等腰三角形习题精选
- 格式:doc
- 大小:81.00 KB
- 文档页数:2
等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础练习1、已知等腰三角形的一个内角为 70°,则它的另外两个内角的度数分别是()A 55°,55°B 70°,40°C 55°,55°或 70°,40°D 以上都不对解析:当 70°的角为顶角时,底角的度数为:(180° 70°)÷ 2 =55°;当 70°的角为底角时,另一个底角也是 70°,顶角的度数为 180°70°× 2 = 40°。
所以答案选择 C。
2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18解析:当腰长为 3 时,3 + 3 = 6,不能构成三角形;当腰长为 6 时,周长为 6 + 6 + 3 = 15。
所以答案选择 B。
(二)提高练习1、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,点 E 在 AD 上。
求证:△EBC 是等腰三角形。
证明:因为 AB = AC,AD 是∠BAC 的平分线,所以 AD⊥BC,BD = CD。
又因为点 E 在 AD 上,所以 EB = EC,即△EBC 是等腰三角形。
2、已知等腰三角形一腰上的中线将其周长分成 9 和 15 两部分,求这个等腰三角形的腰长和底边长。
设腰长为 2x,底边长为 y,则有两种情况:情况一:\(\begin{cases}2x + x = 9 \\ x + y = 15\end{cases}\),解得\(\begin{cases}x = 3 \\ y = 12\end{cases}\),此时腰长为 6,底边长为 12,因为 6 + 6 = 12,不符合三角形三边关系,舍去。
情况二:\(\begin{cases}2x + x = 15 \\ x + y = 9\end{cases}\),解得\(\begin{cases}x = 5 \\ y = 4\end{cases}\),此时腰长为 10,底边长为 4,符合三角形三边关系。
1、点(4,-2)关于直线x=1的对称点是____________;点P(1,2)关于x轴对称的点的坐标是_______;(1,-2)关于直线y=-1对称的点的坐标是________.已知点M(3a-b,5),N(9,2a+3b)关于x轴对称,则(a+b)2011的值是_______.2、在直角坐标系中,已知点A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称,(1)试确定点A、B的坐标;(2)如果点B关于x轴的对称的点是C,求△ABC的面积.3、如图所示,△ABC的顶点分别为A(-2,3),B(-4,1),C(-1,2).(1)作出△ABC关于直线x=2对称的图形△A1B1C1,写出A1、B1、C1的坐标;(2)作出△ABC关于直线y=-1对称的图形△A2B2C2,写出A2、B2、C2的坐标.4、如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.5、下图是等边三角形,请你用三种方法把它们分成四个等腰三角形.(请标注上必要的角度)6、如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.7、如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.8、如图,△ABC是等边三角形,D是AB的中点,以CD为一边向上作等边△ECD,连接AE,求证:△ADE是等腰三角形.9、已知:如图所示BF⊥AC,AD⊥BC,且相交于点E,BD=AD,连接CE.说明△DCE是等腰三角形的理由.10、如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.11、四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.。
等腰三角形经典习题(必看)等腰三角形经典题(必看)以下是一些经典的等腰三角形题,希望能对你的研究有所帮助。
1. 判断等腰三角形给定一个三角形ABC,其中AB=AC。
你需要判断这个三角形是否为等腰三角形。
解答:如果角B等于角C,则该三角形为等腰三角形。
2. 求等腰三角形的周长已知一个等腰三角形ABC,其中AB=AC,且BC=8cm。
你需要求解这个等腰三角形的周长。
解答:由于AB=AC且BC=8cm,那么周长等于AB+AC+BC=2AB+BC=2(BC/2)+BC=BC+BC=2BC=2*8cm=16cm。
3. 求等腰三角形的面积已知一个等腰三角形ABC,其中AB=AC=10cm,且角BAC等于60度。
你需要求解这个等腰三角形的面积。
解答:由于AB=AC=10cm且角BAC等于60度,我们可以利用正弦定理来计算三角形的高。
设三角形的高为h,那么有sin60度=h/10cm,解得h=10cm*sin60度=10cm*sqrt(3)/2=5sqrt(3)cm。
等腰三角形的面积可以通过底边乘以高再除以2来计算,即面积=10cm*5sqrt(3)cm/2=25sqrt(3)cm²。
4. 求等腰三角形的顶角已知一个等腰三角形ABC,其中AB=AC=5cm,且BC=6cm。
你需要求解这个等腰三角形的顶角。
解答:由于AB=AC=5cm且BC=6cm,我们可以使用余弦定理来计算角BAC的大小。
设角BAC为x度,则有cosx=(5²+5²-6²)/(2*5*5)=19/25。
解得x=arccos(19/25)≈31.8度。
因此,等腰三角形的顶角大约为31.8度。
以上是一些关于等腰三角形的经典习题,希望对你的学习有所帮助。
如果你还有其他问题,请随时向我提问。
等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础巩固1、已知等腰三角形的一个内角为 80°,则它的另外两个内角分别是多少度?解:当 80°的角为顶角时,底角的度数为:(180° 80°)÷ 2 = 50°,所以另外两个内角分别是 50°,50°。
当 80°的角为底角时,顶角的度数为:180° 80°× 2 = 20°,所以另外两个内角分别是 80°,20°。
2、等腰三角形的两边长分别为 6 和 8,则其周长是多少?解:当腰长为 6 时,三边长分别为 6,6,8,因为 6 + 6>8,所以能组成三角形,此时周长为 6 + 6 + 8 = 20。
当腰长为 8 时,三边长分别为 8,8,6,因为 8 + 6>8,所以能组成三角形,此时周长为 8 + 8 + 6 = 22。
综上,其周长为 20 或 22。
3、一个等腰三角形的周长为 20,其中一边长为 8,求另外两边的长。
解:当 8 为腰长时,底边长为 20 8× 2 = 4,因为 8 + 4>8,所以能组成三角形,此时另外两边长分别为 8,4。
当 8 为底边时,腰长为(20 8)÷ 2 = 6,因为 6 + 6>8,所以能组成三角形,此时另外两边长分别为 6,6。
(二)能力提升1、等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角的度数为多少?解:当等腰三角形为锐角三角形时,腰上的高与另一腰的夹角为30°,则顶角为 60°。
当等腰三角形为钝角三角形时,腰上的高与另一腰的夹角为 30°,则顶角的外角为 60°,所以顶角为 120°。
综上,顶角的度数为 60°或 120°。
2、如图,在△ABC 中,AB = AC,D 是 BC 边上的中点,∠B =30°,求∠1 和∠ADC 的度数。
等腰三角形综合习题精选一、解答题(共23小题)1、如图,三条公路围成的一个三角形区域,要在这个区域中建一个加油站,使它到三条公路的距离都相等,加油站应建在什么位置?请用尺规作图,找出建造加油站的位置.2、在某河流的北岸有A、B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A、B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A、B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置在图中标出水泵站的位置,并求出所用水管的长度.3、作图题:要求尺规作图,不写作法,保留作图痕迹,写出结论.(1)如图所示,104国道OA和327国道OB在曲阜市相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(2)在图中直线上找到一点M,使它到A、B两点的距离和最小.4、平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)5、求点P(2,3)关于直线x=1的对称点的坐标.6、如图,分别作点A(﹣3,0),B(﹣2,2)关于直线x=2的对称点A′、B′.(1)A′点坐标为_________,B′点的坐标为_________;(2)四边形ABB′A′的面积为_________.7、如图,在△ABC中,DE⊥BC,交AC于F,交BA的延长线于E,且AE=AF,则△ABC是等腰三角形吗?请说明理由.8、如图,上午8时,一条船从A处出发,以15海里/h的速度向正北航行,10h后到达B处.从B处望灯塔C测得∠NBC=84°,若该船沿着这个方向行驶,12时刚好到达灯塔C,则B点与灯塔C相距多远?9、如图,已知∠EAC是△ABC的外角,∠1=∠2,AD∥BC,请说明AB=AC的理由.10、(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.11、(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_________度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.12、如图,△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,∠EDF=∠B,图中是否存在和△BDE全等的三角形?并说明理由.13、(2010•贵港)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD(2)若CE:AC=1:5,BC=10,求BP的长.14、(2009•河南)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.15、(2006•日照)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.16、(2005•云南)已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.17、(2002•三明)已知:如图△ABC中,AB=AC,CD、BE是△ABC的角平分线;求证:AD=AE.18、(2000•上海)如图,在△ABC中,AB=AC,E是AB的中点.以点E为圆心,EB为半径画弧,交BC于点D,连接ED,井延长ED到点F,使DF=DE,连接FC.求证:∠F=∠A.19、复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.20、如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.21、如图,在△ABC中,AB=AC,∠BAC=100°,MP、NQ分别垂直平分AB、AC,求∠1,∠2的度数.22、如图,△ABC中,AB=AD=DC,∠BAD=51°,求∠B、∠C的度数.23、如图,已知等腰三角形一腰上的中线把三角形周长分为12cm和15cm两部分,求它的底边BC的长.。
等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50。
,则其顶角为________ ・2.如图,HABC中…13=∕C, BC=6cm, JD 平分ZBAC.则BD= _________________ c m.第3题图3.如图,'ABC中,-lδ=FC, D为EC中点,ZBAD=35。
,则ZC的度数为()A.35oB. 45。
C・ 55。
D・ 60o4.已知等腰三角形的一个内角为50。
,则这个等腰三角形的顶角为()A・ 50o B. 80oC. 50。
或80。
D・ 40。
或65。
5.如图,在Z∖J5C 中,D 是BC 边上一点,^AB=.-ID=DC, ZAW=40°,求ZC 的度数.6.如图,ΔJBCΦ, .IB=AC9 D 是EC 的中点,E, F分别是.1B. JC±的点,且AE=AF. 求证:DE=DF.1. 在 ∕∖ABC 中,ZJ=40% Z5 = 70o ,则 MBC 为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2. 已知ΔJPC 中,Z5=50% ZJ = 80c , -lδ=5cm.则 AC= _________________ ・3. 如图,在ΛABC 中,-Q 丄BC 于点Zh 请你再添加一个条件,使苴可以确定AlSC 为等腰三角形,则添加的条件是 ________ ・第3题图4. 如图,已知NlBC 中,ZJ = 36% AB=AC, BD 为ZABC 的平分线,则图中共有 _______________ 个等腰三角形.5. 如图,D 是ZXJ5C 的BC 边上的中点,DE 丄AC. DFLAB.垂足分别是E, F,且DE=DF 求证:AB=AC.6.如图,肋〃 CZ λ直线/交,松于点E,交CD 于点F, FG 平分ZEFD 交直线曲于点G 求证:ZLEFG 是等腰三角形.第4题图13・3.2等边三角形第1课时等边三角形的性质与判定1. ____________________________________________________________ 如图,a∕∕b.等边MBC的顶点D C在直线b上,则Zl的度数为_______________________第1题图第3题图2.在∕∖ABC中,ZJ=60°,现有下面三个条件:®ZB=ZC;③ZA=ZB.能判定Z∖J5C为等边三角形的有____________________________ .3・如图,在等边AABC中,BD丄AC于D∙若,松=4,则AD= ________________ ・4.如图,ΔJ J9C是等边三角形,ZCBD=90°. BD=BC.连接.10交BC于点求ZBAD 的度数.5・如图,E是等边AABC中JC边上的点,Z1 = Z2, BE=CD.求证: (I)ZUEE 竺ZUS⑵AADE为等边三角形.第2课时含30。
等腰三角形的练习题一、选择题1. 等腰三角形的两边相等,这个性质称为()A. 对称性B. 等边性C. 等腰性D. 等角性2. 在等腰三角形中,底角相等的原因是()A. 三角形内角和定理B. 等腰三角形的性质C. 相似三角形的判定D. 直角三角形的性质3. 等腰三角形的底边高等于腰上的高,这是因为()A. 直角三角形的斜边中线性质B. 等腰三角形的三线合一性质C. 勾股定理D. 相似三角形的性质4. 已知等腰三角形的顶角为60°,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 如果等腰三角形的底边长为10厘米,腰长为13厘米,那么其面积是()A. 30平方厘米B. 65平方厘米C. 100平方厘米D. 无法计算二、填空题6. 等腰三角形的两个底角相等,其大小为______。
7. 如果等腰三角形的顶角为120°,那么底角的大小为______。
8. 在等腰三角形ABC中,AB=AC,如果AB边上的高为h,那么AC边上的高也是______。
9. 等腰三角形的三线合一性质指的是______、______和______在同一直线上。
10. 如果等腰三角形的腰长为x,底边长为y,且x>y,那么面积公式为S=______。
三、解答题11. 已知等腰三角形的顶角为40°,求其底角的大小。
12. 一个等腰三角形的底边长为8厘米,腰长为10厘米,求其面积。
13. 证明:等腰三角形的底边上的中线、高线和角平分线重合。
14. 如果一个三角形的两边相等,且这两边所夹的角为70°,求这个三角形的另外两个内角的大小。
15. 已知等腰三角形的周长为32厘米,底边长为10厘米,求其腰长。
四、应用题16. 一个等腰三角形的花园,其底边长为20米,腰长为13米。
如果需要在花园的周围铺设一圈围栏,问需要多少米的围栏?17. 在一个等腰三角形ABC中,AB=AC,AB边上的高为h,求证:AC边上的高也是h。
完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。
1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。
解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。
2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。
解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。
解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。
4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。
解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。
等腰三角形练习题及答案一.选择题1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为2.如图,已知C是线段AB上的任意一点,分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是二.填空题3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC 的面积之比等于 _________ . 1三.解答题4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC. 6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC是什么三角形?并说明理由.27.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.∠E等于多少度?△DBE是什么三角形?为什么?8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC 的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF. 10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.311.如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB?PE,S△ACP=AC?PF,S△AB C=AB?CH.又∵S△ABP+S△ACP=S△ABC,∴AB?PE+AC?PF=AB?CH. ∵AB=AC,∴PE+PF=CH.如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH= _________ .点P到AB边的距离PE= _________ . 12.数学课上,李老师出示了如下的题目:4“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE _________ DB.特例启发,解答题目解:题目中,AE与DB的大小关系是:AE _________ DB.理由如下:如图2,过点E作EF∥BC,交AC于点F.拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长. 13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D 在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.5等腰三角形的性质精选试题一.选择题1.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等2.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是3.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为)6.在等腰△ABC中,AB=AC=9,BC=6,DE是AC 的垂直平分线,交AB、AC于点D、E,则△BDC的周长是)8.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,则图中全等三角形共有9.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF 的度数为11.如图已知∠BAC=100°,AB=AC,AB、AC的垂直平分线分别交BC于D、E,则∠DAE=12.如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要根.13.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是°,则∠PAB的度数为15.如图,点D是线段AB与线段BC的垂直平分线的交点,∠B=40°,则∠ADC等于16.如图,AD=BC=BA,那么∠1与∠2之间的关系是17.有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个19.如图,已知△ABC中,AB=AC,AB的垂直平分线DE交AC于D,垂足为E,若AB=5cm,△BCD的周长为8cm,那么BC的长是cm.20.已知△ABC中,∠C=32°,∠A、∠B的外角平分线分别交对边的延长线于D、E两点,且AC=AD,则∠E=21.如图,△ABC中,AB=BC=AD,D在BC的延长线上,则角α和β的关系是二.填空题22.如图,在△ABC中,∠B=∠C,点D、E分别在BC、AC边上,∠CDE=15°,且∠AED=∠ADE,则∠BAD的度数为_________.23.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC=.24.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管 _________ 根.25.如图,在△AB C中,DE、FG分别是边AB、AC的垂直平分线,则∠B∠1,∠C∠2;若∠BAC=126°,则∠EAG= _________ 度.26.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有 _________ 处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于 _________ .三.解答题27.已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.猜想: _________ .证明:28.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.若∠BAC=90°,∠BAD=30°,求∠EDC的度数?若∠BAC=a,∠BAD=30°,求∠EDC的度数?猜想∠EDC与∠BAD的数量关系?29.如图所示,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24cm,且BC=10cm,求AB的长.30.如图,在等腰△ABC中,∠A=80°,∠B和∠C 的平分线相交于点O连接OA,求∠OAC的度数;求:∠BOC.等腰三角形一、填空题1.已知等腰三角形一个内角的度数为30°,那么它的底角的度数是_________..等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.3.等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________.中,平分,则D点到AB的距离为________.4.如图,在5.如图,在中,.平分,若,则6.如图,,AB的垂直平分线交AC于D,则.7.如图,中,DE垂直平分的周长为13,那么的周长为__________.8.如图,如果点M在的平分线上且_____________________________________________.厘米,则,你的理由是9.如图,已知__________.边的垂直平分线交于点,则的周长为二、解答题1.如图,中,,试说明:.2.如图,求作一点P,使,并且使点P到的两边的距离相等,并说明你的理由.3.老师正叙述这样一道题:请同学们画出一个一下点P到三角形三个顶点请说明你的理由.4.如图,已知米,你能判断出,然后画出的中垂线,且交于点P.请同学们想的距离如何?小明马上就说:“相等.”他是随便说的吗?你同意他的说法吗?的周长是20厘米,AC长为8厘中,DE垂直平分AC,交C于点E,交BC于点D,的周长吗?试试看.5.有一个三角形的支架如图所示,你在不用任何测量工具的前提下,能得到,小明过点A和BC边的中点D又架了一个细木条,经测量和的度数吗?,6.请你在纸上画一个等腰三角形ABC,使得.请你判断一下与有什么大小关系呢?你的依据是什么?请你再深入地思考一个问题:若只知道与相等,请你判断一下这个三角形是什么形状的呢?并说明你的探索思路.由第你会得到一个什么结论呢?请用一句话概括出来.现在给出两个三角形,请你把图分割成两个等腰三角形,把图分割成三个等腰三角形.动动脑筋呀!参考答案:一、1.30°或75° .120°3.15厘米..30°,DC .20°7.198.6cm,角平分线上的点到角两边的距离相等.22.二、1.提示:在AB上截取,易说明≌,从而可说明,所以2.提示:作线段CD的垂直平分线和的角平分线,两线交点即为所求点.3.我同意小明的说法.如图,∵点P 是AB的中垂线上一点,∴ .∵点P是是AC中垂线上一点,∴.∴.4..垂直平分AC,∴即..又的周长是20厘米,∴ ,∴厘米.的角平分线.∴.∴为BC边的中点,∴AD又是BC边的高线和.∴ .6.相等、依据,等腰三角形两底角相等.等腰三角形.如图,证明:过点A作,∴,在≌和,∴中,两个底角相等的三角形是等腰三角形.如图.基础训练层次题一、填空题1.下列几何图形中:平行四边形;线段;角;圆;正方形;任意三角形.其中一定是轴对称图形的有_____________.2.角是轴对称图形,它的对称轴是_________________.3.线段是轴对称图形,它的对称轴是__________________.4.下面的三角形都是等腰三角形,且均为遮住的顶角或底角各是多少度吗?,它们均有一部分被木板遮住了,你能相当快的说出它们被5.我们知道等腰三角形是轴对称图形,你认为它有____条对称轴.对于等腰三角形对称轴的问题,芳芳、丽丽、园园有了不同的看法.芳芳:“我认为等腰三角形的对称轴是顶角平分线所在的直线.”丽丽:“我认为等腰三角形的对称轴是底边中线所在的直线.”园园:“我认为等腰三角形的对称轴是底边高线所在的直线.”你认为她们谁说的对呢?请说明你的理由______________________________________________.二、解答题1.指出下列图形的所有对称轴数,并画出其中一条对称轴.2.已知:如图,于E,且,已知,求的度数.3.如图,已知,AB的垂直平分线MN交AC于点D,求的度数.参考答案一、1..角平分线所在的直线..线段的垂直平分线..70°,90°,30°.5.一,全对,因为等腰三角形这三线合一.二、1.5条条条2.3.30°一、选择题等腰三角形中的一个角等于,,,,习题精选,则另两个内角的度数分别为,,或,,,,则这个三角形的三个内角分别为等腰三角形的一个外角等于,,,,或,,如果一个等腰三角形的一个底角比顶角大,那么顶角为等腰三角形一腰上的高与底边所成的角等于顶角顶角的一半顶角的2倍底角的一半在下列命题中,正确的是等腰三角形是锐角三角形等腰三角形两腰上的高相等两个等腰直角三角形全等等腰三角形的角平分线是,另一边长为,若,若的周长为24,则的取值范围是,另一边长为,则它的周长为或或,则它的周长为中,中,已知等腰三角形的一边长为在在已知等腰三角形的一边长为的周长为24,则的取值范围是三角形一边上的高和这边上的中线重合,则这个三角形一定是锐角三角形钝角三角形等腰三角形等边三角形.那么如图,已知,一腰上的中线把其周长分为两部分的差为.则腰长为等腰三角形底边长为或以上答案都不对等腰三角形的底角与相邻外角的关系是底角大于相邻外角底角小于或等于相邻外角底角大于或等于相邻外角底角小于相邻外角的周长为,且,又,D为垂足,的周长为,那已知么AD的长为二、填空题。
练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( )A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形AQ CPB∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60° ∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
知识链接:该图形是有关等腰三角形的一个很常用的基本图形,上述练习说明在该图中“角平分线、平行线、等腰三角形”这三者中若有两者必有第三,熟练这个结论,对解决含有这个基本图形的较复杂的题目是很有帮助的.
等腰三角形课后提高
一基本图形
1.(1)已知:OD 平分∠AOB ,ED ∥OB .请说明:EO=ED .
(2)已知:OD 平分∠AOB ,EO=ED .请说明:ED ∥OB.
(3)已知:ED ∥OB ,EO=ED .请说明:OD 平分∠AOB .
2如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.
改编为:
(1)图中共有几个等腰三角形?分别写出它们的顶角与底角. (2)你能求出各角的度数吗?
如图,∠A =36°,∠DBC =36°,∠C =72°,分别计算∠1、∠2的度数,•并说明图中有哪些等腰三角形.
1.如图,已知在△ABC 中,AB=AC ,∠A =40°,∠ABC 的平分线BD 交AC 于D .求:∠ADB 和∠CDB 的度数.
2.如图,已知在△ABC 中,AB=AC ,∠BAD =30°,AD=AE . 求:∠EDC 的度数.
3.如图,把一张矩形的纸沿对角线折叠.重合部分是一个等腰三角形吗?为什么?
2
1
E
D C
B
A
4.等腰三角形腰上的高线与底边的夹角等于()
A.顶角
B.顶角的两倍
C.顶角的一半
D.底角的一半
5.如图,在△ABC中,AB=AC,∠BAD=20o,
AD=AE,则∠EDC= .
6.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证BD=CE
7如图,在△ABC中,AD平分∠BAC,AB+BD=AC,猜想∠ABC和∠C的关系,并说明理由.
8.如图,已知在△AB C中,在AB上取一点D,又在AC延长线上取点E,使CE=BD,连结DE交BC于点G,有DG=GE,试说明:AB=AC.
小贴士:线段和差的问题通常可通过在长边上
截取和短边上补长的方法构造全等三角形来解
决,我们把这种方法称为截长补短法.。