增加物料比重。
7.干燥室内周向气速高,物料停留时间短,有效防止物料粘壁及热敏性物料变质现象,达到高效、快速、小设备、大生产。
闪蒸干燥机的缺点:1、闪蒸干燥机属于气流型干燥,能耗高。
2、由于物料在干燥机中高速运动,对设备磨损严重,降低设备寿命。
3、后期处理(除尘),和前期风机的设备投资大。
闪蒸干燥机的优点1、闪蒸干燥机有特殊的分风装置,降低了设备阻力,并有效提供了干燥器的处理风量。
2、还有特殊的气压密封装置和轴承冷却装置,有效延长传动部分的使用寿命。
3、闪蒸干燥机的干燥室内周向气速高,物料停留时间短,有效防止物料粘壁及热敏性物料变质现象,达到高效、快速、小设备、大生产。
4、闪蒸干燥机相对其它干燥方法而言,可有效增加物料比重。
lng闪蒸量计算
"LNG闪蒸量"是液化天然气(LNG)在一定条件下发生的液化气体的蒸发量,通常是在储存或输送LNG的过程中考虑的参数之一。
计算LNG闪蒸量需要考虑温度、压力等因素,可以使用一些基本的物性和热力学公式。
下面是简化的计算LNG闪蒸量的步骤:
1.计算初始液相体积:确定初始的LNG液相体积(V_initial)。
2.确定储存或输送过程中的温度和压力:确定在储存或输送LNG的过程中的温度(T)和压力(P)。
3.使用物性数据计算饱和蒸汽压:利用LNG的物性数据,如饱和蒸汽压的相关数据,计算在给定温度下LNG的饱和蒸汽压。
4.根据蒸汽压计算蒸发量:使用饱和蒸汽压等数据,可以利用相应的热力学公式计算LNG在给定条件下的闪蒸量。
请注意,具体的计算需要考虑到LNG的具体物性,以及在实际运输和储存中可能存在的各种因素。
理论上,闪蒸量的计算可能涉及到热力学方程、物性数据以及具体系统的工程参数。
在实际应用中,可能需要借助专业软件或者实验数据来进行更准确的计算。
多级闪蒸热力学计算多级闪蒸热力学计算是一种常用的热力学计算方法,广泛应用于工业生产和热能利用领域。
本文将介绍多级闪蒸热力学计算的原理、方法和应用。
多级闪蒸是指在连续的闪蒸过程中,将高压液体通过多级减压,从而实现液体的闪蒸和汽液分离。
多级闪蒸的目的是利用多个级数的减压,使闪蒸过程中的能量损失最小化,提高蒸汽的干度和回收液体的热能。
多级闪蒸热力学计算的核心是通过热力学参数的计算和分析,确定闪蒸过程中的各级压力、温度和流量等关键参数。
这些参数的准确计算对于多级闪蒸的设计和优化至关重要。
多级闪蒸热力学计算的步骤如下:第一步是确定闪蒸过程中的初始条件,包括进料温度、压力和流量等。
这些参数将影响到后续的计算结果。
第二步是通过热力学软件或手动计算,确定各级闪蒸器的蒸汽量、回收液体流量和温度等参数。
这些参数通常通过热力学方程和实验数据进行计算和验证。
第三步是根据闪蒸过程中的能量守恒原理,计算各级闪蒸器的热损失和能量回收情况。
热损失的计算可以通过闪蒸器的热平衡方程和传热原理进行推导和计算。
第四步是根据计算结果,对多级闪蒸系统进行优化设计。
优化的目标是使闪蒸过程中的能量损失最小化,提高蒸汽的干度和回收液体的热能。
多级闪蒸热力学计算的应用非常广泛。
在石油化工行业中,多级闪蒸常用于原油蒸馏和石化过程中的热能回收。
在电力工业中,多级闪蒸则常用于汽轮机的凝汽系统中,以提高发电效率。
此外,多级闪蒸还广泛应用于食品、制药等行业中的热能利用和回收过程中。
多级闪蒸热力学计算是一种重要的热力学计算方法,可以帮助工程师和研究人员优化设计和改进热能系统。
通过准确计算和分析,可以最大限度地提高能源利用效率,实现可持续发展的目标。
多级闪蒸热力学计算的研究和应用将在未来的工程领域中发挥越来越重要的作用。
第三节 闪蒸过程的计算2.3 等温闪蒸和部分冷凝过程流程示意图:闪蒸过程的计算方程(MESH ) ⑴物料衡算----M 方程: C 个⑵相平衡--------E 方程: C 个⑶摩尔分率加和式---S 方程: 2个⑷热量平衡式-------H 方程: 1个变量数:3C+8个 (F, F T ,F P ,T,P,V ,L,Q,i i i x y z ,,)方程总数:2C+3个 需规定变量数:C+5个其中进料变量数:C+3个(F, F T ,F P ,i z )根据其余2个变量的规定方法可将闪蒸计算分为如下五类:11=∑=Ci ix11=∑=Ci iy,...C,i Vy Lx Fz i i i 21 =+=Ci x K y i i i ,...2,1 ==LV F LH VH Q FH +=+表2-4闪蒸计算类型2.3.1 等温闪蒸规定:p 、T计算:Q, V , L,i i x y ,一、汽液平衡常数与组成无关 ()P T f K i ,=已知闪蒸温度和压力,i K 值容易确定,所以联立求解上述(2C+3)个方程比较简单。
具体步骤如下: 1. 输出变量求解将E---方程:代入M —方程: 消去i y ,得到: 将L=F-V 代入上式:汽化率代入(2-66)式,得到:Ci VK V F Fz x iii ,...2,1 =+-=(2-66))1(1-+=i ii K z x ψ(2-67) Ci x K y i i i ,...2,1 ==,...C ,i Vy Lx Fz i i i 21 =+=C i x VK Lx Fz i i i i ,...2,1 =+=FV /=ψ将(2-67)和(2-68)式代入S---方程,得到:两式相减,得:0)1(1)1()(=-+-=∑i ii K z K f ψψ--------------------------闪蒸方程0)1(1)1()(=-+-=∑i ii K z K f ψψ (2-71))1(1-+=i ii K z x ψ i i i x K y = F=V+L L V F LH VH Q FH +=+通过闪蒸方程(2-71)求出汽化率ψ后,由(2-67)和(2-68)式可分别求出i i y x 和,进而由总物料衡算式(2-64)可求出V 和L,由热量衡算式(2-65)可求出Q汽化率ψ的迭代: 设ψ初值,计算:)(ψf可采用Newton-Raphson 法迭代ψ:(2-68))1(1-+==i ii i i i K z K x K y ψ1)1(11=-+∑=Ci i iK z ψ(2-69)(2-70)1)1(11=-+∑=Ci i ii K z K ψ0)1(1)1()(1=-+-=∑=Ci i ii K z K f ψψ(2-71)2. Q 的计算L V F LH VH Q FH +=+Q-----吸热为正,移热为负H-----混合物的摩尔焓对于理想混合:3. 判断闪蒸过程是否可行的方法 方法一:已知T 、P对i Z 进行泡点计算:∑==-=Ci i i B Z K T f 101)( 试差泡点B T对i Z 进行露点计算:∑=⎪⎪⎭⎫⎝⎛=-=Ci i i D K Z T f 101)( 试差露点D T 判断:若D B T T T 闪蒸问题成立方法二:对i Z 在T 、P 下进行露点计算:对i Z 在T 、P 下进行泡点计算:—i Ci P T Li iL Ci P T Vi iV H Hx H Hy H ∑∑====1),(1),(纯组分摩尔焓判断:若 同时成立,闪蒸问题有解闪蒸过程计算框图:开始打印 BD BT T T T --=ψ输入T,P,F,Z ()()∑-+-=)1(11i i i k k Z f ψψ计算计算泡点B T []打印,结束−→−<YF εψ)(计算露点D T []22)1(1)1()('-+-∑-=i i i k k Z f ψψ)(')(1ψψψψf f k k -=+汽液平衡常数与组成有关的闪蒸计算 对i i y x ,,ψ分层迭代:开始给定F,Z,P,T估计初值x,y ψ计算()i i i i y x P T k K ,,,=),(p T F k i =打印过冷液体−→−>YB T T 过热蒸汽−→−<YD T T 由(2-67),(2-68)计算x,y 归一化i i y x ,比较:估计和归一化值 比较:k k ψψ和)1(+如果不直接迭代,重新估计x,y 值 由Rachford-Rice 方程迭代()1+k ψ思考题1、相平衡关系可用几种方法来表达。
闪蒸过程计算范文闪蒸过程是一种常见的汽化方式,其原理是通过降低液体的压力,使其在常温下迅速汽化。
闪蒸过程通常用于蒸发器、炉窑等设备中,可以通过瞬间释放液体中的挥发性成分,以提高产品的质量和产量。
下面将详细介绍闪蒸过程的计算方法。
在闪蒸过程中,液体从高压状态变成低压状态,即蒸发而不烧开。
首先,我们需要确定液体的性质,包括饱和蒸汽压、饱和温度等参数。
这些参数可以通过查阅相关的物性数据手册或者进行实验测定获得。
闪蒸过程的计算通常可以分为以下几个步骤:1.确定闪蒸前的液体状态:计算液体的焓和焓差。
液体的焓可以通过查表或者使用热力学软件计算得到。
焓差可以通过闪蒸前和闪蒸后的饱和蒸汽压和温度的差值计算得到。
2.确定闪蒸后的蒸汽质量:根据闪蒸前的液体状态和闪蒸后的压力条件,使用蒸汽表或者蒸发焓公式计算得到闪蒸后的蒸汽的温度和质量。
蒸汽质量也可以通过查表或者使用计算软件进行计算。
3.确定闪蒸过程中的液体和蒸汽的流量:根据设备的流量要求和液体的属性,可以通过质量守恒方程和能量守恒方程计算得到闪蒸过程中的液体流量和蒸汽流量。
液体流量可以通过闪蒸后的液体密度和闪蒸后的液体速度计算得到。
蒸汽流量可以通过闪蒸后的蒸汽密度和蒸汽速度计算得到。
4.确定闪蒸后的冷却效果:闪蒸后生成的蒸汽需要通过冷凝器进行冷却处理。
冷却效果取决于冷凝器的设计参数和冷却介质的属性。
可以通过热传导原理进行计算,确定冷却传热的速率和效果。
5.对闪蒸过程进行总体性能评估:可以通过计算液体和蒸汽的能量平衡,计算设备的热效率和质量效率,并分析各种因素对闪蒸过程的影响。
需要注意的是,闪蒸过程中液体的压力骤降会引起液体的蒸发,液体的温度也会随之降低。
在实际操作中,需要考虑设备的材料和结构强度,避免由于压力骤降引起的瞬间膨胀和爆炸事故的发生。
此外,在进行闪蒸过程计算时,还需要考虑实际操作中的一些细节,如设备的压力损失、管道的阻力、流体的黏性等因素。
这些因素会对闪蒸过程的计算结果产生一定的影响,因此在实际操作中需要进行精确的计算和合理的安全考虑。
2.3 闪蒸过程的计算热量平衡方程(2-65)1个;闪蒸过程计算方程:Rachford-Rice 方程:2.3.2 绝热闪蒸过程绝热闪蒸过程如图2—8(a)当Q =0的情况,解(2-71)式。
方程和迭代变量的不同组合有窄沸程、宽沸程和同时收敛法三种算法。
双层迭代,内循环(2-71)式R-R 方程和外循环热量衡算式(2-65)迭代求T 和ψ。
一、宽沸程混合物闪蒸的序贯迭代法宽沸程混合物:组分的沸点差大,组分挥发度差别大。
汽、液相的流率几乎由完全K i 决定,进料焓值决定平衡温度。
迭代变量的排列原则,内循环迭代变量的值对外层迭代变量的取值是不敏感的。
ψ作为内层迭代变量(R-R 方程); T 外层迭代变量(热量衡算方程)。
二、窄沸程混合物闪蒸的序贯迭代法窄沸程闪蒸:组分的沸点相近,热量影响汽体流量,平衡温度变化不太明显。
内层循环迭代T ,外层循环迭代ψ。
两种迭代方案中,内层循环(2-71)式迭代求ψ(对宽沸程闪蒸)或与T(对窄沸程闪蒸),(2-65)式求T 或ψ。
三、同时收敛法(选)闪蒸方程和热衡算式可分别写成下面的函数关系:0)1(1)1(),,,(11=-+-=∑=i i i c i K z K T G ψψy x (2-84) 0)1(),,,(2=--+=F L V H H H T G ψψψy x (2-85)闪蒸过程的方程组能表示成 0)(=X g (2-86)扩充g 为下列形式:0)1(1),,,(2=-+-≡+i i i i K Z x y x T G ψψ 0)1(1),,,(2=-+-≡++i i i i i c K Z K y y x T G ψψ 计算差分值的基点是X (k)。
G i 对ψ的导数用解析法求得。
初值的确定方法。
对于等温闪蒸,用限步长的Newton-raphson 法迭代气化分率,对绝热闪蒸,用二维Newton-raphson 法迭代闪蒸温度和汽相分率。
2.4 液液平衡过程的计算求解一定温度下互成平衡的液相中的组成;用于萃取、三相精馏和共沸精馏等。