离散数学_习题课一:第1章 命题逻辑
- 格式:pdf
- 大小:683.00 KB
- 文档页数:30
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。
(2)设A,B都是命题公式,A B,则A B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
" 可符号化为: p q 。
(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。
(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。
”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。
(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。
(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。
(12)设P:你努力.Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。
(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。
()2.命题公式p q r是析取范式。
( √ )3.陈述句“x + y > 5”是命题。
第一章命题逻辑1.1命题与命题联结词P6.T2.判断下列语句是否为命题,为什么?若是命题判断是原子命题还是复合命题,并把复合命题符号化,要求符号化到原子命题。
(1)他们明天或后天去百货公司。
(2)你能告诉我,我什么时候一定会死吗?你不能!(3)如果这个语句是命题,那么它是一个假命题。
(4)李刚和李春是兄弟。
(5)王海和李春在学习。
(6)只要努力学习,就一定能取得优异成绩。
(7)李春对李刚说:“今天天气真好呀!”(8)你知道这是个真命题还是假命题就请告诉我!(9)王海不是女孩子。
答案解⑴是复合命题。
设p:他们明天去百货公司;q:他们后天去百货公司。
命p∨。
题符号化为q⑵是疑问句,所以不是命题。
⑶是悖论,所以不是命题。
⑷是原子命题。
⑸是复合命题。
设p:王海在学习;q:李春在学习。
命题符号化为p∧q。
⑹是复合命题。
设p:你努力学习;q:你一定能取得优异成绩。
p→q。
⑺不是命题。
⑻不是命题⑼。
是复合命题。
设p:王海是女孩子。
命题符号化为:⌝p。
P7.T4.设p表示命题“天下大雨”,q表示命题“他乘公共汽车上班”,r表示命题“他骑自行车上班”。
请将下列命题符号化。
(1)如果天不下大雨,他乘坐公共汽车或者骑自行车上班。
(2)只要天下大雨,他就乘公共汽车上班。
(3)只要天下大雨,他才乘公共汽车上班。
(4)除非天下大雨,否则他不乘公共汽车上班。
答案解⑴⌝p→(q∨r)。
⑵p→q。
⑶q→p。
⑷q → p。
1.2命题公式及其分类P10.T4.构造下列公式的真值表,并据此说明它是重言式、矛盾式或者仅为可满足式。
(1)p ∨⌝(p ∧q )。
(2)(p ∧q )∧⌝(p ∨q )。
(3)(p →q )↔(⌝p ↔q )。
(4)((p →q )∧(q →r ))→(p →r )。
答案解 ⑴设)(q p p A ∧⌝∨=,其真值表如表2-1所示:故)(q p p A ∧⌝∨=为重言式。
⑵设A =(p ∧q )∧⌝(p ∨q ),其真值表如表2-2所示:表2-2故∧∧⌝∨为矛盾式。
第1章 命题逻辑一、单项选择题1. 下列命题公式等值的是( ) BB A A Q P Q Q P Q B A A B A A QP Q P ),()D (),()C ()(),()B (,)A (∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝2. 设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (3. 命题公式Q Q P →∨)(为 ( ) (A) 矛盾式(B) 仅可满足式 (C) 重言式 (D) 合取范式4 命题公式)(Q P →⌝的主析取范式是( ). (A) Q P ⌝∧ (B) Q P ∧⌝ (C) Q P ∨⌝ (D) Q P ⌝∨ 5. 前提条件P Q P ,⌝→的有效结论是( ). (A) P(B)P(C) Q(D)Q6. 设P :我将去市里,Q :我有时间.命题“我将去市里,仅当我有时间时”符号化为( )Q P Q P Q P PQ ⌝∨⌝↔→→)D ()C ()B ()A (二、填空题1. 设命题公式G :P⌝(Q P ),则使公式G 为假的真值指派是2. 设P :我们划船,G :我们跑步,那么命题“我们不能既划船,又跑步”可符号化为3. 含有三个命题变项P ,Q ,R 的命题公式P Q 的主析取范式是4. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨⌝↔→∧的真值是5. 命题公式P⌝P Q 的类型是 .6. 设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么B A ↔是式(重言式、矛盾式或可满足式)三、解答化简计算题1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2.作命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.3. 试作以下二题:(1) 求命题公式(PQ )(P Q )的成真赋值.(2) 设命题变元P ,Q ,R 的真值指派为(0,1,1),求命题公式))()(()(Q R Q P R P →⌝∨→⌝∧↔的真值.4. 化简下式命题公式))()((P Q P Q P ∧⌝∧⌝∨∧5. 求命题公式))()((Q P P Q P ∧⌝∧→→的主合取范式.6. 求命题公式)()(Q P Q P ⌝→∧→⌝的主析取范式,并求该命题公式的成假赋值.7. 求命题公式)()(Q P Q P ⌝∨⌝∧∧的真值表. 四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()(2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.参考答案一、1. C 2. D 3. B 4. A 5. D 6. B二、1. 1,0;1,1 2. )(Q P ∧⌝或Q P ⌝∨⌝ 3. (P Q R )(P QR )4. 05. 非永真式的可满足式6. 重言 三、1. (1) 是命题,真值为1.(2) 是命题,真值为0. (3), (4)不是命题. (5) 是命题.1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2. 命题公式))(()(P Q P Q P ∨∧→→的真值表 P Q P Q Q P ∧P Q P ∨∧)())(()(P Q P Q P ∨∧→→0 0 1 0 0 0 0 1 1 0 0 0 1111 1 1 1 1 1 原式为可满足式.3. (1) (P Q )(P Q )(P Q )(P Q )(P P )Q Q可见(PQ )(P Q )的成真赋值为(0,1),(1,1).(2) ))()(()(Q R Q P R P →⌝∨⌝→⌝∧↔0))10()01(()10(⇔→∨→∧↔⇔4.))()((P Q P Q P ∧⌝∧⌝∨∧P Q P Q P ∧⌝∧⌝∨∧⇔)()()()(P P Q P Q P ∧⌝∧⌝∨∧∧⇔0)(∨∧⇔Q PQ P ∧⇔5. ))()((Q P P Q P ∧⌝∧→→ ))()((Q P P Q P ∧⌝∧∨⌝∨⌝⇔)())(Q P P Q P Q P ∧⌝∧∨∧⌝∧⌝∨⌝⇔ )00(∧∨⌝⇔P )(Q Q P ⌝∧∨⌝⇔)()(Q P Q P ⌝∨⌝∧∨⌝⇔6. )()()()(Q P Q P Q P Q P ⌝∨⌝∧⌝∧⇔⌝→∧→⌝ Q P ⌝∧⇔因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)7. 作真值表PQ P QPQPQ (P Q )(PQ ) 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 111四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()( ①Q R P②R P③Q T ①,②析取三段论 ④P Q P ⑤P ⌝ T ③,④拒取式 ⑥PS P⑦S ⑤,⑥析取三段论 2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((.前提:Q P R S Q P ,)),((→→→ 结论:S R → 证明:① R附加前提② RP前提引入 ③ P①,②假言推理④P (Q S ) 前提引入 ⑤ Q S ③,④假言推理 ⑥ Q 前提引入⑦ S⑤,⑥假言推理3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式. 证明.方法1.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝⇔∨∧⌝⇔Q R P )(Q R P →∧)(因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同. 3 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.方法2.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝R Q P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔ R Q P Q R P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔→∧)(因为它们的主合取范式相同,可知它们的主析取范式也相同.第2章谓词逻辑一、 单项选择题1. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词x 的辖域是( ) (A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q2. 谓词公式∃xA (x )∧∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型 3 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+∃∀y x y x (B) )0(=+∀∃y x x y(C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) ))),()(()((y x A y J y x L x ∧∃→∀ (C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀5. 设个体域是整数集合,P 代表x y ((x y )(x y 0)),下面4个命题中为真的是( )(A) P 是真命题 (B) P 是逻辑公式,但不是命题 (C) P 是假命题 (D) P 不是逻辑公式6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( )(A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )R (x ,y ) (D) P (x ,y )Q (z )二、 填空题1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .2. 设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为3. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为参考答案一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D二、1. A (1)A (2)(B (1)B (2)) 2. (G (a )(H (a ,a )H (a ,b ))) (G (b )(H (b ,a )H (b ,b )))3. ))()(())()((x N x Z x x Z x N x ⌝∧∃∧→∀。
离散数学结构第1章命题逻辑基本概念第1章命题逻辑基本概念主要内容1. 命题与真值(或真假值)。
2. 简单命题与复合命题。
3. 联结词:否定联结词┐,合取联结词∧,析取联结词∨,蕴涵联结词→,等价联结词。
4. 命题公式(简称公式)。
5. 命题公式的层次和公式的赋值。
6. 真值表。
7. 公式的类型(重⾔式(或永真式),⽭盾式(或永假式),可满⾜式)。
学习要求1. 在5种联结词中,要特别注意蕴涵联结的应⽤,要弄清三个问题:① p→q的逻辑关系② p→q的真值③ p→q的灵活的叙述⽅法2. 写真值表要特别仔细认真,否则会出错误。
3. 深刻理解各联结词的逻辑含义。
4. 熟练地将复合命题符号化。
6. 会⽤真值表求公式的成真赋值和成假赋值。
1.1 命题与联结词 (2)⼀、命题的概念 (2)⼆、复合命题与联结词 (2)三、复合命题真假值 (5)1.2 命题公式及其赋值 (6)⼀、命题公式的定义 (6)⼆、公式的层次 (6)三、公式的赋值 (6)四、真值表 (7)五、公式的真假值分类 (8)1.1 命题与联结词⼀、命题的概念引⾔中的例⼦就是要对“我戴的是⿊帽⼦”进⾏判断。
这样的陈述句称为命题。
作为命题的陈述句所表达的判断结果称为命题的真值,真值只取两个值:真或假。
真值为真的命题称为真命题,真值为假的命题称为假命题。
真命题表达的判断正确,假命题表达的判断错误。
任何命题的真值都是唯⼀的。
判断给定句⼦是否为命题,应该分两步:⾸先判定它是否为陈述句,其次判断它是否有唯⼀的真值。
例1.1 判断下列句⼦是否为命题。
(1) 4是素数。
(2) 是⽆理数。
(3) x⼤于y。
(4) ⽉球上有冰。
(5) 2100年元旦是晴天。
(6) π⼤于吗?(7) 请不要吸烟!(8) 这朵花真美丽啊!(9) 我正在说假话。
解:本题的(9)个句⼦中,(6)是疑问句,(7)是祈使句,(8)是感叹句,因⽽这3个句⼦都不是命题。
剩下的6个句⼦都是陈述句,但(3)⽆确定的真值,根据x,y的不同取值情况它可真可假,即⽆唯⼀的真值,因⽽不是命题。
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会。
则命题:“派小王或小李中的一人去开会”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。
(2)设A,B都是命题公式,A⇒B,则A→B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p∧q。
(4)设A , B 代表任意的命题公式,则蕴涵等值式为A → B⇔⌝A∨B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
”可符号化为:⌝ p→⌝q 。
(6)设A , B 代表任意的命题公式,则德∙摩根律为⌝(A ∧ B)⇔⌝A ∨⌝B)。
(7)设,p:选小王当班长;q:选小李当班长。
则命题:“选小王或小李中的一人当班长。
”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。
(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:P∧Q 。
(9)对于命题公式A,B,当且仅当 A → B 是重言式时,称“A蕴含B”,并记为A⇒B。
(10)设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
”可符号化为:⌝ (P∧Q) 。
(11)设P , Q是命题公式,德·摩根律为:⌝(P∨Q)⇔⌝P∧⌝Q)。
(12)设P:你努力。
Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:⌝P→Q。
(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军。
”可符号化为:p∨q。
(14)设A,C为两个命题公式,当且仅当A→C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A→B⇔⌝A∧B。
(⨯)2.命题公式⌝p∧q∧⌝r是析取范式。
(√)3.陈述句“x + y > 5”是命题。
第一章 命题逻辑的基本概念一、单项选择题1.下列语句中不是命题的有( ).A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗D.我要努力学习。
2. 下列语句是真命题为( ).A. 1+2=5当且仅当2是偶数B. 如果1+2=3,则2是奇数C. 如果1+2=5,则2是奇数D. 你上网了吗3. 设命题公式)(r q p∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A ( 4. 命题公式q q p →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式5. 设p:我将去市里,q :我有时间.命题“我将去市里,仅当我有时间时”符号化为为( )q p q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )A. Q P ⌝→ ;B. Q P →⌝;C. P Q ⌝∧⌝ ;D. )(Q P ∧⌝二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化(1)中国有四大发明。
(2)2是有理数。
(3)“请进!”(4)刘红和魏新是同学。
(5)a+b(6)如果买不到飞机票,我哪儿也不去。
(8)侈而惰者贫,而力而俭者富。
(韩非:《韩非子显学》)(9)火星上有生命。
(10)这朵玫瑰花多美丽啊!二、将下列命题符号化,其中p:2<1,q:3<2(1)只要2<1,就有3<2。
(2)如果2<1,则32。
(3)只有2<1,才有32。
(4)除非2<1,才有32。
(5)除非2<1,否则32。
(6)2<1仅当3<2。
三、将下列命题符号化(1)小丽只能从筐里拿一个苹果或一个梨。
(2)王栋生于1992年或1993年。
四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
第一章命题逻辑测验一、判断命题(每题1分,共5分)判断下列语句是不是命题。
若是,给出命题的真值。
1、北京是中华人民共和国的首都。
2、陕西师大是一座工厂。
3、你喜欢唱歌吗?4、若7+8>18,则三角形有4条边。
5、给我一杯水吧!二、命题符号化(每题2分,共8分)设P:我生病,Q:我去学校1、只有在生病时,我才不去学校2、若我生病,则我不去学校3、当且仅当我生病时,我才不去学校4、若我不生病,则我一定去学校三、蕴含式(12+15=27分)1、命题定律(每个4分,共计12分)吸收律、德摩根律、分配律2、要求:不使用真值表,使用蕴含的定义以及等价变换两种方法进行证明。
(15分)→Q→P→→→R⇒(())P)(RQP四、主析取范式/主合取范式(每题15分,共30分)求下列的主析取范式和主合取范式,要求第1题使用大项和小项的关系进行求解,第2题要求直接求主析取范式和主合取范式。
1、(P∧R)∨(Q∧R)∨⌝P2、(⌝P→Q)∧(R∨P)五、推理规则进行证明(每题10分,共30分)1、S⌝→∨((直接证法)⇒→,),QRPRQSP→2、S⌝∨→⇒),→,((用CP)RQRP→PSQ3、(P→Q)∧(R→S),(Q→W)∧(S→X),⌝(W∧X),P→R => ⌝P(反证法)。
离散数学及算法(曹晓东,原旭版) 课后作业题答案第一章 命题逻辑1.第7页第3题(1)解:逆命题:如果我去公园,则天不下雨;反命题:如果天下雨,则我不去公园;逆反命题:如果我不去公园,则天下雨了。
(2)解:(此题注意:P 仅当Q 翻译成P Q →)逆命题:如果你去,那么我逗留。
反命题:如果我不逗留,那么你没去。
逆反命题:如果你没去,那么我不逗留。
(3)解:逆命题:如果方程n n n x y z +=无整数解,那么n 是大于2的正整数。
反命题:如果n 不是大于2的正整数,那么方程n n n xy z +=有整数解。
逆反命题:如果方程n n n x y z +=有整数解,那么n 不是大于2的正整数。
(4)解:逆命题:如果我不完成任务,那么我不获得更多的帮助。
反命题:如果我获得了更多的帮助,那么我能完成任务。
逆反命题:如果我能完成任务,那么我获得了更多的帮助。
2.第15页第1题(4)解:(())P Q P T ⌝⌝∨→⌝↔()()P Q P Q ⌝∧↔⌝∨⌝()()P Q P Q ⇔⌝∨⌝↔⌝∨⌝ (重言式)(9)解:P P Q F Q T ∧⌝→⇔→⇔(重言式)(10)解:P Q Q T Q Q ∨⌝→⇔→⇔(可满足式)3.第16页第5题(2)证明:(())P Q P ⌝⌝∨→⌝(())()P Q P P Q PP Q PP P QF QF ⇔⌝∨∨⌝⇔⌝∨∧⇔⌝∧⌝∧⇔⌝∧∧⌝⇔∧⌝⇔因此,(())P Q P F ⌝⌝∨→⌝↔,得证。
(4)证明:()()P P P P →⌝∧⌝→()()P P P P P P F⇔⌝∨⌝∧∨⇔⌝∧⇔因此,()()P P P P F →⌝∧⌝→↔,得证。
4.第16页第6题(1)P Q P Q ∧⇒→证明:设P Q ∧为真,那么P 为真,并且Q 为真,因此P Q →为真。
所以P Q P Q ∧⇒→。
(2)()()()P Q R P Q P R →→⇒→→→证明:设()()P Q P R →→→为假,于是P Q →为真,P R →为假。
第一章 命题逻辑 习题与解答1. 判断下列语句是否为命题,并讨论命题的真值。
(1) 32−x 。
(2) 前进!(3) 如果2078>+,则三角形有四条边。
(4) 请勿吸烟!(5) 你喜欢鲁迅的作品吗?(6) 如果太阳从西方升起,你就可以长生不老。
(7) 如果太阳从东方升起,你就可以长生不老。
解 (3), (6), (7) 表达命题,其中 (3), (6) 表达真命题,(7) 表达假命题。
2. 将下列命题符号化:(1) 逻辑不是枯燥无味的。
(2) 我看见的既不是小张也不是老李。
(3) 他生于1963年或1964年。
(4) 只有不怕困难,才能战胜困难。
(5) 只要上街,我就去书店。
(6) 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。
(7) 如果林芳在家里,那么他不是在做作业就是在看电视。
(8) 三角形三条边相等是三个角相等的充分条件。
(9) 我进城的必要条件是我有时间。
(10) 他唱歌的充分必要条件是心情愉快。
(11) 小王总是在图书馆看书,除非他病了或者图书馆不开门。
解(1) 逻辑是枯燥无味的。
:p“逻辑不是枯燥无味的”符号化为p ¬。
(2) 我看见的是小张:p我看见的是老李:q“我看见的既不是小张也不是老李”符号化为q p ¬∧¬。
(3) 年他生于 1963 :p年他生于 1964 :q“他生于1963年或1964年”符号化为q p ⊕。
(4) 害怕困难:p战胜困难:q“只有不怕困难,才能战胜困难”符号化为p q ¬→。
(5) 我上街:p我去书店:q“只要上街,我就去书店”符号化为q p →。
(6) 小杨晚上做完了作业:p小杨晚上没有其它事情:q小杨晚上看电视:r小杨晚上听音乐:s“如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐”符号化为s r q p ∨→∧。
(7) 林芳在家里:p林芳在做作业:q林芳在看电视:r“如果林芳在家里,那么他不是在做作业就是在看电视”符号化为r q p ∨→。