八年级数学下册_第六章证明(一)单元测试_北师大版
- 格式:doc
- 大小:203.50 KB
- 文档页数:5
一、选择题1.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒2.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 3.下列各组线段a 、b 、c 中不能组成直角三角形的是( ) A .a =7,b =24,c =25B .a =4,b =5,c =6C .a =3,b =4,c =5D .a =9,b =12,c =15 4.下列几组数能作为直角三角形三边长的是( ) A .3,4,6 B .1,1,3 C .5,12,14 D .5,25,5 5.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于点D .若∠A =30°,AE =10,则CE 的长为( )A .5B .4C .3D .26.下面说法中正确的是( )A .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线B .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线段C .三角形的角平分线不是射线D .等腰三角形的对称轴和底边上的高线、中线以及顶角的平分线,互相重合7.如图,点123,,,A A A A ,…在同一直线上,111122223,,AB A B A B A A A B A A ===,3334A B A A =,……,若B 的度数为x ,则1n n n A B A +∠的度数为( )A .()111802n x -︒-B .()11802n x ︒-C .()111802n x +︒-D .()211802n x +︒-8.如图,在OAB 和△OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠. 其中一定正确的为( )A .①②③B .①②④C .①③④D .②③④ 9.如图,ABC 中,AB AC =,BD DC =,若80BAC ∠=︒,AD AE =,则CDE∠的度数为( )A .40°B .30°C .20°D .10°10.如图,直线a ,b 相交形成的夹角中,锐角为52°,交点为O ,点A 在直线a 上,直线b 上存在点B ,使以点O ,A ,B 为顶点的三角形是等腰三角形,这样的点B 有( )A .1个B .2个C .3个D .4个 11.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,则下列结论错误..的是( )A .30CED ∠=︒B .120∠=︒BDEC .DE BD = D .DE AB = 12.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,在ABC 中,AB AC =,AD 平分BAC ∠,PD 垂直平分AB 连接BD 并延长,交边AC 于点E .若BCE 是等腰三角形,则BAC ∠的度数为________.14.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,有下列结论:①EF BE CF =+;②点O 到ABC 各边的距离相等;③1902BOC A ∠=+∠︒;④()12AD AB AC BC =+-.其中正确的结论是______(把你认为正确结论的序号都填上).15.在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A ,(0,1)B ,则点C 的坐标为_______.16.等腰三角形周长为20,一边长为4,则另两边长为______.17.如图,OA ,OB 分别是线段MC 、MD 的垂直平分线,MD =5cm ,MC =7cm ,CD =10cm ,一只小蚂蚁从点M 出发,爬到OA 边上任意一点E ,再爬到OB 边上任意一点F ,然后爬回M 点,则小蚂蚁爬行的最短路径的长度为_____.18.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE =DG ,AG =16,AE =8,若S △ADG =64,则△DEF 的面积为 ________.19.如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O ,若∠B =50°,则∠AOC =_____.20.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.三、解答题21.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度.22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.如图,在ABC ∆中,80ABC ACB ∠=∠=︒,D 是AB 上一点,且AD BC =,//DE BC 且DE AC =.连接AE ,CE ,CD .(1)求AED ∠的度数;(2)证明:ACE ∆是等边三角形;(3)求ECD ∠的度数.24.如图,在平面直角坐标系中,直线AB 经过点A (﹣2,3),B (4,0),交y 轴于点C ;(1)求直线AB 的关系式;(2)求△OBC 的面积;(3)做等腰直角三角形PBC ,使PC =BC ,求出点P 的坐标.25.如图,等边△ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC . (1)如图①,点E 为AB 的中点,求证:AE=DB .(2)如图②,点E 在边AB 上时,AE DB (填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F (请你完成以下解答过程).(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若AB=1,AE=2时,直接写出CD 的长.26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,求出∠EDF ,根据角平分线性质求出DE=DF ,根据线段垂直平分线性质求出BD=CD ,证Rt △DEB ≌Rt △DFC ,求出∠EDB=∠CDF ,推出∠BDC=∠EDF ,即可得出答案.【详解】解:如图:过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.2.C解析:C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键. 3.B解析:B【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的和的平方是否等于最长边的平方,分别对每一项进行分析,即可得出答案;【详解】A 、222724=25+ ,能构成直角三角形;B 、22245=416+≠ ,不能构成直角三角形;C 、22234=5+ ,能构成直角三角形;D 、222912=225=15+,能构成直角三角形;故选:B .【点睛】本题考查了勾股定理的逆定理,用到的知识点是已知△ABC 的三边满足222+=a b c ,则△ABC 是直角三角形;4.D解析:D【分析】要能作为直角三角形三边长,需验证两小边的平方和等于最长边的平方.【详解】解:A 、32+42≠62,不符合勾股定理的逆定理,不是直角三角形,不符合题意;B 、12+12≠2,不符合勾股定理的逆定理,不是直角三角形,不符合题意;C 、52+122≠142,不符合勾股定理的逆定理,不是直角三角形,不符合题意;D 2+(2=52,符合勾股定理的逆定理,是直角三角形,符合题意; 故选:D .【点睛】本题考查了勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形. 5.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE =5,再根据角平分线的性质求出CE =DE =5即可.【详解】解:∵DE ⊥AB ,∴∠ADE =90°,在Rt △ADE 中,∠A =30°,AE =10,∴DE =12AE =5,∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴CE=DE=5,故选:A.【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C解析:C【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.据此分析判断即可.【详解】解:A.ABC∆中BC边上的高线,是过顶点A向对边所引的垂线段,原说法错误,故本选项不符合题意;B.当∠B或∠C是钝角时,过A不存在到线段BC的垂线,故本选项说法错误,不符合题意;C.三角形的角平分线就是三角形的内角平分线与这个内角的对边的交点与这个内角的顶点之间的线段,故本选项正确,符合题意;D.对称轴是直线,不能与线段重合,本故选项说法错误,不符合题意;故选:C.【点睛】本题主要考查了三角形的角平分线、中线以及高线,三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.7.C解析:C【分析】根据等腰三角形的性质和三角形外角的性质进行求解计算【详解】解:∵在△ABA1中,∠B=x,AB=A1B,∴∠BA1A=1802x︒-,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠A1B1A2=∠A1A2B1=12∠BA1A=21180180222x x︒-︒-⨯=;同理可得,∠A2B2A3=∠A2A3B2=12∠A1B1A2=231180180222x x︒-︒-⨯=;∴∠A n B n A n +1=()111802n x +︒- 故选:C .【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,准确识图,找出规律是解答此题的关键.8.B解析:B【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD 即可判断①;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,即可判断②;作OG ⊥MC 于G ,OH ⊥MB 于H ,则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,即可判断④;由∠AOB=∠COD ,得出当∠DOM=∠AOM 时,OM 平分∠BOC ,假设∠DOM=∠AOM ,由△AOC ≌△BOD 得出∠COM=∠BOM ,由MO 平分∠BMC 得出∠CMO=∠BMO ,推出△COM ≌△BOM ,得OB=OC ,而OA=OB ,所以OA=OC 即可判断③;【详解】∵ ∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB OC ODAOC BOD =⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△BOD (SAS ),∴∠OCA=∠ODB ,AC=BD ,故①正确;∴∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,∴∠AMB=∠AOB=40°,故②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中OCA ODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,故④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM平分∠BOC,假设∠DOM=∠AOM,∵△AOC≌△BOD∴∠COM=∠BOM,∵MO平分∠BMC∴∠CMO=∠BMO,在△COM和△BOM中,COM BOMOM OMCMO BMO∠∠⎧⎪=⎨⎪∠=∠⎩,∴△COM≌△BOM(ASA)∴OB=OC,∵OA=OB,∴OA=OC与OA>OC矛盾,故③错误;故选:B.【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,角平分线的判定等知识,证明三角形全等是解题的关键;.9.C解析:C【分析】根据已知可求得∠DAC及∠ADE的度数,根据∠CDE=90°-∠ADE即可得到答案.【详解】解:∵AB=AC,BD=DC∴ AD⊥BC(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)∴∠ADC=90°,∵∠BAC=80°,∴∠BAD=∠DAC= 80°÷2=40°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE,∴∠ADE=(180°−40°)÷2=70°,∴∠CDE=∠ADC-∠ADE=90°-70°=20°,故答案为:C.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,掌握等腰三角形的性质,三角形内角和定理是解题的关键.10.D解析:D【分析】以点O 、A 、B 为顶点的等腰三角形有3种情况,分别为OA OB =,OA AB =,OB AB =,从这三方面考虑点B 的位置即可.【详解】解:如图所示,①当OA OB =时,以点O 为圆心,OA 为半径作圆,与直线b 在O 点两侧各有一个交点,此时B 点有2个;②当OA AB =时,以点A 为圆心,OA 为半径作圆,与直线b 有另外一个交点,此时B 点有1个;③当OB AB =时,作OA 的垂直平分线,与直线b 有一个交点,此时B 点有1个, 综上,B 点总共有4个,故选:D .【点睛】本题考查了等腰三角形的判定,两条边相等的三角形为等腰三角形,因此要注意分类讨论,由每种情况的特点选择合适的方法确定点B 是解题的关键.11.D解析:D【分析】因为△ABC 是等边三角形,又BD 是AC 上的中线,所以有∠ADB =∠CDB =90°,且∠ABD =∠CBD =30°,∠ACB =∠CDE +∠DEC =60°,又CD =CE ,可得∠CDE =∠CED =30°,所以就有∠CBD =∠DEC ,即DE =BD ,∠BDE =∠CDB +∠CDE =120°.由此得出答案解决问题.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°,∵BD是AC上的中线,∴∠ADB=∠CDB=90°,∠ABD=∠CBD=30°,∵∠ACB=∠CDE+∠DEC=60°,又CD=CE,∴∠CDE=∠CED=30°,∴∠CBD=∠DEC,∴DE=BD,∠BDE=∠CDB+∠CDE=120°,故ABC均正确.故选:D.【点睛】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB为等腰三角形的底边,符合条件的点C的有5个;②AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.45°或36°【分析】设∠BAD=∠CA D=α根据三角形内角和定理和三角形外角的性质表示∠EBC∠BEC和∠C再分三种情况讨论即可【详解】解:∵AD平分∴设∠BAD=∠CAD=α∵AB=AC∴∠AB解析:45°或36°.【分析】设∠BAD=∠CAD=α,根据三角形内角和定理和三角形外角的性质表示∠EBC、∠BEC和∠C ,再分三种情况讨论即可.【详解】解:∵AD 平分BAC ∠,∴设∠BAD=∠CAD=α,∵AB=AC ,∴∠ABC=∠C=1802902αα︒-=︒-, ∵PD 垂直平分AB ,∴AD=BD , ∴∠ABD=∠BAD=α,∠EBC=∠ABC-∠ABE=902α︒-,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC 时,∴∠BEC=∠C ,即903αα︒-=,解得22.5α=︒,∴245BAC α∠==︒;当BE=CE 时,∠EBC=∠C ,此时E 点和A 点重合,舍去;当BC=CE 时,∴∠EBC=∠BEC ,即9023αα︒-=,解得18α=︒,∴236BAC α∠==︒,故答案为:45°或36°.【点睛】本题考查三角形外角的性质,等腰三角形的性质,三角形内角和定理,垂直平分线的性质.掌握方程思想,能正确表示相关角是解题关键.14.①②③④【分析】由在△ABC 中∠ABC 和∠ACB 的平分线相交于点O 根据角平分线的定义与三角形内角和定理即可求得③正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+解析:①②③④【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④根据求得答案,即可得到④正确.【详解】解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°12-∠A ,∴∠BOC=180°-(∠OBC+∠OCB)=90°+1∠A;故③正确;2∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确.∴AM=AD,BM=BN,CD=CN,∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=1(AB+AC-BC)故④正确,2故答案为:①②③④.【点睛】此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.15.【分析】如图过点C作CH⊥x轴于H证明△AHC≌△BOA(AAS)可得结论【详解】解:如图过点C作CH⊥x轴于H∵∠AHC=∠CAB=∠AOB=90°∴∠BAO+∠CAH=90°∠CAH+∠ACH=解析:(3,2)【分析】如图,过点C作CH⊥x轴于H.证明△AHC≌△BOA(AAS),可得结论.【详解】解:如图,过点C作CH⊥x轴于H.∵∠AHC=∠CAB=∠AOB=90°,∴∠BAO+∠CAH=90°,∠CAH+∠ACH=90°,∴∠ACH=∠BAO ,在△AHC 和△BOA 中,AHC AOB ACH OAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AHC ≌△BOA (AAS ),∴AH=OB ,CH=OA ,∵A (2,0),B (0,1),∴OA=CH=2,OB=AH=1,∴OH=OA+AH=3,∴C (3,2).故答案为:(3,2).【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16.88【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案【详解】解:若等腰三角形的腰为长为4设底边长为x 则有x+4×2=20解得:x=12此时三角形的三边长为4412解析:8,8【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案.【详解】解:若等腰三角形的腰为长为4,设底边长为x ,则有x+4×2=20,解得:x=12,此时,三角形的三边长为4,4,12,∵4+4<12,∴不可以组成三角形;若等腰三角形的底边为4,设腰长为x ,则有2x+4=20,解得:x=8,∵4+8>8,∴可以组成三角形;∴三角形的另两边的长分别为8,8.故答案为:8,8.【点睛】本题考查等腰三角形的定义和性质,利用分类讨论思想解题是关键.17.10cm 【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论【详解】解:设CD 与OA 的交点为E 与OB 的交点为F ∵OAOB 分别是线段MCMD 的垂直平分线∴ME =CEMF =DF ∴小蚂蚁爬行的路径解析:10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论.【详解】解:设CD 与OA 的交点为E ,与OB 的交点为F ,∵OA 、OB 分别是线段MC 、MD 的垂直平分线,∴ME =CE ,MF =DF ,∴小蚂蚁爬行的路径最短=CE+EF+DF=CD =10cm ,故答案为:10cm .【点睛】本题考查了轴对称的性质-最短路径的问题,线段的垂直平分线的性质,解题的关键是熟练掌握知识点.18.16【分析】过点D 作于H 先利用三角形的面积公式计算出DH=8再利用角平分线的性质得到DF=DH=8接着证明得到证明得到利用等线段代换得到于是求出EF 的长然后根据三角形的面积公式计算即可【详解】过点D解析:16【分析】过点D 作DH AC ⊥于H ,先利用三角形的面积公式计算出DH=8,再利用角平分线的性质得到DF=DH=8,接着证明Rt DEF DGH △≌Rt △得到EF HG =,证明Rt ADF △≌Rt △ADH 得到AF AH =,利用等线段代换得到EF AG HG AE =--,于是求出EF 的长,然后根据三角形的面积公式计算即可【详解】过点D 作DH AC ⊥于H ,64S =△ADG ,16AG =1642AG DH ∴⨯⨯= 8DH ∴= AD 是ABC 的平分线,,DF AB DH AC ⊥⊥8DF DH ==∴在Rt DEF △和Rt DGH △中DE DG DF DH =⎧⎨=⎩\ ∴Rt DEF △≌Rt DGH △EF HG ∴=同理可得Rt ADF △≌Rt △ADHAF AH ∴=168EF AF AE AH AE AG HG AE EF =-=-=--=--4EF ∴=11481622DEF S EF DF ∴=⨯⨯=⨯⨯=△ 【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线的性质,全等三角形的判定定理是解题关键.19.100°【分析】根据线段垂直平分线的性质和等边对等角可得∠OBA=∠A ∠OBC=∠C 根据三角形外角的性质可得∠AOP=∠A+∠ABO=2∠ABO ∠COP=∠C+∠CBO=2∠CBO 再利用角的和差即可 解析:100°【分析】根据线段垂直平分线的性质和等边对等角可得∠OBA=∠A ,∠OBC=∠C ,根据三角形外角的性质可得∠AOP=∠A+∠ABO=2∠ABO ,∠COP=∠C+∠CBO=2∠CBO ,再利用角的和差即可得出∠AOC .【详解】解:如图,连接BO 并延长至P ,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴OA=OB,OB=OC,∴∠OBA=∠A,∠OBC=∠C,∵∠AOP=∠A+∠ABO=2∠ABO,∠COP=∠C+∠CBO=2∠CBO,∴∠AOC=∠AOP+∠COP =2(∠ABO+∠CBO)=2∠ABC=100°,故答案为:100°.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.20.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B、D′、D共线是解题关键.三、解答题21.(1)画图见解析;(2)△ABC的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP=BP,从而得出AC+BC的值,再根据AB=8,即可求得△ABC的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ为所求;;(2)如图所示:∵AB 的垂直平分线交AC 于点P ,∴PA =PB ,∵△PBC 的周长为13,∴PB +PC +BC =13,∴PA +PC +BC =13,即AC +BC =13,∴△ABC 的周长=AB +AC +BC =8+13=21;(3)∵AC >BC ,∴分两种情况,①AC =AB =8时,BC =21-AC -BC =21-8-8=5;②BC =AB =8时,AC =21-AB -BC =21-8-8=5,∵AC >BC ,∴不合题意舍去;综上所述,若△ABC 是等腰三角形,△ABC 的三条边的长度为AB =8,AC =8,BC =5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)20AED ∠=︒;(2)见解析;(3)70ECD ∠=︒.【分析】(1)根据三角形内角和定理可得∠BAC=20°,根据平行线得性质可得∠ADE=∠ABC ,利用SAS 可证明△ABC ≌△EAD ,根据全等三角形得性质可得∠AED=∠BAC=20°;(2)根据全等三角形得性质可得AE=AB ,由等角对等边可得AB=AC ,即可证明AE=AC ,根据等腰三角形得性质可得∠ADE=∠EAD=80°,可得∠CAE=60°,即可证明△ACE 是等边三角形;(3)由(2)可知∠AEC=60°,即可得出∠DEC 的度数,根据等腰三角形得性质即可得答案.【详解】(1)∵80ABC ACB ∠=∠=︒,∴∠BAC=180°-2∠ACB=20°,∵//DE BC ,∴ADE ABC =∠∠,ABC ACB ∴∠=∠,ADE ACB ∴∠=∠∴在ABC ∆和EAD ∆中BC AD ADE ACB AC DE =⎧⎪∠=∠⎨⎪=⎩,ABC EAD ∴∆≅∆,20AED BAC ∴∠=∠=︒.(2)由(1)知:ABC EAD ∆≅∆,AE AB ∴=,80EAD ABC ∠=∠=︒∵80ABC ACB ∠=∠=︒∴AB AC =,AE AC ∴=,∵∠BAC=20°,802060CAE ∴∠=︒-︒=︒,ACE ∴∆是等边三角形.(3)ACE ∆是等边三角形,60CEA ∴∠=︒,∵∠AED=20°,602040CED ∴∠=︒-︒=︒,ED AC EC ==,EDC ∴∆为等腰三角形,18040702ECD ︒-︒∴∠==︒. 【点睛】本题考查全等三角形的判定与性质、平行线的性质及等边三角形的判定与性质,熟练掌握相关性质及定理是解题关键.24.(1)122y x =-+;(2)4OBC S =;(3)P 为(2,6)或(-2,-2) 【分析】(1)设直线AB 的解析式为:y kx b =+,把点A (-2,3),B (4,0)即可得到结论; (2)由(1)知点C 的坐标为(0,2),利用三角形面积直接求解即可;(3)分①当点P 在直线BC 上方,②当点P 在直线BC 下方两种情况讨论,利用全等三角形的判定和性质求解即可.【详解】(1)设直线AB 的解析式为:y kx b =+, 把点A (-2,3),B (4,0)代入得,2340k b k b -+=⎧⎨+=⎩,解得:122 kb⎧=-⎪⎨⎪=⎩,∴直线AB的关系式为:122y x=-+;(2)由(1)知:点C的坐标为(0,2),∴OB=4,OC=2,∴△OBC的面积为:11OB OC42422OBCS=⨯=⨯⨯=;(3)①当点P在直线BC上方时,过P作PE⊥y轴于E,如图:∵△OBC是等腰直角三角形,且PC=BC,∴∠PCB=90︒,∴∠PCE+∠EPC =90︒,∠PCE+∠OCB =90︒,∴∠EPC =∠OCB,在△EPC和△OCB中,90PEC COBEPC OCBPC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPC≅△OCB,∴EC=OB=4,EP=OC=2,∴点P的坐标为(2,6),②当点P在直线BC下方时,过P1作P1F⊥y轴于F,如图:同理可证1FPC OCB≅,∴FC=OB=4,P1F=OC=2,∴点P1的坐标为(-2,2),综上,点P的坐标为(2,6)或(-2,2).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,正确的作出图形,利用数形结合是解题的关键.25.(1)见解析;(2)=,理由见解析;(3)1或3【分析】(1)根据等腰三角形的三线合一得到CE为∠ACB的平分线,证明BD=BE,等量代换证明结论;(2)过点E作EF∥BC,交AC于点F,证明△DBE≌△EFC,根据全等三角形的性质证明;(3)分点E在AB的延长线上和点E在BA的延长线上两种情况,根据全等三角形的性质解答.【详解】(1)证明:∵△ABC为等边三角形,点E为AB的中点,∴CE为∠ACB的平分线,∴∠BCE=12∠ACB=12×60°=30°.∵ED=EC,∴∠D=∠DCE=30°,∵∠ABC=60°,∠D+∠DEB=∠ABC,∴∠DEB=30°,∴BD=BE,∵AE=BE,∴AE=BD;(2)解:AE=BD,理由如下:如图,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,∵EF∥BC,∴∠AEF=∠ABC=∠AFE=∠ACB=60°,∴△AEF为等边三角形,∴AB=AC,∴BE=CF,∴∠DBE=∠EFC=120°,在△DBE和△EFC中,DE EC DBE EFC BE FC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EFC (SAS ),∴EF=DB ,∵AE=EF ,∴AE=DB ;故答案为:=;(3)当点E 在BA 的延长线上时,如图③,作EF ∥BC 交CA 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC ,∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC ,∴∠CEF=∠EDB ,在△CEF 和△EDB 中,603CEF EDB F B EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD-BC=1,当点E 在AB 的延长线上时,如图,作EF ∥BC 交AC 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠AEF=60°,∴∠CEF=60°-∠AEC ,∵∠D=∠ECD=∠ABC+∠AEC=60°+∠AEC ,∴∠CEF=∠D ,在△CEF 和△EDB 中,601CEF D F DBE EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD+BC=3,综上所述,CD=1或3.【点睛】本题考查了等边三角形的性质、三角形全等的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.26.(1)见解析;(2)90°;(3【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE ,则∠DAE=∠DEA ,∵∠DAC=∠DEC ,∴∠CAE=∠CEA,∴AC=EC,∵AC≠EC,∴DA≠DE;若DA=AE,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。
第六章第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.如图1,在▱ABCD中,∠D=50°,则∠A等于()图1A.45°B.135°C.50°D.130°2.如图2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC3.如图3,在△ABC中,D,E分别是边AB,AC的中点.若BC=10,则DE的长为()图3A.3 B.4 C.5 D.63.如图4,a,b是两条平行线,则甲、乙两个平行四边形的面积关系是()图4A.甲>乙B.甲<乙C.甲=乙D.无法判断5.一个正多边形的内角和等于外角和的5倍,则这个正多边形的边数为()A.8 B.10 C.11 D.126.如图5,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()图5A.4 B.3 C.2 D. 37.如图6所示,a∥b,直线a与直线b之间的距离是()图6A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度8.若直线a∥b,点A,B分别在直线a,b上,且AB=2 cm,则a,b之间的距离() A.等于2 cm B.大于2 cmC.不大于2 cm D.不小于2 cm9.如图7,在平行四边形ABCD中,下列结论中错误的是()图7A.∠1=∠2 B.∠BAD=∠BCDC.AB=CD D.AC⊥BD10.将两个边长分别为2,3,4的全等三角形拼成四边形,可以拼得不同形状的平行四边形的个数是()A.1 B.2 C.3 D.611.如图8,在四边形ABCD中,AB∥CD,AD=BC=5,CD=7,AB=13,点P从点A出发以每秒3个单位长度的速度沿AD→DC向终点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动的时间为()图8A.4秒B.3秒C.2秒D.1秒12.如图9,已知△ABC的周长为1,连接△ABC三边的中点得到第2个三角形,再连接第2个三角形三边的中点得到第3个三角形……依此类推,则第2019个三角形的周长为()图9A.12018B.12019C.⎝⎛⎭⎫122018D.⎝⎛⎭⎫122019请将选择题答案填入下表:第Ⅱ卷(非选择题共64分)二、填空题(每小题3分,共12分)13.在▱ABCD中,若AB=5,BC=3,则这个平行四边形的周长是________.14.从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的内角和是________°.15.如图10,在▱ABCD中,E,F分别为BC,AD边上的点,要使BF=DE,需添加一个条件:______________.图1016.在平面直角坐标系中,已知A(-2,1),B(-2,-1),O(0,0).若以A,B,C,O 为顶点的四边形为平行四边形,则点C的坐标是____________.三、解答题(共52分)17.(8分)如图11,四边形ABCD是平行四边形.求:(1)∠ADC,∠BCD的度数;(2)边AB,BC的长.图1118.(8分)如图12,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.图1219.(8分)如图13,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED ∥BC,EF∥AC.求证:BE=CF.图1320.(8分)如图14,在△ABC 中,∠ACB =90°,M ,N 分别是AB ,AC 的中点,延长BC 至点D ,使CD =13BD ,连接DN ,MN.若AB =6.(1)求证:MN =CD ; (2)求DN 的长.图1421.(8分)若一个多边形的内角和与外角和相加是1800°,则这个多边形是几边形?22.(12分)如图15,在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③.请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=________.图151.[解析] D ∵在▱ABCD 中,∠D =50°,∴∠A =180°-∠D =180°-50°=130°. 故选D. 2.[答案] D3.[解析] C 因为D ,E 分别是边AB ,AC 的中点,所以DE 是△ABC 的中位线,所以DE =12BC =12×10=5.4.[解析] C 由题图可知:阴影部分是同底等高的两个平行四边形,所以它们的面积相等,故选C. 5.[答案] D6.[解析] C ∵∠C =90°,∠A =30°, ∴BC =12AB =4.又∵DE 是中位线,∴DE =12BC =2.故选C. 7.[答案] A 8.[答案] C 9.[答案] D 10.[答案] C11.[解析] B 设运动时间为t 秒,则CP =12-3t ,BQ =t ,根据题意得12-3t =t ,解得t =3.故选B.12.[解析] C △ABC 的周长为1,根据中位线的性质,可得第2个三角形的周长为12,第3个三角形的周长为(12)2,第4个三角形的周长为(12)3……依此类推,第n 个三角形的周长为(12)n -1,所以第2019个三角形的周长为(12)2018.故选C. 13.[答案] 16[解析] 在▱ABCD 中,CD =AB =5,AD =BC =3,所以▱ABCD 的周长为2AB +2BC =2×5+2×3=16.14.[答案] 1980[解析] 从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的边数是13.∵(13-2)×180°=1980°,∴这个多边形的内角和是1980°.15.[答案] 答案不唯一,如BE =DF 或BF ∥DE 或AF =CE 或∠BFD =∠BED 等 16.[答案] (0,2)或(0,-2)或(-4,0)[解析] 如图,①当AB 为该平行四边形的边时,AB =OC .∵A (-2,1),B (-2,-1),O (0,0), ∴C (0,2)或C 1(0,-2).②当AB 为该平行四边形的对角线时,C 2(-4,0). 综上所述,点C 的坐标是(0,2)或(0,-2)或(-4,0). 17.解:(1)∵四边形ABCD 是平行四边形, ∴∠B =∠ADC ,∠BCD +∠B =180°.∵∠B =56°,∴∠ADC =56°,∠BCD =124°. (2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC . ∵AD =30,CD =25, ∴AB =25,BC =30.18.证明:∵∠1+∠B +∠ACB =180°,∠2+∠D +∠CAD =180°,∠B =∠D ,∠1=∠2,∴∠ACB =∠CAD ,∴AD ∥BC . ∵∠1=∠2, ∴AB ∥CD ,∴四边形ABCD 是平行四边形. 19.证明:∵ED ∥BC ,EF ∥AC , ∴四边形EFCD 是平行四边形, ∴ED =CF .∵BD 平分∠ABC ,∴∠EBD =∠DBC . ∵ED ∥BC ,∴∠EDB =∠DBC , ∴∠EBD =∠EDB , ∴BE =ED ,∴BE =CF .20.解:(1)证明:∵M ,N 分别是AB ,AC 的中点,∴MN ∥BC ,MN =12BC .∵CD =13BD ,∴CD =12BC ,∴MN =CD .(2)连接CM ,由(1)知MN ∥CD ,MN =CD ,∴四边形MCDN 是平行四边形,∴DN =CM .∵∠ACB =90°,M 是AB 的中点,∴CM =12AB ,∴DN =12AB =3.21.解:设这个多边形的边数为n .依题意,得(n -2)×180°+360°=1800°,解得n=10.因此,这个多边形是十边形.22.解:(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF.∵AB=AC,∴∠B=∠C.∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴DE+DF=AF+CF=AC.(2)当点D在边BC的延长线上时,DE-DF=AC;当点D在边BC的反向延长线上时,DF-DE=AC.(3)2或10。
一、选择题1.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( )A .1B .1.5C .2D .2.52.如图,在ABCD 中,4CD =,60B ︒∠=,:2:1BE EC =,依据尺规作图的痕迹,则ABCD 的面积为( )A .12B .122C .123D .1253.正多边形的每个外角为60度,则多边形为( )边形. A .4 B .6C .8D .104.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A .4B .3C .52D .25.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定6.如图,平行四边形ABCD 的周长是56cm ,ABC ∆的周长是36m ,则AC 的长为( )A .6cmB .12cmC .4cmD .8cm7.已知在四边形ABCD 中,3AB =,5CD =,M ,N 分别是AD ,BC 的中点,则线段MN的取值范围是( )A .14MN <<B .14MN <≤C .28MN <<D .28MN <≤8.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =100°,则∠DAE 的度数为( )A .20°B .25°C .30°D .35° 9.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( )A .13B .14C .15D .1610.有下列命题:①有一个角为60°的等腰三角形是等边三角形;②345③三角形三边垂直平分线的交点到三角形三个顶点的距离相等;④平行四边形的对角线相等;⑤顺次连结任意四边形各边的中点组成的新四边形是平行四边形.正确的个数有( ) A .4个 B .3个 C .2个 D .1个 11.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( ) A .2B .4C .8D .1612.如图,若ABCD 的顶点O ,A ,B 的坐标分别为()0,0,()4,0-,()5,3-,则顶点C 的坐标为( )A .()1,3-B .()3,1-C .()4,1--D .()5,1-二、填空题13.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.14.如图,ABC 的中线AD 与高CE 交于点F ,AE EF =,2FD =,24ACF S =△,则AB 的长为__________.15.如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =4,BC =10,则EF 的长为_____.16.如图,在平行四边形ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,点F 分别是BM ,CM 中点,若EF =6,则AM 的长为_____.17.如图,在△ABC 中,∠ACB =90°,AB =13 cm ,BC =12 cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =______cm .18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P 在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为_____.20.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.三、解答题21.已知:如图AB=AC,AB⊥AC,AD=AE,AD⊥AE,点M为CD的中点求证:2AM=BE22.如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE =6,CE=8,AE=10.(1)求AB的长;(2)求平行四边形ABCD的面积;.23.如图,在平行四边形ABCD中,E、F分别在AB、CD边上,且AE CF求证:四边形BFDE是平行四边形.24.已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数. 25.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE=DF . 求证:四边形BECF 是平行四边形.26.如图,E F 、是平行四边形ABCD 的对角线AC 上的两点,且AE CF =.(1)证明:四边形BFDE 是平行四边形;(2)延长BF 交CD 于G ,若AE EF FC ==,证明:点G 是CD 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解. 【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==, ∴AFB FBC ∠=∠, ∴BF 平分ABC ∠, ∴ABF FBC ∠=∠, ∴AFB ABF ∠=∠, ∴6AF AB ==, 同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=. 故选:C . 【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.2.C解析:C 【分析】由作图痕迹可得EF 为AB 的中垂线,结合60B ∠=︒判断出△ABE 为等边三角形,从而结合边长求出ABCD 在BC 边上的高为BC 的长度,最终计算面积即可. 【详解】设尺规作图所得直线与AB 交于F 点,根据题意可得EF 为AB 的中垂线, ∴AE=BE , 又∵60B ∠=︒,∴△ABE 为等边三角形,边长AB=CD=4,∴BF=2,BE=4,EF ==∴ABCD 在BC 边上的高为又∵:2:1BE EC =,BE=4, ∴EC=2,BC=2+4=6, ∴ABCDS=故选:C .【点睛】本题考查平行四边形的性质,中垂线的识别与性质,以及等边三角形的判定与性质,准确根据作图痕迹总结出等边三角形是解题关键.3.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】=6,多边形的边数为36060故选:B.【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.4.A解析:A【分析】根据平行四边形性质得出AB=DC,AD//BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD//BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=4,∴DC=AB=DE=4,故选A.本题考查了平行四边形性质,平行线性质,角平分线的定义,等腰三角形的判定的应用,关键是求出DE=AE=DC .5.A解析:A 【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得. 【详解】如图,过点M 作//MN BC ,交CD 于点N , 四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMNCMN SS SS ∴==, 12DMNCMNS S SS S ∴=+=+,故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键.6.D解析:D 【分析】ABC ∆的周长=AB+BC+AC ,而AB+BC 为平行四边形ABCD 的周长的一半,代入数值求解即可. 【详解】因为四边形ABCD 是平行四边形, ∴AB=DC ,AD=BC ,∵▱ABCD 的周长是56cm , ∴AB+BC=28cm ,∵△ABC 的周长是36cm , ∴AB+BC+AC=36cm , ∴AC=36cm−28cm=8cm. 故选D .本题考查了平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.7.B解析:B 【分析】利用中位线定理作出辅助线,利用三边关系可得MN 的取值范围. 【详解】连接BD ,过M 作MG ∥AB ,连接NG . ∵M 是边AD 的中点,AB=3,MG ∥AB , ∴MG 是△ABD 的中位线,BG=GD ,1322MG AB ==; ∵N 是BC 的中点,BG=GD ,CD=5, ∴NG 是△BCD 的中位线,1522NG CD ==, 在△MNG 中,由三角形三边关系可知NG-MG <MN <MG+NG ,即53532222MN -<<+, ∴14MN <<,当MN=MG+NG ,即MN=4时,四边形ABCD 是梯形, 故线段MN 长的取值范围是1<MN≤4. 故选B . 【点睛】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答.8.A解析:A 【分析】由▱ABCD 与▱DCFE 的周长相等,可得到AD =DE 即△ADE 是等腰三角形,再由且∠BAD =60°,∠F =100°,即可求出∠DAE 的度数. 【详解】∵▱ABCD 与▱DCFE 的周长相等,且CD =CD , ∴AD =DE , ∵∠DAE =∠DEA , ∵∠BAD =60°,∠F =100°,∴∠ADC =120°,∠CDE ═∠F =100°, ∴∠ADE =360°﹣120°﹣100°=140°, ∴∠DAE =(180°﹣140°)÷2=20°, 故选A . 【点睛】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.9.C解析:C 【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°, ∴这个正多边形的每个外角都为:180°﹣156°=24°, ∴这个多边形的边数为:360°÷24°=15, 故选C .考点:多边形内角与外角.10.B解析:B 【分析】根据各图形的性质和判定可以选出正确答案. 【详解】解:①为等边三角形的判定定理,正确;对于②,2227575+==≠,,所以错误;∵线段垂直平分线上点到线段两端点距离相等,所以三角形三边垂直平分线的交点到三角形三个顶点的距离相等,③正确;矩形的对角线相等,一般的平行四边形对角线不一定相等,④错误;顺次连结任意四边形各边的中点组成的新四边形各组对边分别与某一条对角线平行,所以新四边形是平行四边形,⑤正确, 故选B . 【点睛】本题考查三角形与四边形的性质与判定,灵活应用有关定理求证是解题关键 .11.B解析:B 【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案. 【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 . 12.A解析:A【分析】利用平行四边形的性质其对边相等,进而得出C 点的横纵坐标.【详解】解:∵▱OABC 的顶点O ,A ,B 的坐标分别为(0,0),(-4,0),(-5,3), ∴AO=BC=4,C 点纵坐标为:3,B 点横坐标为:-5,∴C 点横坐标为:-1,则点C 的坐标为:(-1,3).故选:A .【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质是解题关键.二、填空题13.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.14.【分析】延长AD 作交于点H 过点D 作根据题意可证明是等腰直角三角形结合中位线的性质证明继而证明是等腰直角三角形由勾股定理解得再根据三角形面积公式解得CH 的值设EF=x 由线段和差关系得到从而解出x 的值即解析:62【分析】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,根据题意可证明AEF 是等腰直角三角形,结合中位线的性质,证明//DQ BE ,继而证明FDQ 是等腰直角三角形,由勾股定理解得2FQ DQ ==,再根据三角形面积公式解得CH 的值,设EF=x ,由线段和差关系得到EF FQ FC FQ +=-,从而解出x 的值即可.【详解】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,CE AB ⊥且AE=AF ,AEF ∴是等腰直角三角形,45EAF EFA ∴∠=∠=︒又90DQC BEC ∠=∠=︒,D 为BC 中点,//DQ BE ∴,且Q 为CE 中点EQ CQ ∴= 即:EF+FQ=FC-FQ45AEF ∠=︒ 45QFD ∴∠=︒FDQ ∴是等腰直角三角形,又2FD =2FQ DQ ∴==设EF=x ,在等腰直角三角形AEF 中,AE=EF=x ,2AF x =1242ACF S AF CH ∴=⋅⋅= 242CH x ∴=在等腰直角三角形FHC 中,48CF x∴=EF FQ FC FQ +=-48x x∴=2248480x x ∴=∴+-=x ∴=x =-(舍去)EF AE ∴==1//,2QE BE QE BE =BE ∴=AB ∴==故答案为:【点睛】本题考查等腰直角三角形的判定与性质、中位线的性质、勾股定理等知识,是重要考点,有一定难度,掌握相关知识是解题关键.15.3【分析】先根据三角形中位线定理求得DE 然后再根据直角三角形的性质求出DF 最后运用线段的和差计算即可【详解】解:∵DE 为△ABC 的中位线∴DE =BC =5∵∠AFB =90°D 是AB 的中点∴DF =AB =解析:3【分析】先根据三角形中位线定理求得DE ,然后再根据直角三角形的性质求出DF ,最后运用线段的和差计算即可.【详解】解:∵DE 为△ABC 的中位线,∴DE =12BC =5, ∵∠AFB =90°,D 是AB 的中点,∴DF =12AB =2, ∴EF =DE ﹣DF =3.故答案为3.【点睛】本题主要考查了三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.16.8【分析】利用三角形中位线的性质得到再根据平行四边形的性质求解即可;【详解】∵点E 点F 分别是BMCM 中点∴EF 是△BCM 的中位线∴∵四边形ABCD 是平行四边形∴又∵∴故答案是8【点睛】本题主要考查了 解析:8【分析】利用三角形中位线的性质得到22612BC EF ==⨯=,再根据平行四边形的性质求解即可;【详解】∵点E ,点F 分别是BM ,CM 中点,∴EF 是△BCM 的中位线,∴22612BC EF ==⨯=,∵四边形ABCD 是平行四边形,∴12AD BC ==,又∵2AM MD =, ∴2212833AM AD ==⨯=. 故答案是8.【点睛】 本题主要考查了三角形中位线的性质,平行四边形的性质,准确判定计算是解题的关键. 17.4【分析】根据勾股定理求出AC 得到BD 的长根据等腰三角形的性质得到CE =DE 根据三角形中位线定理解答即可【详解】在△ABC 中∠ACB =90°∴AC ===5∴AD =AC =5∴BD =AB−AD =13−5解析:4【分析】根据勾股定理求出AC ,得到BD 的长,根据等腰三角形的性质得到CE =DE ,根据三角形中位线定理解答即可.【详解】在△ABC 中,∠ACB =90°,∴AC5,∴AD =AC =5,∴BD =AB−AD =13−5=8,∵AC =AD ,AE ⊥CD ,∴CE =DE ,∵CE =DE ,CF =BF ,∴EF 是△CBD 的中位线,∴EF =12BD =4, 故答案为:4.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面,故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.【分析】首先根据点A的坐标求得OA的长然后求得PO的长从而求得点P 到y轴的距离即可【详解】解:∵A(﹣20)∴OA=2∵∠DAB=60°OP⊥AD∴∠AOP=30°∴AP=1∴OP=作PE⊥y轴∵∠解析:3 2【分析】首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.【详解】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,OP⊥AD,∴∠AOP=30°,∴AP=1,∴OP=3,作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴3∴PE=32,∴点P到y轴的距离为32,故答案为32.【点睛】考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.20.4【分析】过点C作CG⊥AB的延长线于点G设AE=x由于▱ABCD沿EF对折可得出AE=CE=x再求出∠BCG=30°BG=BC=3由勾股定理得到则EG=EB+BG=12-x+3=15-x在△CEG解析:4.【分析】过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=12BC=3, 由勾股定理得到33CG=,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】解:过点C作CG⊥AB的延长线于点G,∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6, ∠CBG=60°,∴∠BCG=30°,∴BG=12BC=3,在△BCG中,由勾股定理可得:33CG=∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:222153x x-+=()(3),解得:8.4x=故答案为8.4【点睛】本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.三、解答题21.详见解析【分析】作CN∥AM,交DA延长线于N,根据AM∥CN,点M是CD的中点,得到AM是△DCN的中位线,推出CN=2AM,AE=AN,根据∠BAC=∠DAE=90︒证出∠CAN=∠BAE,证得△BAE≌△CAN,推出BE=CN,由此得到结论.【详解】如图,作CN∥AM,交DA延长线于N,∵AM∥CN,点M是CD的中点,∴AM是△DCN的中位线,∴CN=2AM,AD=AN,∴AE=AN,∵AD⊥AE,AB⊥AC,∴∠BAC=∠DAE=90︒∴∠EAN=90︒,∴∠CAE+∠EAN=∠BAC+∠CAE,∴∠CAN=∠BAE,∵AB=AC,AE=AN,∴△BAE≌△CAN,∴BE=CN,∴2AM=BE..【点睛】此题考查全等三角形的判定及性质,三角形中位线的性质,题中辅助线的引出是解题的关键,在三角形中,已知一边中点时,通常是利用中点构造全等三角形解决问题.22.(1)10;(2)128.【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证△CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠AEB,∴AB=AE=10;(2)∵四边形ABCD是平行四边形.∴CD=AB=10,在△CED中,CD=10,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(10+6)×8=128.【点睛】本题考查了平行四边形的性质、平行四边形的面积公式运用及角平分线的性质等问题,解题的关键是熟练掌握有关性质.23.证明见解析.【分析】欲证明四边形BFDE 是平行四边形,只要证明BE=DF ,BE ∥DF 即可.【详解】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB = CD ,∵AE=CF ,∴AB-AE= CD-CF ,即BE=DF ,∴四边形BFDE 是平行四边形.【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质. 24.(1)80C ∠=︒;(2)120C ∠=︒.【分析】(1)如图1,过点C 作CH ∥DF ,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH ∥DF ,∵BE ∥DF ,∴BE ∥DF ∥CH ,∴∠FDC=∠DCH ,∠BCH=∠EBC ,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC ,∵BE ,DF 分别为四边形ABCD 的外角∠CBN ,∠MDC 的平分线,∴∠FDC=12∠CDM ,∠EBC=12∠CBN , ∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC 并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE ∥AD ,DF ∥AB ,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【点睛】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.25.证明见详解.【分析】通过全等三角形(△AEB ≌△DFC )的对应边相等证得BE=CF ,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE ∥CF .则四边形BECF 是平行四边形.【详解】证明:∵BE ⊥AD ,CF ⊥AD ,∴∠AEB=∠DFC=90°,∵AB ∥CD ,∴∠A=∠D ,在△AEB 与△DFC 中,AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEB ≌△DFC (ASA ),∴BE=CF .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CF .∴四边形BECF 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.26.(1)证明过程见解析;(2)证明过程见解析;【分析】(1)由题意连接BD交AC于点O,由平行四边形的性质得AO=CO,BO=DO,证出EO=FO,即可得出四边形BFDE为平行四边形;(2)根据题意由平行四边形的性质得DE∥BF,即DE∥FG,证出FG是△CDE的中位线,得CG=DG即可.【详解】解:(1)连接BD交AC于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴EO=FO,∴四边形BFDE为平行四边形;(2)由(1)知,四边形BFDE为平行四边形,∴DE//BF,即DE//FG,而AE=EF=FC,所以F为EC的中点,∴FG是△CDE的中位线,∴CG=DG,即G为CD的中点.【点睛】本题考查平行四边形的判定与性质以及三角形中位线定理等知识;熟练掌握平行四边形的判定与性质是解题的关键.。
第六章 单元素养测评限时120分钟 分值150分 战报得分______一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一个正确选项)1.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋中抽取60袋进行检验,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列开始向右读,请你写出抽取检测的第5袋牛奶的编号是( ) (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 A .199 B .175 C .507 D .128【解析】选B.找到第8行第7列的数开始向右读,符合条件的是785,667,199,507,175. 2.用分层抽样的方法从某校学生中抽取容量为60的样本,其中高二年级抽取15人,高三年级抽取25人,已知该校高一年级共有800人,则该校学生总人数是( ) A .4 800 B .2 400 C .1 600 D .3 200【解析】选B.由题意可得高一年级抽取的人数为60-15-25=20人,知该校高一年级共有800人,故抽样的比例为20800=140.设该校学生总人数是x 人,则有60x =140,求得x =2 400人.3.下列对一组数据的分析,不正确的说法是( ) A .数据极差越小,样本数据分布越集中、稳定 B .数据平均数越小,样本数据分布越集中、稳定 C .数据标准差越小,样本数据分布越集中、稳定 D .数据方差越小,样本数据分布越集中、稳定【解析】选B.极差反映了最大值与最小值差的情况,极差越小,数据越集中.方差、标准差是用来衡量一组数据波动大小的量,方差、标准差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.方差较小的数据波动较小,稳定程度高.平均数越小,说明数据整体上偏小,不能反映数据稳定与否. 4.一组数据28,27,26,24,23,22的中位数为( ) A .26 B .25 C .24 D .26和24【解析】选B.数据28,27,26,24,23,22的中位数为26+242=25.5.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a ,中位数为b ,众数为c ,则有( ) A .a >b >c B .b >c >a C .c >a >b D .c >b >a【解析】选D.把数据由小到大排列可得:10,12,14,14,15,15,16,17,17,17,故a =14.7,b =15,c =17,所以c >b >a .6.某市2020年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5平均浓度指数的方差最小的是( )A .第一季度B .第二季度C .第三季度D .第四季度【解析】选B.根据题意,根据图中数据知,第一季度的数据是72.35,43.96,93.33; 第二季度的数据是66.5,55.25,58.67; 第三季度的数据是59.16,38.67,51.6;第四季度的数据是82.09,104.6,168.05;观察得出第二季度的数据波动性最小,所以第二季度的PM2.5平均浓度指数的方差最小.7.一组数据的平均数是26,方差是6,若将这组数据中的每一个数据都加上30,得到一组新数据,所得新数据的平均数和方差分别为()A.56,6 B.30,6 C.56,10 D.30,10【解析】选A.一组数据的平均数是26,方差是6,将这组数据中的每一个数据都加上30,得到一组新数据,由数据的平均数和方差的计算公式得:所得新数据的平均数为26+30=56,方差不变,仍为6.8.甲、乙、丙三位同学在一项集训中的40次测试分数都在[50,100]内,将他们的测试分数分别绘制成频率分布直方图,如图所示,记甲、乙、丙的分数标准差分别为s1,s2,s3,则它们的大小关系为()A.s1>s2>s3B.s1>s3>s2C.s3>s1>s2D.s3>s2>s1【解析】选B.根据三个频率分布直方图知,第一组数据的两端数字较多,绝大部分数字都处在两端,数据偏离平均数远,最分散,其方差最大;第二组数据绝大部分数字都在平均数左右,数据最集中,其方差最小;第三组数据是单峰的每一个小长方形的差别比较小,数字分布均匀,数据不如第一组偏离平均数大,方差比第一组数据的方差小,比第二组数据的方差大;综上可知s1>s3>s2.二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得3分)9.如图是甲、乙两个工厂的轮胎宽度的雷达图.根据如图中的信息,下面说法正确的是()A.甲厂轮胎宽度的平均数大于乙厂轮胎宽度的平均数B.甲厂轮胎宽度的众数大于乙厂轮胎宽度的众数C.甲厂轮胎宽度的中位数与乙厂轮胎宽度的中位数相同D.甲厂轮胎宽度的极差小于乙厂轮胎宽度的极差【解析】选ACD.由题意得甲厂轮胎宽度的平均数是195,众数是194,中位数是194.5,极差为3,乙厂轮胎宽度的平均数是194,众数是195,中位数是194.5,极差为5,故A,C,D正确,B错误.10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合该标志的是()甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3. A .甲地 B .乙地 C .丙地 D .丁地【解析】选AD.该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.在A 中,甲地:中位数为2,极差为5,每天新增疑似病例没有超过7人的可能,故甲地符合标准,即A 成立;在B 中,乙地:总体平均数为2,众数为2,每天新增疑似病例有超过7人的可能,故乙地不符合标准,即B 不成立;在C 中,丙地:总体平均数为1,总体方差大于0,每天新增疑似病例有超过7人的可能,故丙地不符合标准,即C 不成立;在D 中,丁地:总体平均数为2,总体方差为3.根据方差公式,如果存在大于7的数存在,那么方差不会为3,故丁地符合标准,即D 成立.11.某学校高一年级在校人数为600人,其中男生320人,女生280人,为了解学生身高发展情况,按分层随机抽样的方法抽取50名男生身高为一个样本,其样本平均数为170.2 cm ,方差为2.1;抽取50名女生身高为一个样本,其样本平均数为162.0 cm ,方差为3.则( ) A .该校高一学生的平均身高约为166.4 cm B .该校高一学生的平均身高约为168.2 cm【解析】x ,50名女生的平均身高为y ,全校高一年级男生人数为M ,女生人数为N .由题意可知,x =170.2,y M =320,N =280,所以样本平均数w =M M +N x +N M +N y =320320+280×170.2+280320+280×162.0≈166.4(cm),样本方差s 2=320320+280×[]2.1+()170.2-166.42+280320+280×[]3+()162.0-166.42≈19.3,故该校高一学生的平均身高约为166.4 cm ,方差约为19.3.12.某学校组织“不忘初心,牢记使命”主题教育知识比赛,满分100分,统计20名学生的得分情况如图所示,若该20名学生成绩的中位数为a ,平均数为b ,众数为c ,则下列判断正确的是()A.a=92 B.b=92C.c=90 D.b+c<2a【解析】选ACD.由频率分布直方图得:20名学生中,得分为88分的学生有:0.2×20=4人,得分为90分的学生有:0.25×20=5人,得分为92分的学生有:0.15×20=3人,得分为94分的学生有:0.2×20=4人,得分为96分的学生有:0.1×20=2人,得分为98分的学生有:0.05×20=1人,得分为100分的学生有:0.05×20=1人,所以中位数a=92分,故A正确;平均数b=120(88×4+90×5+92×3+94×4+96×2+98×1+100×1)=92.2,故B错误;众数c=90,故C正确;b+c=92.2+90=182.2,2a=2×92=184,所以b+c<2a.故D正确.三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.某校从高一新生中随机抽取了一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,x,174,175.若样本数据的第90百分位数是173,则x的值为______.【解析】百分位数的意义就在于,我们可以了解的某一个样本在整个样本集合中所处的位置,本题第90百分位数是173,即比173小的数据占90%.答案:17214.从参加疫情防控知识竞赛的学生中抽出60名学生,将其成绩(均为整数)整理后画出的频率分布直方图如图所示,则这60名学生中成绩在区间[79.5,89.5)的人数为________.【解析】由频率分布直方图可知,(0.005+0.01+0.015×2+a +0.03)×10=1,解得a =0.025. 所以这60名学生中成绩在区间[79.5,89.5)的人数为0.025×10×60=15人. 答案:1515.对某电子元件进行寿命追踪调查,情况如下:寿命(h) 100~200 200~300 300~400 个数 20 30 80 寿命(h) 400~500 500~600 个数4030【解析】根据题意得150×20+250×30+350×80+450×40+550×3020+30+80+40+30=365.答案:36516.数据x 1,x 2,…,x 8的均值为52,方差为2,现增加一个数据x 9后方差不变,则x 9的可能取值为________.【解析】由题意18[⎝⎛⎭⎫x 1-522+…+⎝⎛⎭⎫x 8-522]=2,故⎝⎛⎭⎫x 1-522+…+⎝⎛⎭⎫x 8-522=16, 所以x 21 +x 22 +…+x 28 -5(x 1+x 2+…+x 8)+34=0.所以x 21 +x 22 +…+x 28 =5×52×8-34=66,增加一个x 9后,该组的平均数为8×52+x 99=20+x 99.所以⎝ ⎛⎭⎪⎫x 1-20+x 992+⎝ ⎛⎭⎪⎫x 2-20+x 992+…+⎝ ⎛⎭⎪⎫x 9-20+x 99=9×2=18,即x 21 +x 22 +…+x 28-40+2x 99(x 1+x 2+…+x 8)+ 8⎝ ⎛⎭⎪⎫20+x 992+⎝ ⎛⎭⎪⎫8x 9-2092=18, 所以66-40+2x 99×8×52+8⎝ ⎛⎭⎪⎫20+x 992+⎝ ⎛⎭⎪⎫8x 9-2092-18=0, 整理得⎝⎛⎭⎫66-18-8009+3 20081+40081+ ⎝⎛⎭⎫-40x 99+320x 99-320x 99+⎝⎛⎭⎫8x 29 81+64x 29 81=0,即329-409x 9+89x 29 =0, 所以x 29 -5x 9+4=0, 解得x 9=1或x 9=4. 答案:1或4四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)有以下三个案例:案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况; 案例三:从某校1 000名高一学生中抽取10人参加一项主题为“学雷锋,树新风”的志愿者活动.(1)你认为这些案例应采用怎样的抽样方式较为合适? (2)在你使用的分层抽样案例中写出抽样过程?【解析】(1)案例一数量少,用简单随机抽样,案例二员工收入差距明显,用分层抽样,案例三数量多,用系统抽样.(2)分层抽样的抽样过程如下:①分层,将总体分为高级职称,中级职称、初级职称及其余人员四层;②确定抽样比例k =40800=120;③按上述比例确定各层样本数分别为8人、16人、10人、6人;④按简单随机抽样方式在各层确定相应的样本;⑤汇总构成一个容量为40的样本. 18.(12分)某公益组织在某社区调查年龄在[20,50]内的居民熬夜时间,得到如下表格:其中有三项数据由于污损用a ,b ,c 代替,试求该社区所调查居民的平均熬夜时长. 【解析】由题表可知该社区在[20,50]内的居民人数为3.6÷30%=12(百人),则年龄在[30,40)的居民所占比例为6÷12=50%,年龄在[40,50]的居民人数所占比例为1-30%-50%=20%,故该社区所调查居民的平均熬夜时长为x =4×30%+2×50%+1×20%=1.2+1+0.2=2.4(h). 19.(12分)在射击比赛中,甲、乙两名运动员分在同一小组,统计出他们命中的环数如表:【解析】为了分析的方便,先计算两人的统计指标如表所示.(1)平均环数和方差相结合,平均环数高者胜.若平均环数相等,则再看方差,方差小者胜,则甲胜.(2)平均环数与中位数相结合,平均环数高者胜,若平均环数相等,则再看中位数,中位数大者胜,则乙胜.(3)平均环数与命中10环次数相结合,平均环数高者胜.若平均环数相等,则再看命中10环次数,命中10环次数多者胜,则乙胜.20.(12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的X 围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36. (1)求样本中净重大于或等于98克并且小于102克的产品的个数; (2)求样本的众数和中位数; (3)求样本的平均数.【解析】(1)由题意可知:样本中净重小于100克的产品的频率=(0.05+0.1)×2=0.3, 所以样本容量=360.3=120所以样本中净重在[98,102)的产品个数=(0.1+0.15)×2×120=60.(2)由题图知,最高小矩形的中点横坐标是101,故众数是101,又最左边的两个小矩形的面积和是0.3,最右边的两个小矩形的面积和是0.4,第3个小矩形应取面积15100×43=0.2,故中位数100+43=3043.21.(12分)某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其质量(单位:克)是否合格,分别记录抽查数据,获得质量数据如下. 甲:107,111,111,113,114,122; 乙:108,109,110,112,115,124. (1)写出甲的众数和乙的中位数;(2)根据样本数据,计算甲、乙两个车间产品质量的均值与方差,并说明哪个车间的产品的质量相对稳定.【解析】(1)甲的众数是111,乙的中位数是111.(2)设甲、乙两个车间产品质量的均值分别为x甲、x 乙,方差分别为s 2甲 、s 2乙 ,则x 甲=122+114+113+111+111+1076=113, x 乙=124+110+112+115+108+1096=113. s 2甲 =16[(122-113)2+(114-113)2+(113-113)2+(111-113)2+(111-113)2+(107-113)2]=21,s 2乙 =16[(124-113)2+(110-113)2+(112-113)2+(115-113)2+(108-113)2+(109-113)2]≈29.33,由于s 2甲 <s 2乙 ,所以甲车间的产品的质量相对稳定.22.(12分)为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(1)请分别求出这两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式;(2)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出这10天中甲、乙两种方案的日薪X 的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1 369)【解析】(1)甲方案,y =100+n ;乙方案,y =⎩⎪⎨⎪⎧150,n ≤55,10n -400,n >55.(2)①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50-55)2+0.3×(54-55)2+0.2×(56-55)2+0.2×(58-55)2+0.1×(60-55)2=9.8, 所以,由(1)中变量之间的关系,可以知,甲方案的日薪X 的平均数为155,方差为9.8.乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150-163)2+0.2×(160-163)2+0.2×(180-163)2+0.1×(200-163)2=281.②若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.。
第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。
北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
第六章平行四边形时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC 的周长为()A.13 B.17 C.20 D.262.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.243.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE4.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10 5.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.46.如图,▱ABCD中,AC⊥AB,O为对角线AC的中点,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°第6题图第7题图7.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①②B.①④C.③④D.②③8.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,连接EF.若EF=1,AC=6,则AB的长为()A.10 B.9 C.8 D.6第8题图第10题图9.马小虎在计算一个多边形的内角和时,由于粗心少算了两个内角,其和等于830°,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定10.如图,在△ABC中,DE∥AB,FD∥BC,EF∥AC,则下列说法:①图中共有3个平行四边形;②AF=BF,CE=BE,AD=CD;③EF=DE=DF;④图中共有3对全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).第12题图第13题图13.如图,P为▱ABCD的边CD上一点,若S▱ABCD=20cm2,则S△APB=________cm2.14.如图,在▱ABCD中,对角线AC,BD交于点O,AD=10,△BOC的周长为21,则AC+BD=________.第14题图第15题图15.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=________cm.16.如图,一块四边形绿化园地的四个角都做有半径为1m的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.第16题图第17题图17.如图,在▱ABCD中,AE⊥BC于点E,且DE平分∠CD A.若BE∶EC=1∶2,则∠BCD 的度数为________.18.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为________(n为正整数).三、解答题(共66分)19.(8分)如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD,连接CE.求证:CE平分∠BC D.20.(8分)如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.21.(8分)一个多边形的内角和与某个外角的度数的总和为1350°,试求此多边形的边数及此外角的度数.22.(10分)如图,△ABC中,BD平分∠ABC,AD⊥BD,D为垂足,E为AC的中点.求证:(1)DE∥BC;(2)DE=12(BC-AB).23.(10分)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=M C.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.24.(10分)如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG =EF (提示:直角三角形中,斜边上的中线等于斜边的一半).25.(12分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF .(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.参考答案BDBBD DDCCB11.10 12.AD =BC (答案不唯一) 13.10 14.22 15.3 16.πm 2 17.120° 18.12n19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE ,AE +CD =AE +AB =BE .(3分)又∵AE +CD =AD ,∴BE =AD =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BC D.(8分)20.证明:∵∠A +∠B +∠C +∠D =360°,∠A =∠C ,∠B =∠D ,∴∠A +∠B =180°.(3分)又∵∠A =∠C ,∴∠B +∠C =180°,∴AD ∥BC ,AB ∥CD ,(6分)∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).(8分)21.解:∵1350°=180°×7+90°,(2分)又∵多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,(5分)多边形的边数为7+2=9.(8分)22.证明:(1)延长AD 交BC 于F .∵BD 平分∠ABC ,AD ⊥BD ,∴AB =BF ,AD =DF .(3分)又∵E 为AC 的中点,∴DE 是△ACF 的中位线,∴DE ∥B C.(5分)(2)∵AB =BF ,∴FC =BC -A B.(7分)∵DE 是△ACF 的中位线,∴DE =12FC =12(BC -AB ).(10分)23.(1)证明:∵CN ∥AB ,∴∠1=∠2.在△AMD 和△CMN 中,⎩⎪⎨⎪⎧∠1=∠2,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN (ASA ),∴AD =CN .又∵AD ∥CN ,(3分)∴四边形ADCN 是平行四边形,∴CD =AN .(5分)(2)解:∵AC ⊥DN ,∠CAN =30°,MN =1,∴AN =2MN =2,∴AM =AN 2-MN 2= 3.(7分)∴S △AMN =12AM ·MN =12×3×1=32.(8分)∵四边形ADCN 是平行四边形,∴S四边形ADCN=4S △AMN =2 3.(10分)24.证明:(1)∵四边形ABCD 为平行四边形,∴AD =BC ,BD =2BO .(1分)又∵BD =2AD ,∴BO =AD =B C.(3分)∵E 为OC 的中点,∴BE ⊥A C.(5分)(2)由(1)知BE ⊥AC ,∴△ABE 为直角三角形,AB 为斜边.在Rt △ABE 中,G 为AB 的中点,∴EG =12A B.(7分)又∵E ,F 分别为OC ,OD 的中点,∴EF =12C D.(8分)∵四边形ABCD是平行四边形,∴AB =CD ,∴EG =EF .(10分)25.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =B C.(1分)∵F 是AD 的中点,∴DF =12A D.又∵CE =12BC ,∴DF =CE .(4分)又∵DF ∥CE ,∴四边形CEDF 是平行四边形.(5分)(2)解:过点D作DH⊥BE于点H.(6分)在▱ABCD中,∵AB∥CD,∠B=60°,∴∠DCE =60°,∴∠CDH=30°.(7分)∵AB=4,∴CD=AB=4,∴CH=2,DH=DC2-CH2=2 3.(9分)在▱CEDF中,CE=DF=12AD=3,则EH=CE-CH=1.(10分)∴在Rt△DHE中,由勾股定理得DE=DH2+HE2=(23)2+1=13.(12分) 。
北师大版八年级数学下册单元测试集锦第一章一元一次不等式(组) 一.选择题(每小题3分,共30分) 1.已知b a <,下列不等式中错误的是( )A .z b z a +<+B .c b c a ->-C .b a 22<D .b a 44->-2.若0<k ,则下列不等式中不能成立的是( )A .45-<-k kB .k k 56>C .k k ->-13D .96k k ->- 3.不等式53>-x 的解集是( ) A .35-<x B .35->x C .15-<x D .15>-x 4.不等式3312-≥-x x 的正整数解的个数是( )A .1个B .2个C .3个D .4个5.若3<a,则不等式a x a -3)3(<-的解集是( ) A .1>x B .1<x C .1->x D .1-<x6.下列说法①0=x 是012<-x 的解②31=x 不是013>-x 的解③012<+-x 的解集是2>x ④⎩⎨⎧>>21x x 的解集是1>x ,其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7.如图,用不等式表示数轴上所示的解集,正确的是( )A .-<x .31≤<-x8.若不等式组⎩⎨⎧<<-a x x 312的解集是x<a ,则a 的取值围是( ) A .2<a B .2≤aC .2≥aD .无法确定 9.已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值围是( )A .2>xB .2<xC .2->xD . 2-<x10.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本( )本A .7B .6C .5D .4二.填空题11.用适当的符号表示:m 的2倍与n 的差是非负数: ;12.不等式538->-x x 的最大整数解是: ;13.若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号); 14.已知长度为xcm cm cm 3,5,4的三条线段可围成一个三角形,那么x 的取值围是: ;15.已知方程121-=+x kx 的根是正数,则k 的取值围是: ;16.某种商品进价150元,标价200元,但销量较小。
八年级(下)数学第6章平行四边形单元测试卷一.选择题(共10小题)1.平行四边形一定具有的性质是()A.邻边相等B.邻角相等C.对角相等D.对角线相等2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是()A.10B.11C.12D.以上都有可能3.从五边形的一个顶点出发可以连接的对角线条数为()A.1B.2C.3D.44.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是()A.BE DF=B.//AF CE C.AE CF=D.BAE DCF∠=∠5.如图,在平行四边形ABCD中,AB AC⊥,若8AB=,12AC=,则BD的长是()A.22B.16C.18D.206.如图所示,点D,E,F分别是()ABC AB AC∆>各边的中点,下列说法错误()A.12AD BC=B.12EF BC=C.EF与AD互相平分D.DEF∆的面积是ABC∆面积的1 47.如图,ABCDY的周长为32,对角线AC、BD相交于点O,点E是CD的中点,14BD=,则DOE∆的周长为()A .14B .15C .18D .218.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s二.填空题(共6小题) 11.八边形内角和度数为 .12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n =13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 .14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .15.如图,在平行四边形ABCD 中,213AB =,4AD =,AC BC ⊥.则BD = .16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 .三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数. 18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF . (1)求证:四边形ABFD 是平行四边形; (2)求证:BF DC =.21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =. (1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式; (3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD . (1)求证:四边形ACED 是平行四边形;(2)若2AC=,4CE=,求四边形ACEB的周长.24.如图,在平面直角坐标系中,点A,B的坐标分别是(3,0)-,(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCODY.在线段OP延长线上一动点E,且满足PE AO=.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?参考答案一.选择题(共10小题)1.平行四边形一定具有的性质是( ) A .邻边相等B .邻角相等C .对角相等D .对角线相等【解答】解:A 、平行四边形的邻边不相等,故此选项错误; B 、平行四边形邻角互补,故此选项错误; C 、平行四边形的对角相等,故此选项正确;D 、平行四边形的对角线不相等,故此选项错误;故选:C .2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是( ) A .10B .11C .12D .以上都有可能【解答】解:Q 内角和是1620︒的多边形是1620211180+=边形, 又Q 多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形. 综上原来多边形的边数可能为10、11、12边形, 故选:D .3.从五边形的一个顶点出发可以连接的对角线条数为( ) A .1B .2C .3D .4【解答】解:n Q 边形(3)n >从一个顶点出发可以引(3)n -条对角线, ∴从五边形的一个顶点出发可以画出532-=(条)对角线.故选:B .4.平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得到四边形AECF 一定为平行四边形的是( ) A .BE DF =B .//AF CEC .AE CF =D .BAE DCF ∠=∠【解答】解:如图,连接AC 与BD 相交于O , 在ABCD Y 中,OA OC =,OB OD =,要使四边形AECF 为平行四边形,只需证明得到OE OF =即可;A 、若BE DF =,则OB BE OD DF -=-,即OE OF =,故本选项不符合题意;B 、//AF CE 能够利用“角角边”证明AOF ∆和COE ∆全等,从而得到OE OF =,故本选项不符合题意;C 、若AE CF =,则无法判断OE OE =,故本选项符合题意;D 、BAE DCF ∠=∠能够利用“角角边”证明ABE ∆和CDF ∆全等,从而得到DF BE =,然后同A ,故本选项不符合题意; 故选:C .5.如图,在平行四边形ABCD 中,AB AC ⊥,若8AB =,12AC =,则BD 的长是( )A .22B .16C .18D .20【解答】解:Q 四边形ABCD 是平行四边形,12AC =, 162OA AC ∴==,2BD OB =, AB AC ⊥Q ,8AB =,228610OB ∴=+=,220BD OB ∴==.故选:D .6.如图所示,点D ,E ,F 分别是()ABC AB AC ∆>各边的中点,下列说法错误( )A .12AD BC =B .12EF BC =C .EF 与AD 互相平分 D .DEF ∆的面积是ABC ∆面积的14【解答】解:A 、由于点D 是BC 的中点,所以12BD BC =,只有当BD AD CD ==时,结论12AD BC =成立,故本选项符合题意. B 、根据中位线定理,12EF BC =.故本选项不符合题意; C 、根据中位线定理,//AF ED ,//AE FD ,四边形AEDF 为平行四边形,对角线EF 与AD 互相平分.故正确;D 、因为DFE ∆和ABC ∆的各边对应成比例,为1:2,而且每组对应点所在的直线都经过同一个点,对应边互相平行,是位似图形. 故选:A .7.如图,ABCD Y 的周长为32,对角线AC 、BD 相交于点O ,点E 是CD 的中点,14BD =,则DOE ∆的周长为( )A .14B .15C .18D .21【解答】解:Q 四边形ABCD 是平行四边形, AB CD ∴=,AD BC =,172OB OD BD ===, ABCD Q Y 的周长为32, 16CD BC ∴+=,Q 点E 是CD 的中点,12DE CD ∴=,OE 是BCD ∆的中位线,12OE BC ∴=, 1()82DE OE CD BC ∴+=+=, DOE ∴∆的周长7815OD DE OE =++=+=;故选:B .8.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定【解答】解:Q 四边形ABCD 是平行四边形, AB DC ∴=,CMB ∆Q 的面积为12S DC =g 高,ADM ∆的面积为112S MA =g 高,CBM ∆的面积为212S BM =g 高, 而它们的高都是等于平行四边形的高, 1212S S AD ∴+=g 高12BM +g 高1()2MA BM =+g 高12AB =g 高12CD =g 高S =, 则S ,1S ,2S 的大小关系是12S S S =+. 故选:A .9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-【解答】解:连接OB 和AC 交于点M ,过点M 作ME x ⊥轴于点E ,过点B 作CB x ⊥轴于点F ,如下图所示:Q 四边形ABCD 为平行四边形,132ME BF ∴==,122OE OF ==, ∴点M 的坐标为(2,3),Q 直线3y kx k =+将ABCO Y 分割成面积相等的两部分, ∴该直线过点M ,323k k ∴=+,35k ∴=. 故选:A .10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s【解答】解:设运动时间为xs ,则753CP x =+-,BQ x =, Q 四边形PQBC 为平行四边形, CP BQ ∴=, 123x x ∴-=, 124x ∴=, 3x ∴=,故选:A .二.填空题(共6小题)11.八边形内角和度数为 1080︒ . 【解答】解:(82)180********-︒=⨯︒=︒g . 故答案为:1080︒.12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n = 8 【解答】解:Q 每个内角都相等,并且是它外角的3倍, 设外角为x ,可得:3180x x +=︒,解得:45x =︒,∴边数360458=︒÷︒=.故答案为:8.13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 9 .【解答】解:设这个多边形是n 边形.依题意,得36n -=,解得9n =.故该多边形的边数是9.故答案为:9.14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 45︒ .【解答】解:Q 四边形ABCD 是平行四边形,120ABC D ∴∠=∠=︒,//AB CD ,18060BAD D ∴∠=︒-∠=︒,AE Q 平分DAB ∠,60230BAE ∴∠=︒÷=︒,AE AB =Q ,(18030)275ABE ∴∠=︒-︒÷=︒,45EBC ABC ABE ∴∠=∠-∠=︒;故答案为:45︒.15.如图,在平行四边形ABCD 中,13AB =,4AD =,AC BC ⊥.则BD = 10 .【解答】解:Q 四边形ABCD 是平行四边形,4BC AD ∴==,OB OD =,OA OC =,AC BC ⊥Q ,∴由勾股定理得:2222(213)46AC AB BC =-=-=,132OC AC ∴==, Q 在Rt BCO ∆中,90BCO ∠=︒,2222345OB OC BC ∴=+=+=,210BD OB ∴==,故答案为:10.16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 (6,3) .【解答】解:(4,0)A Q ,4OA ∴=,Q 四边形OABC 是平行四边形,4OA BC ∴==,(2,3)C Q ,(6,3)B ∴,故答案为(6,3).三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【解答】解:设这个多边形的边数为n ,则(2)180360(122)180n -⨯︒+︒=-⨯︒,解得:10n =,答:这个多边形的边数为10.18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.【解答】证明:ADB CBD ∠=∠Q ,//AD BC ∴,DAE BCF ∴∠=∠,在ADE ∆和CBF ∆中DAE BCF AED CFB DE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴∆≅∆,AD BC ∴=,∴四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.【解答】证明:ABC ∆Q 是等边三角形,AC BC AB ∴==,60ACB ∠=︒;Q 将AC 绕点E 旋转ED CE ∴=,EF AE =EDC ∴∆是等边三角形,DE CD CE ∴==,60DCE EDC ∠=∠=︒,FD AC BC ∴==,ABC ∴∆、AEF ∆、DCE ∆均为等边三角形,60CDE ABC EFA ∴∠=∠=∠=︒,//AB FD ∴,//BD AF ,∴四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF DC =.【解答】证明:(1)DE Q 是ABC ∆的中位线,//DE AB ∴,2AB DE =,AD CD =EF DE =Q2DF DE ∴=AB DF ∴=,且//AB DF∴四边形ABFD 是平行四边形;(2)Q 四边形ABFD 是平行四边形AD BF ∴=,且AD CD =BF DC ∴=21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =.(1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.【解答】(1)证明:连接BD ,交AC 于O ,如图所示:Q 四边形ABCD 是平行四边形,OB OD ∴=,OA OC =,AE CF =Q ,OA AE OC CF ∴-=-,OE OF ∴=,∴四边形BFDE 是平行四边形;(2)解:AE CF =Q ,OE OF =,22EF AE ==,1AE CF OE OF ∴====,4AC =,3CE =,45ACB ∠=︒Q ,BE AC ⊥,BCE ∴∆是等腰直角三角形,3BE CE ∴==,Q 四边形ABCD 是平行四边形,ABCD ∴Y 的面积2ABC =∆的面积1243122AC BE =⨯⨯⨯=⨯=.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式;(3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.【解答】(1)解:3∠Q 、4∠、5∠、6∠是四边形的四个内角, 3456360∴∠+∠+∠+∠=︒,34360(56)∴∠+∠=︒-∠+∠,15180∠+∠=︒Q ,26180∠+∠=︒,12360(56)∴∠+∠=︒-∠+∠,1234∴∠+∠=∠+∠;(2)答:四边形的任意两个外角的和等于与它们不相邻的两个内角的和;(3)解:240B C ∠+∠=︒Q ,240MDA NAD ∴∠+∠=︒,AE Q 、DE 分别是NAD ∠、MDA ∠的平分线, 12ADE MDA ∴∠=∠,12DAE NAD ∠=∠, 11()24012022ADE DAE MDA NAD ∴∠+∠=∠+∠=⨯︒=︒, 180()18012060E ADE DAE ∴∠=︒-∠+∠=︒-︒=︒.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD .(1)求证:四边形ACED 是平行四边形;(2)若2AC =,4CE =,求四边形ACEB 的周长.【解答】解:(1)证明:90ACB ∠=︒Q ,DE BC ⊥,//AC DE ∴又//CE AD Q∴四边形ACED 是平行四边形.(2)Q 四边形ACED 是平行四边形. 2DE AC ∴==.在Rt CDE ∆中,由勾股定理得2223CD CE DE =-=. D Q 是BC 的中点,243BC CD ∴==.在ABC ∆中,90ACB ∠=︒,由勾股定理得22213AB AC BC =+=. D Q 是BC 的中点,DE BC ⊥,4EB EC ∴==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+.24.如图,在平面直角坐标系中,点A ,B 的坐标分别是(3,0)-,(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造PCOD Y .在线段OP 延长线上一动点E ,且满足PE AO =.(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形;(2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少?【解答】(1)证明:连接CD 交AE 于F , Q 四边形PCOD 是平行四边形,CF DF ∴=,OF PF =,PE AO =Q ,AF EF ∴=,又CF DF =,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,32OP =,3OC =, 则92OE =, 由勾股定理得,2232AC OA OC =+=, 223132CE OC OE =+=,Q 四边形ADEC 为平行四边形, ∴周长为3(3213)2623132+⨯=+.。
【北师大版八年级数学(下)单元测试卷】第六章:平行四边形一.选择题:(每小题3分共30分)1.已知一个正多边形的内角是140°,则它是几边形( )A .10B .9C .8D .72.一个正多边形的一个外角是60︒,则该正多边形的内角和是( )A .720︒B .900︒C .1085︒D .1260︒3.如图,在ABCD 中,AB=3,AD=5,∠ABC 的平分线BE 交AD 于点E,则DE 的长是( ).A .4B .3C .3.5D .24.在平行四边形ABCD 中,AE ⊥BC 于E,AF ⊥CD 于F,AE=4,AF=6,平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积是( )A .36B .48C .40D .245.如图,在平行四边形OABC 中,对角线相交于点E,OA 边在x 轴上,点O 为坐标原点,已知点()4,0A ,3,1E ,则点C 的坐标为( )A .()1,1B .()1,2C .()2,1D .()2,26.如图,△ABC 中,点D,E 在边BC 上,∠ABC 的平分线垂直AE,垂足为点N,∠ACB 的平分线垂直AD,垂足为点M,连接MN .若7BC =,32MN =,则△ABC 的周长为( )A .17B .18C .19D .207.如图,在Rt ABC 中,90ACB ∠=︒,点D ,E 分别是边AB ,BC 的中点,延长AC 至F ,使12CF AC =,若10AB =,则EF 的长是( )A .8B .6C .5D .48.如图,在▱ABCD 中,AB =2,BC =4,∠D =60°,点P 、Q 分别是AC 和BC 上的动点,在点P 和点Q 运动的过程中,PB+PQ 的最小值为( )A .4B .3C .23D .439.▱ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AF ∥CEC .CE =AFD .∠DAF =∠BCE10.在▱ABCD 中,对角线AC 、BD 相交于点O,BD =2AD,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①GN =NE ;②AE ⊥GF ;③AC 平分∠BCD ;④AC ⊥BD,其中正确的个数是( )A .1B .2C .3D .4二.填空题:(每小题3分共15分)11.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点,若AC+BD =18cm,△OCD 的周长是15cm,则EF =_____cm .12.在平面直角坐标系xOy 中,已知(10,0)A ,点P 在线段OA 上运动,分别以OP 、PA 为边在x 轴上方作等边OPM ∆和等边ΔPAN ,连接MN ,Q 为MN 的中点,当点P 从O 运动至点A 时,点Q 运动的路径长为 __.13.如图,在平行四边形ABCD 中,ABC ∠的平分线交AD 于E,150BED ∠=︒,则A ∠的大小____________.14.如图,已知AG ⊥BD,AF ⊥CE,BD 、CE 分别是∠ABC 和∠ACB 的角平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为_____.15.已知线段10AB =,C .D 是AB 上两点,且2AC DB ==,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为___.三.解答题:(共55分)16.(6分)已知:如图,▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.17.(8分)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形.(1)证明:四边形AEFD是平行四边形;(2)求∠DFE的度数.18.(6分)如图,已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.19.(8分)如图,四边形ABCD 中AC 、BD 相交于点O,延长AD 至点E,连接EO 并延长交CB 的延长线于点F,∠E =∠F,AD =BC .(1)求证:O 是线段AC 的中点:(2)连接AF 、EC,证明四边形AFCE 是平行四边形.20.(8分)如图,在ABC 中,点D 在BC 上,点E 在AD 上,BF AD ∥,且BF DE =,CD EF =.(1)求证:BD CD =;(2)若BE AD =,BED DAC ∠=∠.求证:AD AC =.21.(9分)如图,在平面直角坐标系中,(),0A a ,()0,B b ,且a ,b 满足2(2)40a b -+-=.(1)求直线AB 的解析式;(2)若M 为直线1y k x =上一点,且ABM 是以AB 为底的等腰直角三角形,求1k 的值;(3)在(2)条件下,设N 为坐标平面内的一点,如果以点M ,A ,B ,N 为顶点的四边形是平行四边形,写出满足条件的N 点的坐标(本小题直接写出答案,不要求写解题过程).22.(10分)如图,已知()1,1C --关于x 轴的对称点A 在直线1l :2y kx =+上,1l 与直线2l :25y x =-+交于点B .(1)求直线1l 的解析式与点B 的坐标;(2)2l 上是否存在一点P,使得2BCP S =△,若存在,求出P 点坐标,若不存在,说明理由;(3)已知点()3,0D ,M 、N 是1l 上两个动点,且2MN =N 在M 的右侧),当CM MN ND ++的值最小时,直接写出点M 、N 的坐标;已知点E 是平面内除原点外一点,点M 、N 、C 、E 组成的四边形是平行四边形,直接写出点E 的坐标,若不存在,说明理由.。
北师大版八年级下册数学第一章三角形的证明单元测试题一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.52.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= _________.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= _________度.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.参考答案与试题解析一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= 4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= 72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
八年级下册平行四边形单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、在平行四边形ABCD中,如下图,若∠B=134°,则∠E与∠F的和是()。
A、46°B、45°C、56°D、36°2、如图,M是BC的中点,AN⊥BN,且AN平分∠BAC,若AB=7厘米,AC=13厘米,则MN的长是()。
A、6厘米B、5厘米C、3厘米D、2.5厘米3、如图,a∥b,AB∥CD,CE⊥BE,FG⊥BG,下列说法不正确的是()。
A、a与b的距离就是线段AB的长度B、A、B两点的距离就是线段AB的长度C、AC=BDD、FC=EG4、如图,在平行四边形ABCD中,CD=6,△AOB的周长是14,则两条对角线的和是()。
A、28B、20C、26D、165、如图,∠B=90°,AB=8,BC=6,D、E分别是AB、AC中点,∠ACM 的平分线CF交DE的延长线于点F,则DF的长是()。
A、7B、8C、9D、106、如图,在平行四边形ABCD中,E、F在对角线AC上,下列条件不能证明四边形BFDE是平行四边形的是()。
A、∠AED=∠CFBB、DE=BFC、∠ADE=∠CBFD、AE=CF7、如图,在平行四边形ABCD中,AE平行∠BAD,AD=11,CD=8,则CE的长是()。
A、2B、3C、4D、18、如图,AB⊥BM,D、E分别是AB、AC的中点,∠ACM的平分线交DE的延长线于点F,若EF:DE=5:3,BD=6,则DF的长是()。
A 、10B 、12C 、14D 、159、如图,在等边三角形ABC 中,PF ∥AC ,PD ∥AB ,PE ∥DC ,若等边三角形的周长是24,则PD+PE+PF 的值是( )。
A 、12B 、8C 、6D 、410、如图,21L L ∥,四边形ABCD 是正方形,A 、D 、F 在同一条直线上,则下列结论正确的是( )。
《第1章三角形的证明》一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=24.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.456.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.97.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.《第1章三角形的证明》参考答案与试题解析一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】由三角形的三个内角度数比为1:1:2,可设三角形的三个内角分别为:x,x,2x,然后由三角形的内角和等于180°,即可得方程:x+x+2x=180°,解此方程即可求得答案.【解答】解:∵三角形的三个内角度数比为1:1:2,∴设三角形的三个内角分别为:x,x,2x,∴x+x+2x=180°,解得:x=45°,∴三角形的三个内角度数分别为:45°,45°,90°.∴这个三角形为等腰直角三角形.故选:D.【点评】此题考查了三角形的内角和定理.此题比较简单,解题的关键是根据三角形的三个内角度数比为1:1:2,设三角形的三个内角分别为:x,x,2x,利用方程思想求解.2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形【考点】等腰三角形的判定.【分析】认真阅读各选项,结合各选项提供的已知条件及等腰三角形的定义可得.【解答】解:A、第三个角180°﹣50°﹣65°=65°,有两等角的三角形是等腰三角形,正确;B、外角相等,则对应的内角也相等,有两等角的三角形是等腰三角形,正确;C、利用两直线平行,内错角相等,同位相等,可知,另外的两内角也相等,有两等角的三角形是等腰三角形,正确;D、两个内角不相等的三角形可能是等腰三角形,错误.故选D.【点评】本题考查了等腰三角形的判定;找出各选项的正误是正确解答本题的关键.3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【考点】反证法.【专题】证明题.【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.45【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题意可得EB=ED,根据等边对等角的性质,易得∠B=∠EDB=∠ACB,即可得EF∥AC,又由AE=BE,根据平行线等分线段成比例定理,可得BD=CD,然后利用SAS即可证得△EBD≌△CFD,即可得∠F=∠BED.【解答】解:∵以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°,∵AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EF∥AC,∵E是AB的中点,即BE=AE,∴BD=CD,在△EBD和△FCD中,,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.故选A.【点评】此题考查了全等三角形的判定与性质、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用,注意理解题意.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是6.【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,根据等腰三角形的性质与三角形内角和定理,易求得各角的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠ABD=36°,即△ABC是等腰三角形,∴∠C=∠B=36°,∴∠BAC=108°,∵∠DAE=∠EAC=36°,∴∠BAD=36°,∴∠BAD=∠B=36°,∠EAC=∠C=36°,∴△ABD,△ACE是等腰三角形,∴∠ADE=∠AED=∠DAC=∠BAE=72°,∴△ADE,△ABE,△ACD是等腰三角形.故答案为:6.【点评】此题考查了等腰三角形的性质与判定.此题难度不大,注意掌握数形结合思想的应用.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点评】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.【考点】反证法.【专题】证明题.【分析】运用反证法进行求解:(1)假设结论PB≠PC不成立,PB=PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≠PC不成立,则PB=PC;∵在△ABP和△ACP中,,∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.【点评】解此题关键要懂得反证法的意义及步骤.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【考点】等腰三角形的判定与性质;作图—基本作图.【专题】作图题.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH为半径画弧,两弧交于N,作射线DN,交AM 于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.【考点】作图—应用与设计作图;角平分线的性质;等腰三角形的判定.【分析】(1)作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB于点C、D,则△OCD是以CD为底边的等腰三角形;(2)根据PQ∥OA,得出∠QPR=∠OCD,进而得出OD=CD,即可得出答案;(3)作QP∥DO,再作∠ODR=∠O,即可得出答案.【解答】解:(1)能.画法:作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB 于点C、D,则△OCD是以CD为底边的等腰三角形,如图①.(2)∵PQ∥OA,∴∠QPR=∠OCD,又∵∠QPR=∠AOB,∴∠OCD=∠AOB.∴OD=CD.即△OCD是以OC为底的等腰三角形.(3)如图②.【点评】此题主要考查了基本作图角平分线的性质等知识;作角平分线是正确解答本题的关键.。
北师大版八年级数学下册第一章三角形的证明单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②2.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2,AB⊥C D,△AB D、△B CE都是等腰三角形,如果C D=8cm,BE=3c m,那么A C长为().A.4c m B.5c m C.8c m D.34c m4.如图3,在等边ABC 的度数是().,中,D E分别是B C A C上的点,且,B D CE,A D与BE相交于点P,则12450B.55C.60D.75A.0005.如图4,在ABC中,A B=A C,A 36ABC ACB,B D和CE分别是和的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A.9个B.8个C.7个D.6个,l,l6.如图5,l表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可123供选择的地址有().A.1处B.2处C.3处D.4处7.如图 6,A 、C 、E 三点在同一条直线上,△D A C 和△EB C 都是等边三角形,AE 、B D 分别与 C D 、CE 交于点 M 、N ,有如下结论:①△AC E ≌△D C B ;② C M =C N ;③ A C =D N. 其中,正确结论的个数是().A .3 个B .2 个C . 1 个D .0 个8.要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C ,D ,使 C D=B C ,再作出 BFABC ED C ≌ ,得 ED =A B. 因此,的垂线 DE ,使 A ,C ,E 在同一条直线上(如图 7),可以证明 ABC ED C ≌测得 DE 的长就是 A B 的长,在这里判定 的条件是( ). A .AS AB .S ASC .SSSD .H L9.如图 8,将长方形 A B C D 沿对角线 B D 翻折,点 C 落在点 E 的位置,BE 交 A D 于点 F. BDF 求证:重叠部分(即 )是等腰三角形. 证明:∵四边形 A B C D 是长方形,∴A D ∥B CBDE 又∵ 与 BD C 关于 B D 对称, 2 3. ∴ B D F 是等腰三角形.∴ 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().1 2 ;②1 3;③3 4;④BDC BDE ① A .①③B .②③C .②①D .③④10.如图9,已知线段a,h作等腰△AB C,使AB=A C,且BC=a,B C边上的高A D=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线M N,M N与BC相交于点D;(3)在直线M N上截取线段h;(4)连结AB,AC,则△AB C为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A.(1)B.(2)C.(3)D.(4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△A B C和△D C B中,A C=D B,若不增加任何字母与辅助线,要使△A B C≌△D C B,则还需增加一个条件是____________.2.如图11,在Rt AB C中,BA C90,,AB A C,分别过点B C作经过点A的直线的垂线段B D,C E,若B D=3厘米,CE=4厘米,则DE的长为_______.3.如图12,P,Q是△A B C的边B C上的两点,且BP=P Q=Q C=A P=A Q,则∠A B C等于_________度.4.如图13,在等腰ABC中,A B=27,A B的垂直平分线交A B于点D,交AC于点E ,若BCE的周长为50,则底边BC的长为_________.ABC中,A B=A C,A B的垂直平分线与A C所在的直线相交所得的锐角为50,则0 5.在底角B的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边A C=5c m,B C=10c m,将△A B C 折叠,点B 与点A 重合,折痕为DE,则C D 的长为________.8.如图15,在ABC中,A B=A C ,A 120 ,D 是BC 上任意一点,分别做D E⊥A B 于E,DF⊥A C于F,如果BC=20cm,那么DE+D F= _______cm.9.如图16,在Rt△ABC中,∠C=90°,∠B=15°,D E是AB的中垂线,垂足为D,交BCE于点,若BE 4,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)ABC 中,ACB 90,C D 是A B 边上的高,A 301.(7 分)如图18,在.求证:A B= 4BD.0 02.(7分)如图19,在ABC900中,C ,A C=B C,A D平分CAB交B C于点D,DE⊥A B于点E,若A B=6c m.你能否求出BDE的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D、E分别为△AB C的边AB、AC上的点,BE与C D相交于O点.现有四个条件:①AB=AC;②OB=O C;③∠ABE=∠ACD;④BE=C D.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:..命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC中,A 900,AB=A C,AB C的平分线B D交A C于D,CE⊥B D的延1BD2长线于点E.求证:CE.ABC中,C 900.5.(8分)如图22,在(1)用圆规和直尺在A C上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P到A B、B C的距离相等时,求∠A的度数.6.(8分)如图23,AOB90,O M平分A O B,将直角三角板的顶点P在射线O M上移动,两直角边分别与O A、O B相交于点C、D,问PC与P D相等吗?试说明理由.四、拓广探索(本大题12分)ABC如图24,在中,A B=A C,A B的垂直平分线交A B于点N,交B C的延长线于点M,若A400.(1)求N M B 的度数;(2)如果将(1)中A的度数改为70,其余条件不变,再求N M B的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金1.C;2.B;3.D.点拨:B C=BE=3c m,A B=B D=5c m;ABD≌BCE;4.C.点拨:利用5.B;6.D.点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B.点拨:①②正确;8.A;9.C;10.C.点拨:在直线M N上截取线段h,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC;ABD≌CAE;2.7厘米.点拨:利用3.30;BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.EBF F 90,ACF F 900 ,∴ EBFACF .∵ 0 在 RtABD Rt ACF 中,∵DBA ACF和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
第一章单元测试卷一、选择题(每题3分,共30分)1.由下列线段a,b,c组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=错误!未找到引用源。
,c=错误!未找到引用源。
C.a=9,b=12,c=15D.a=错误!未找到引用源。
,b=2,c=错误!未找到引用源。
2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°3.下列四个命题中,假命题是( )A.“等边对等角”与“等角对等边”是互逆定理B.等边三角形是锐角三角形C.角平分线上的点到角两边的距离相等D.真命题的逆命题是真命题4.下列能判定三角形是等腰三角形的是( )A.有两个角为30°,60°B.有两个角为40°,80°C.有两个角为20°,100°D.有两个角为50°,80°5.已知等腰三角形的两条边长分别是7和3,则第三条边的长是( )A.7或3B.7C.4D.36.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( )A.65°B.50°C.60°D.57.5°7.下列两个三角形中,一定全等的是( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为 ( )A.4 cmB.3 cmC.2 cmD.1 cm9.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A.4错误!未找到引用源。
最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。
一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+3.已知如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,OC ,以下四个结论:①AD =BE ;②△CPQ 是等边三角形;③AD ⊥BC ;④OC 平分∠AOE .其中正确的结论是( )A .①②③④B .③④C .①②③D .①②④ 4.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.如图,在四边形ABCD 中,点E 在边AD 上,∠BCE =∠ACD ,∠BAC =∠D =40°,AB =DE ,AC =AE ,则∠B 的度数为( )A .100°B .110°C .120°D .130°6.如图,在Rt ABC △中,CA CB =,D 为斜边AB 的中点,Rt EDF ∠在ABC 内绕点D 转动,分别交边AC ,BC 于点E ,F (点E 不与点A ,C 重合),下列说法正确的是( )①45DEF ︒∠=;②222BF AE EF ;③2CD EF CD <≤A .①②B .①③C .②③D .①②③ 7.如图所示,O 为直线AB 上一点,OC 平分∠AOE ,∠DOE =90°,则①∠AOD 与∠BOE 互为余角;②OD 平分∠COA ;③若∠BOE =56°40',则∠COE =61°40';④∠BOE =2∠COD .结论正确的个数为( )A .4B .3C .2D .18.如图,在ABC 中,90C ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,若1CD =,4AB =,则ABD △的面积是( )A .2B .4C .6D .89.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .12 10.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 11.如图,ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若100BAC ∠=︒,则EAG ∠的度数是( )A .10°B .20°C .30°D .40°12.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.14.如图所示,有n +1个边长为1的等边三角形,点A 、C 1、C 2、C 3、…、C n 都在同一条直线上,若记△B 1C 1D 1的面积为S 1,△B 2C 2D 2的面积为S 2,△B 3C 3D 3的面积为S 3,…,△B n C n D n 的面积为S n ,则(1)S 1=_____;(2)S n =_____.15.如图,在Rt ABC 中,90ACB ∠=︒,AE 为ABC 的角平分线,且ED AB ⊥于D ,若6,8AC BC ==,则DE 的长为_________.16.如图在第一个△A1BC 中,∠B =40°,A 1B =BC ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第二个△A 1A 2D ,再在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E……如此类推,可得到第n 个等腰三角形.则第n 个等腰三角形中,以An 为顶点的内角的度数为_____________.17.三角形的三边长分别为2,5,3,则该三角形最长边上的中线长为_______ 18.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.19.如图,在△ABC 中,∠ACB =90°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,若△PCD 中有一个角等于48°,则∠A =_____.20.已知抛物线223y x x =--与x 轴交于点A ,点(1,2)B 与点A 位于y 轴两侧,点P 在点B 的下方,且在对称轴上,当PAB △为等腰三角形时,BP 的长为______________.三、解答题21.如图,在等边△ABC 的AC ,BC 上各取一点D ,E ,使AD =CE ,AE ,BD 相交于点M ,过点B 作直线AE 的垂线BH ,垂足为H .(1)求证:△ACE ≌△BAD ;(2)若BE =2EC =4.①求△ABC 的面积;②求MH 的长.22.如图,在四边形ABCD 中,90B ∠=︒,AC 平分BAD ∠,DE AC ⊥,AB AE =.(1)求证:AC AD =.(2)若BC CD ⊥,试判断ACD △的形状,并说明理由.23.如图,在ABC 中,BD 平分,ABC FC ∠与BD 相交于点H ,34180∠+∠=︒,(1)试说明12∠=∠的理由;(2)若FG AC 与点G ,70A ∠=︒,求ACB ∠的度数.24.如图,等边△ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC .(1)如图①,点E 为AB 的中点,求证:AE=DB .(2)如图②,点E 在边AB 上时,AE DB (填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F (请你完成以下解答过程).(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若AB=1,AE=2时,直接写出CD 的长.25.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC 的度数;(2)若△CDF 为直角三角形,且∠CFD =90°,求∠C 的度数;(3)若△CDF 为等腰三角形,求∠C 的度数.26.如图,已知点D 、E 是△ABC 内两点,且∠BAE =∠CAD ,AB =AC ,AD =AE .(1)求证:ABD ACE △≌△.(2)延长BD 、CE 交于点F ,若86BAC ∠=︒,20ABD ∠=︒,求BFC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP =30°,求证PB =PD ;再根据三角形外角性质求证BD =AD ,再利用△BPD 是等腰三角形,然后可得AD =DC ,∠ACD =45°从而求出∠ACB 的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.3.D解析:D【分析】先由SAS判定△ACD≌△BCE,证得①正确;再由ASA证△ACP≌△BCQ,得到CP=CQ,②正确,同理证得CM=CN,得到④正确;易得③不正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠BCD+∠ECD,∠BCD=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,故①正确;∠CAD=∠CBE,∵∠BCA=∠BCD=60°,AC=BC,∴△ACP≌△BCQ(ASA),∴CP=CQ,又∵∠PCQ=60°,∴△CPQ是等边三角形,故②正确;过C作CM⊥BE于M,CN⊥AD于N,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM(AAS),∴CM=CN,∵CM⊥BE,CN⊥AD,∴OC平分∠AOE,故④正确;当AC=CE时,AP平分∠BAC,则∠PAC=30°,此时∠APC=180°﹣30°﹣60°=90°,则AD⊥BC,故③不正确;故选:D.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.4.B解析:B【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【详解】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=1(180°-∠A)=65°,2∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故选:B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.B解析:B【分析】先ASA 证明△BAC ≌△EDC ,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【详解】解:∵∠BCE =∠ACD ,又∵∠BCE =∠BCA +∠ACE ,∠ACD =∠DCE +∠ACE ,∴∠BCA =∠DCE ,∵∠BAC =∠D =40°,AB =DE ,∴△BAC ≌△EDC (ASA ),∴AC =CD ,∴∠CAE =∠D =40°,∵AC =AE ,∴∠AEC =∠ACE =12(180°﹣∠CAE )=70°, ∵∠AEC =∠D +∠DCE ,∴∠DCE =30°,∴∠ACB =30°,∴∠B =180°﹣∠ACB ﹣∠BAC =110°.故选:B .【点睛】考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA 证明△BAC ≌△EDC .6.A解析:A【分析】①证明∠A=∠DCB ,AD=CD ,∠ADE=∠CDF ,根据ASA 证明△ADE CDF ≅∆得ED=FD ,从而可判断①;②运用SAS 证明△EDC FDB ≅∆,得到CE BF =,再由222CE CF EF +=即可判断②;③当DE AC ⊥时,DE 最短,从而可得DE CD ≤<,整理后代换即可判断③. 【详解】解:①∵,90CA CB ACB =∠=︒,∴△ABC 是等腰直角三角形∴∠45A B =∠=︒∵点D 是AB 的中点,∴,DA DB DC CD AB ==⊥,∠45DCB DCA =∠=︒∵∠EDF ADC =∠∴∠EDF EDC ADC EDC -∠=∠-∠∴∠ADE CDF =∠在△ADE 和△CDF 中A DCB AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE CDF ≅∆∴,DE DF AE CF ==∴△DEF 是等腰直角三角形∴∠45DEF =︒,故①正确;②∵∠90EDF CDB ︒=∠=∴∠EDF CDF CDB CDF -∠=∠-∠∴∠EDC FDB =∠在△EDC 与△FDB 中DE DF EDC FDB DC DB =⎧⎪∠=∠⎨⎪=⎩∴△EDC FDB ≅∆∴CE BF =∵222CE CF EF +=∴222BF AE EF ,故②正确; ③∵△DEF 是等腰直角三角形,∴EF =∵当DE AC ⊥时,DE ==最短,∴2DE CD ≤<∴CD ≤<即CD EF ≤<,故③错误; ∴综上,正确的是①②,故选:A .【点睛】 此题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7.B解析:B【分析】由平角的定义与90DOE ∠=︒,即可求得AOD ∠与∠BOE 互为余角;又由角平分线的定义,可得22AOE COE AOC ∠=∠=∠,即可求得2BOE COD ∠=∠,若5640BOE ∠=︒',则6140COE ∠=︒'.【详解】解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠,90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠,故②不正确,④正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒,11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故③正确;∴①③④正确.故答案为:B .【点睛】此题考查了平角的定义与角平分线的定义.题目中要注意各角之间的关系,解题时要仔细识图.8.A解析:A【分析】由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC=1,根据公式可求面积.【详解】解:由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC ,1CD =,4AB =, 所以,ABD △的面积为:141=22⨯⨯, 故选:A .【点睛】本题考查了角平分线的画法和性质,解题关键是知道AD 是角平分线,并根据角平分线的性质求出高. 9.B解析:B【分析】+的最小就是PA+PD,当A、由作法知EF是AC的垂直平分线,可得AP=CP,线段PC PDP、D三点共线时最短,由点D是底边BC的中点,可BD=CD=6,由AB=AC,可得⊥,在Rt△ABD中,由勾股定理得:AD=22AD BC-=即可.AB BD8【详解】解:连结PA,由作法知EF是AC的垂直平分线,∴AP=CP,∴PC+PD=PA+PD,+的最小就是PA+PD,线段PC PD当A、P、D三点共线时最短,∵点D是底边BC的中点,∴BD=CD=11⨯,BC=12=622∵AB=AC,⊥,∴AD BC在Rt△ABD中,由勾股定理得:AD=2222-=-=,1068AB BD(PC+PD)最小=(PA+PD)最小=AD=8.故选择:B.【点睛】本题考查垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,掌握垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,关键是利用垂直平分线将PC转化为PA,找到P、A、D三点共线时最短.10.B解析:B【分析】由△ABC为等边三角形,可求出∠BOA=90°,由△ADO是等腰三角形求出∠ADO=∠AOD=30°,即可求出∠BOD的度数.【详解】解:∵△ABC为等边三角形,BO为中线,∴∠BOA=90°,∠BAC=60°∴∠CAD=180°﹣∠BAC=180°﹣60°=120°,∵AD=AO,∴∠ADO=∠AOD=30°,∴∠BOD=∠BOA+∠AOD=90°+30°=120°,故选:B.【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.11.B解析:B【分析】根据三角形内角和定理求出∠C+∠B,根据线段的垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EAB=∠B,同理,∠GAC=∠C,计算即可.【详解】解:∵∠BAC=100°,∴∠C+∠B=180°−100°=80°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B,同理:∠GAC=∠C,∴∠EAB+∠GAC=∠C+∠B=80°,∴∠EAG=100°−80°=20°,故选B.【点睛】本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB 为等腰三角形的底边,符合条件的点C 的有5个;②AB 为等腰三角形的一条腰,符合条件的点C 的有3个.所以符合条件的点C 共有8个.故选:B .【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.2【分析】根据含30°角的直角三角形的性质可求解CD 的长然后利用AAS 证明△BDH ≌△ADC 可得HD=CD 进而求解【详解】解:∵AD ⊥BC ∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD 的长,然后利用AAS 证明△BDH ≌△ADC ,可得HD =CD ,进而求解.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∴∠HBD +∠BHD =90°,∵∠CAD =30°,AC =4, ∴122CD AC ==, ∵BE ⊥AC ,∴∠HBD +∠C =90°,∴∠BHD =∠C ,∵∠ABD =45°,∴∠BAD =45°,∴BD =AD , 在△BDH 和△ADC 中,BHD C BDH ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH ≌△ADC (AAS ),∴HD =CD =2,故点H 到BC 的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.14.【分析】首先求出S1S2S3…探究规律后即可解决问题【详解】解:如图过点B 作BE ⊥AC1于点E ∵△ABC1是等边三角形AB=AC1=BC1=1∴AE=∴∴由题意可知=…所以∵∴故答案为:【点睛】本题 解析:3 3n 【分析】首先求出S 1,S 2,S 3,…,探究规律后即可解决问题.【详解】解:如图,过点B 作BE ⊥AC 1于点E ,∵△ABC1是等边三角形,AB=AC1=BC1=1∴AE=12, ∴22221312BE AB AE ⎛⎫=-=-= ⎪⎝⎭∴1113312AC B S ∆=⨯=由题意可知,11111111122B C D AC B AC B S S S S ∆∆∆====1332=, 222211121233B C D AC B AC B S S S S ∆∆∆===, 333321131344B C D AC B AC B S S S S ∆∆∆===, …,所以111n AC B n S S n ∆=+, ∵111331224AC B S ∆=⨯⨯=, ∴3n n S = 33n【点睛】本题考查了等边三角形的性质,三角形的面积等知识,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题,属于中考常考题型.15.3【分析】根据勾股定理求AB 的长利用角平分线的性质设CE=DE=x 结合勾股定理列方程求解【详解】解:∵在Rt △ABC 中∠ACB=90°AC=6BC=8∴AB===10∵AE 为△ABC 的角平分线∠AC解析:3【分析】根据勾股定理求AB 的长,利用角平分线的性质,设CE=DE=x ,结合勾股定理列方程求解.【详解】解:∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴10,∵AE 为△ABC 的角平分线,∠ACB=90°,ED ⊥AB ,∴CE=ED ,又∵AE=AE∴Rt △ACE ≌Rt △ADE (HL ),∴AC=AD=6,BD=AB-AD=4设CE=ED=x ,则BE=8-x在Rt △BED 中,DE 2+BD 2=BE 2∴2224(8)x x +=-,解得:=3x∴DE=3故答案为:3【点睛】此题考查勾股定理,掌握勾股定理及角平分线的性质正确列方程求解是解题关键. 16.【分析】根据等腰三角形的性质可求出△CBA1的底角的度数再根据三角形外角的性质及等腰三角形的性质可求出△DA1A2的底角的度数同理可求出△EA2A3△FA3A4…底角的度数再找出其规律即可得出第n 个 解析:11702n -︒⨯【分析】根据等腰三角形的性质,可求出 △CBA 1 的底角的度数,再根据三角形外角的性质及等腰三角形的性质,可求出 △DA 1A 2 的底角的度数.同理可求出 △EA 2A 3 、 △FA 3A 4 …底角的度数.再找出其规律即可得出第n 个三角形中以 An 为顶点的底角度数.【详解】在 △CBA 1 中, ∠B=40° , A 1B=CB ,∴ ∠BA 1C=∠BCA 1=(180°−40°)÷2=70° ,又∵ A 1A 2=A 1D , ∠BA 1C 是 △A 1A 2D 的外角.∴ ∠DA 2A 1=∠A 2DA 1=12∠BA 1C=12×70° . 同理可得:∠EA 3A 2=∠A 3EA 2=12∠DA 2A 1=12×12×70°=(12)2×70° , ∠FA 4A 3=∠A 4FA 3=12∠EA 3A 2=(12)3×70°, 综上可知规律: 第n 个三角形中以 An 为顶点的底角度数是:112n -×70° , 故答案为 70° ×112n -. 【点睛】 本题考查等腰三角形和三角形外角的性质,求出 ∠DA 2A 1 、 ∠EA 3A 2 、 ∠FA 4A 3 的度数,找出其规律是解答本题的关键.17.【分析】根据勾股定理逆定理得到三角形是直角三角形再根据斜边上的中线等于斜边的一半即可得解;【详解】由题知∴三角形是直角三角形3是斜边长∴最长边上的中线长为;故答案是【点睛】本题主要考查了勾股定理逆定 解析:32【分析】根据勾股定理逆定理得到三角形是直角三角形,再根据斜边上的中线等于斜边的一半即可得解;【详解】由题知222293+==,∴三角形是直角三角形,3是斜边长,∴最长边上的中线长为32; 故答案是32. 【点睛】本题主要考查了勾股定理逆定理和直角三角形的形状,准确分析计算是解题的关键. 18.9【分析】过点O 作OE ⊥AB 于EOF ⊥AC 与F 连接OA 根据角平分线的性质求出OEOF 根据三角形面积公式计算得到答案【详解】解:过点O 作OE ⊥AB 于EOF ⊥AC 于F 连接OA ∵OB 平分∠ABCOD ⊥BC解析:9【分析】过点O 作OE ⊥AB 于E ,OF ⊥AC 与F ,连接OA ,根据角平分线的性质求出OE 、OF ,根据三角形面积公式计算,得到答案.【详解】解:过点O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=1,同理可知,OF=OD=1,∴△ABC的面积=△OAB的面积+△OAC的面积+△OBC的面积,=12×AB×OE+12×AC×OF+12×BC×OD,=12×18×1,=9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.19.42°或24°【分析】由折叠的性质得出AD=PD=BD∠CPD=∠B∠PDC=∠BDC∠PCD=∠DCB由直角三角形斜边上的中线性质得出CD=AB=AD=BD由等腰三角形的性质得出∠ACD=∠A∠D解析:42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=12AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,然后分三种情况求解即可.【详解】解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点,∴CD=12AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD =48°时,∠DCB =∠B =48°,∴∠A =90°﹣∠B =42°;当∠PDC =∠BDC =48°时,∵∠BDC =∠A+∠ACD ,∴∠A =12∠BDC =24°; 故答案为:42°或24°.【点睛】本题考查了翻折变换的性质、直角三角形的性质、等腰三角形的性质、直角三角形斜边上的中线性质;灵活运用相关性质是解题的关键.20.2或4或【分析】首先根据题意求得抛物线与x 轴交点的坐标继而由勾股定理解得的长再运用分类讨论的方法按为底或为腰两种情况逐一解题即可【详解】解:令得与点位于y 轴两侧抛物线的对称轴为当为等腰三角形时如图若 解析:2或4或2【分析】首先根据题意,求得抛物线与x 轴交点A 的坐标,继而由勾股定理解得AB 的长,再运用分类讨论的方法,按AB 为底或AB 为腰两种情况逐一解题即可.【详解】解:令0y =,得2230x x --=(3)(1)0x x ∴-+=123,1x x ∴==-(1,2)B 与点A 位于y 轴两侧,(1,0)A ∴-22(20)(11)22AB ∴=-++=抛物线223y x x =--的对称轴为12b x a=-= 当PAB △为等腰三角形时,如图,若AB 为腰,以点B 为圆心,BA 为半径作弧,在点B 的下方,交抛物线对称轴1x =于点1P ,则1==22BP AB ;若AB 为腰,以点A 为圆心,AB 为半径作弧,在点B 的下方,交抛物线对称轴1x =于点2P ,则2==22AP AB 根据等腰三角形三线合一性质得,2=2=22=4B BP y ⨯;若AB 为底,作AB 的垂直平分线,在点B 的下方,交抛物线对称轴1x =于点3P ,则33AP BP =设3(1,)P y(1,2)B ,(1,0)A -2222(11)(0)(11)(2)y y ∴++-=-+-即224+44y y y =-+ 0y ∴=3(1,0)P ∴32BP ∴=综上所述,BP 的长为2或4或22故答案为:2或4或22【点睛】本题考查二次函数与一元二次方程、抛物线与x 轴的交点、勾股定理、等腰三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.(1)见解析;(2)①【分析】(1)根据等边三角形的性质,直接运用SAS 证明即可;(2)①作AF ⊥BC 于F 点,利用“三线合一”的性质结合已知条件先求出AF 的长度,从而根据12·ABC S BC AF =即可求解; ②先在Rt △AFE 中求解出AE 的长度,再求出△ABE 的面积,结合等面积法即可求出BH 的长度,然后根据(1)的结论进一步证明∠BMH=60°,则在Rt △BMH 中即可求解MH 的长度.【详解】(1)∵△ABC 为等边三角形,∴AB=CA ,∠BAD=∠ACE=60°,在△BAD 和△ACE 中,AD CE BAD ACE AB CA =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BAD (SAS );(2)如图所示,作AF ⊥BC 于F 点,①由“三线合一”知,∠BAF=30°,∵BC=BE+EC=4+2=6,∴AB=6,BF=3,由勾股定理可得:AF =,∴11622ABC S BC AF ==⨯⨯=△ ②由①可知,AF =,FE=1,∴根据勾股定理可得,AE=, ∵11422ABE S BEAF ==⨯⨯=△,∴27ABE S BH AE ===△, 由(1)可得,∠ABD=∠CAE ,∴∠ABD+∠BAM=∠CAE+∠BAM=60°,即:∠BMH=∠ABD+∠BAM=60°,则在Rt △BHM 中,∠MBH=30°,∴BH =,∴673MH ==.【点睛】本题主要考查等边三角形的性质以及全等三角形的判定与性质综合运用,灵活运用全等三角形的性质以及等面积法求高是解题关键.22.(1)见解析;(2)等边三角形,理由见解析【分析】(1)根据题意可证ABC AED ≌△△,继而得出结论; (2)根据BC CD ⊥,可知90BCD B ∠=∠=︒,即可判断//AB CD ,进而可证AD CD AC ==,从而得出结论;【详解】(1)证明:∵90B ∠=︒,DE AC ⊥,∴90B AED ∠=∠=︒,∵AC 平分BAD ∠,∴BAC EAD ∠=∠,在ABC 和AED 中,∵ABC AED AB AE BAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABC AED ASA ≌△△,∴AC AD =;(2)解:ACD △是等边三角形,理由如下:∵BC CD ⊥,∴90BCD B ∠=∠=︒,∴//AB CD ,∴BAC ACD DAC ∠=∠=∠,∴AD CD AC ==,∴ACD △是等边三角形;【点睛】本题考查了全等三角形的性质与判定、平行线的性质与判定、等边三角形的判定,熟练掌握知识点是解题的关键;23.(1)见解析;(2)70°【分析】(1)求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,根据角平分线的定义得出∠ABD=∠2即可.(2)根据FG⊥AC,求出∠1,可得∠2,从而得到∠ABC,利用三角形内角和得到∠ACB.【详解】解:(1)∵∠3+∠4=180°,∠FHD=∠4,∴∠3+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠ABD=∠2,∴∠1=∠2;(2)∵FG⊥AC,∠A=70°,∴∠1=90°-70°=20°,∴∠2=∠ABD=∠1=20°,∴∠ABC=∠2+∠ABD=40°,∵∠A+∠ABC+∠ACB=180°,∴∠ACB=180°-∠A-∠ABC=180°-70°-40°=70°.【点睛】本题考查了平行线的性质和判定和角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.24.(1)见解析;(2)=,理由见解析;(3)1或3【分析】(1)根据等腰三角形的三线合一得到CE为∠ACB的平分线,证明BD=BE,等量代换证明结论;(2)过点E作EF∥BC,交AC于点F,证明△DBE≌△EFC,根据全等三角形的性质证明;(3)分点E在AB的延长线上和点E在BA的延长线上两种情况,根据全等三角形的性质解答.【详解】(1)证明:∵△ABC为等边三角形,点E为AB的中点,∴CE为∠ACB的平分线,∴∠BCE=12∠ACB=12×60°=30°.∵ED=EC,∴∠D=∠DCE=30°,∵∠ABC=60°,∠D+∠DEB=∠ABC ,∴∠DEB=30°,∴BD=BE ,∵AE=BE ,∴AE=BD ;(2)解:AE=BD ,理由如下:如图,过点E 作EF ∥BC ,交AC 于点F ,∵△ABC 为等边三角形,∴∠ACB=∠ABC=60°,∵EF ∥BC ,∴∠AEF=∠ABC=∠AFE=∠ACB=60°,∴△AEF 为等边三角形,∴AB=AC ,∴BE=CF ,∴∠DBE=∠EFC=120°,在△DBE 和△EFC 中,DE EC DBE EFC BE FC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EFC (SAS ),∴EF=DB ,∵AE=EF ,∴AE=DB ;故答案为:=;(3)当点E 在BA 的延长线上时,如图③,作EF ∥BC 交CA 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC ,∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC ,∴∠CEF=∠EDB ,在△CEF 和△EDB 中,603CEF EDB F B EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD-BC=1,当点E 在AB 的延长线上时,如图,作EF ∥BC 交AC 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠AEF=60°,∴∠CEF=60°-∠AEC ,∵∠D=∠ECD=∠ABC+∠AEC=60°+∠AEC ,∴∠CEF=∠D ,在△CEF 和△EDB 中,601CEF D F DBE EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF≌△EDB(AAS),∴BD=EF=2,∴CD=BD+BC=3,综上所述,CD=1或3.【点睛】本题考查了等边三角形的性质、三角形全等的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD=90°.由折叠的性质可知:∠BAD=∠BFD,∴∠BAC=∠BAD=90°,∴∠C=180°-∠BAC-∠ABC=180°-90°-60°=30°;(3)设∠C=x°.由折叠的性质可知,AD=DF,∴∠FAD=∠AFD.∵∠AFB=∠FAD+∠C,∴∠FAD=∠AFB-∠C=60°-x,∴∠AFD=60°-x,∴∠DFC=180°-∠AFB-∠AFD=180°-60°-(60°-x)=60°+x.∵△CDF为等腰三角形,∴分三种情况讨论:①若CF=CD,则∠CFD=∠CDF,∴60°+x+60°+x+x=180°,解得:x=20°;②若DF=DC,则∠DFC=∠C,∴60°+x=x,无解,∴此种情况不成立;③若DF=FC,则∠FDC=∠C=x,∴60°+x+x+x=180°,解得:x=40°.综上所述:∠C的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.26.(1)见解析;(2)126BFC ∠=︒.【分析】(1)由SAS 证明ABD ACE △≌△即可;(2)先由全等三角形的性质的20ACE ABD ∠=∠=︒再由等腰三角形的性质和三角形内角和定理得47ABC ACB ∠=∠=︒,则27FBC FCB ∠=∠=︒,即可得出答案.【详解】(1)证明∵BAE CAD ∠=∠∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE SAS △≌△();(2)解:∵ABD ACE △≌△,∴20ACE ABD ∠=∠=︒,∵AB =AC , ∴1(18086)472ABC ACB ∠=∠=︒-︒=︒, ∴472027FBC FCB ∠=∠=︒-︒=︒,∴1802727126BFC ∠=︒-︒-︒=︒.【点睛】本题主要考查全等三角形的性质及判定、等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
第1章三角形的证明单元测试考试范围:第1章三角形的证明;考试时间:90分钟;总分:120分一、选择题(每小题3分,共36分)1.(2022·天津市第七中学八年级期末)等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是()A.65︒B.40︒C.50︒D.80︒2.(2021·黑龙江五常·八年级期末)已知一个等腰三角形的两边长分别是4,5,则它的周长是()A.13B.14C.13或14D.9或12=,3.(2021·辽宁铁岭·八年级期末)如图,E是等边ABC∆中AC边上的点,12∠=∠,BE CD ∆是()则ADEA.等腰三角形B.等边三角形C.不等边三角形D.无法确定4.(2021·浙江省衢州市衢江区实验中学八年级阶段练习)满足下列条件的△ABC,不是直角三角形的是()A.△A:△B:△C=5:12:13B.a:b:c=3:4:5C.△C=△A﹣△B D.b2=a2﹣c25.(2021·浙江瑞安·八年级期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个6.(2021·湖南·永州市剑桥学校八年级期中)已知△A,△B为直角△ABC两锐角,△B=54°,则△A=()A.60°B.36°C.56°D.46°7.(2021·黑龙江平房·八年级期末)到三角形三个顶点距离相等的点是此三角形()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点8.(2021·广西三江·八年级期中)如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是()A.5 cm B.8 cm C.9 cm D.10 cm9.(2021·湖南·株洲市天元区雷打石学校八年级期末)如图,在△ABC中,AB=AC,△A=36°,AC的垂直平分线交AB于E,点D为垂足,连接EC.如果BC=6,△BCE的周长是17,那么AB的长为()A .12B .11C .10D .510.(贵州省黔东南苗族侗族自治州2020-2021学年八年级上学期期末数学试题)如图,在ABC 中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若3DE =,则BC 的长是( )A .9B .6C .7D .511.(2021·四川南充·八年级期末)如图,在Rt △ABC 中,△ACB =90°,BD 平分△ABC 交AC 于点D ,过点D 作DE △BC 交AB 于点E ,△ABC =30°,DC =2.动点P 从点B 出发,沿着B →C →A 运动,当S △PBE =4时,则△PEB 度数是( )A .105°B .75°或105°C .150°D .75°或150° 12.(2022·全国·八年级)如图所示,,AB CD O ∥为BAC ∠与ACD ∠平分线的交点,OE AC ⊥于,E 若2OE =,则AB 与CD 之间的距离是( )A .2B .4C .8D .无法确定二、填空题(每小题4分,共24分)13.(2022·广东东莞·八年级期末)若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .14.(2021·广东南沙·八年级期末)如图,△ABC 中,AB =AC =DC ,D 在BC 上,且AD =DB ,则△BAC =_____.15.(2021·江苏赣榆·八年级期末)如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB △△PAC ,则△APB 的度数为___.16.(2021·辽宁铁岭·八年级期末)如图,△80A ︒=,O 是AB ,AC 垂直平分线的交点,则BOC ∠的度数是________︒.17.(辽宁省抚顺市2021-2022学年八年级上学期期末数学试题)如图,ABC 中,90C ∠=︒,AC BC =,AD 是CAB ∠的平分线,DE AB ⊥于点E ,已知8cm AC ,则BD DE +=______cm .18.(2021·广西隆安·八年级期中)如图,已知ABC 的周长是23,,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥于D ,且4,OD ABC =的面积是_______.三、解答题一(每小题8分,共16分)19.(2021·广东南沙·八年级期末)如图,在△ABC 中,AD △BC ,垂足为D .(1)尺规作图:作线段AC 的垂直平分线EF ,分别交BC 、AC 于点E 、F .(保留作图痕迹,不写作法)(2)若AB =EC ,AC =6,CD =5,求△ABC 的周长.20.(2021·陕西临渭·八年级期中)如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s 的速度运动至点C,P、Q两点同时出发.(1)求△B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.21.(2021·湖北·监利市朱河镇初级中学.八年级期中)已知:如图,在△ABC中,△ABC和△ACB 的角平分线相交于点P,且PE△AB,PF△AC,垂足分别为E、F.(1)求证:PE=PF;(2)连接AP,若△ACB=80°,求△APB的度数.BC,22.(2022·辽宁大石桥·八年级期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)求证:DE=2DF.23.(2021·湖北·监利市朱河镇初级中学.八年级期中)如图,△ABC中,AB=AC,BF△AE于E 交AF于点F,连结CF.△BAC;(1)如图1所示,当EF=BE+CF,求证△EAF=12△BAC,求证:CF=BF+2BE.(2)如图2所示,△EAF=1224.(2022·四川仁寿·八年级期末)如图,已知△ABC中,△C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.答案及解析一、选择题(每小题3分,共36分)1.(2022·天津市第七中学八年级期末)等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是( )A .65︒B .40︒C .50︒D .80︒ 【答案】A【分析】根据等腰三角形的两底角相等,即可求解.【详解】解:△等腰三角形的顶角是50︒,△这个三角形的一个底角的大小是()118050652︒-︒=︒ . 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键. 2.(2021·黑龙江五常·八年级期末)已知一个等腰三角形的两边长分别是4,5,则它的周长是( )A .13B .14C .13或14D .9或12【答案】C【分析】等腰三角形的性质是两腰长相等,需进行分类讨论:当腰长为5,底边长为4时;当腰长为4,底边长为5时,分别计算三角形周长即可.【详解】解:等腰三角形的性质是两腰长相等,需进行分类讨论:当腰长为5,底边长为4时,周长为:25414⨯+=;⨯+=;当腰长为4,底边长为5时,周长为:24513故选:C.【点睛】题目主要考查等腰三角形的性质,对等腰三角形进行分类讨论是解题关键.=,3.(2021·辽宁铁岭·八年级期末)如图,E是等边ABC∆中AC边上的点,12∠=∠,BE CD ∆是()则ADEA.等腰三角形B.等边三角形C.不等边三角形D.无法确定【答案】B【分析】先证得△ABE△△ACD,可得AE=AD,△BAE=△CAD=60°,即可证明△ADE是等边三角形.【详解】解:△△ABC为等边三角形△AB=AC,△BAE=60°,△△1=△2,BE=CD,△△ABE△△ACD(SAS),△AE=AD,△BAE=△CAD=60°,△△ADE是等边三角形.故选B.【点睛】此题考查等边三角形的性质与判定,全等三角形的判定与性质,解题关键在于掌握等边三角形的判定定理.4.(2021·浙江省衢州市衢江区实验中学八年级阶段练习)满足下列条件的△ABC,不是直角三角形的是()A.△A:△B:△C=5:12:13B.a:b:c=3:4:5C.△C=△A﹣△B D.b2=a2﹣c2【答案】A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、△△A:△B:△C=5:12:13,△△C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、△32+42=52,△是直角三角形,故此选项不合题意;C、△△A﹣△B=△C,△△A=△B+△C,△△A+△B+△C=180°,△△A=90°,△是直角三角形,故此选项不合题意;D、△b2=a2﹣c2,△a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.5.(2021·浙江瑞安·八年级期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题意,结合图形,分两种情况讨论:①AB为直角△ABC斜边;②AB为等腰直角△ABC 其中的一条直角边.【详解】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.【点睛】本题考查了直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.6.(2021·湖南·永州市剑桥学校八年级期中)已知△A,△B为直角△ABC两锐角,△B=54°,则△A=()A.60°B.36°C.56°D.46°【答案】B【分析】根据直角三角形中,两锐角互余计算即可.【详解】解:△△A,△B为直角△ABC两锐角,△9036∠=︒-∠=︒,A B故选:B.【点睛】本题考查的是直角三角形的性质,掌握直角三角形中,两个锐角互余是解题的关键.7.(2021·黑龙江平房·八年级期末)到三角形三个顶点距离相等的点是此三角形()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点【答案】D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等.【详解】解:△垂直平分线上任意一点,到线段两端点的距离相等,△到三角形三个顶点的距离相等的点是三角形三边中垂线的交点.故选:D.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等.8.(2021·广西三江·八年级期中)如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是()A.5 cm B.8 cm C.9 cm D.10 cm【答案】D【分析】由AB垂直平分CD,根据线段垂直平分线的性质,可得AD=AC=2cm,BD=BC=3cm,继而求得答案.【详解】解:△AB垂直平分CD,△AD=AC=2cm,BD=BC=3cm,△四边形ABCD的周长是:AC+BC+BD+AD=10(cm).故选:D.【点睛】本题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.9.(2021·湖南·株洲市天元区雷打石学校八年级期末)如图,在△ABC中,AB=AC,△A=36°,AC的垂直平分线交AB于E,点D为垂足,连接EC.如果BC=6,△BCE的周长是17,那么AB的长为()A.12B.11C.10D.5【答案】B【分析】根据线段垂直平分线的性质得CE=AE,从而得出答案.【详解】解:△AC的垂直平分线交AB于E,点D为垂足,△CE=AE,△BE+AE=BE+CE=AB,△△BCE的周长是17,△BC+CE+BE=17,△BC=6,△BE+CE=17﹣6=11,△AB=11,故选B.【点睛】本题主要考查了线段垂直平分线的性质,熟知性质是解题的关键:线段垂直平分线上的点到线段两端的距离相等.10.(贵州省黔东南苗族侗族自治州2020-2021学年八年级上学期期末数学试题)如图,在ABC 中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若3DE =,则BC 的长是( )A .9B .6C .7D .5【答案】A【分析】 根据角平分线上点到角两边的距离相等可得AD BD =,再根据等边对等角的性质求出DAB B ∠=∠,然后根据角平分线的定义与直角三角形两锐角互余,求出30B ∠=︒,再根据直角三角形30角所对的直角边等于斜边的一半求出BD ,然后求解即可.【详解】解:AD 平分BAC ∠,且DE AB ⊥,90C ∠=︒,3CD DE ∴==,DE 是AB 的垂直平分线,AD BD ∴=,B DAB ∴∠=∠,DAB CAD ∠=∠,CAD DAB B ∴∠=∠=∠,90C ∠=︒,90CAD DAB B ∴∠+∠+∠=︒,30B ∴∠=︒,26BD DE ∴==,639BC BD CD ∴=+=+=,故选:A【点睛】本题主要考查了角平分线的性质定理,直角三角形的性质,等腰三角形的性质等知识,熟练掌握角平分线上点到角两边的距离相等;等边对等角;直角三角形30角所对的直角边等于斜边的一半是解题的关键.11.(2021·四川南充·八年级期末)如图,在Rt △ABC 中,△ACB =90°,BD 平分△ABC 交AC 于点D ,过点D 作DE △BC 交AB 于点E ,△ABC =30°,DC =2.动点P 从点B 出发,沿着B →C →A 运动,当S △PBE =4时,则△PEB 度数是( )A .105°B .75°或105°C .150°D .75°或150°【答案】D【分析】 分两种情况:当点P 在BC 边上时,连接EP ,过点E 作EF BC ⊥于F ,根据平行线之间距离相等可得:2EF CD ==,由含30°角的直角三角形性质可得:24BE EF ==,再结合三角形面积即可得出BP BE =,最后运用三角形内角和定理及等腰三角形性质即可;当点P 在AC 边上时,过点P 作PG AB ⊥于点G ,利用角平分线判定定理可得出:BP 平分ABC ∠,即点P 与点D 重合,再利用平行线性质即可.【详解】解:当点P 在BC 边上时,如图1,连接EP ,过点E 作EF BC ⊥于F ,△∥DE BC ,EF BC ⊥,DC BC ⊥,△2EF CD ==,在Rt BEF 中,90BFE ∠=︒,30ABC ∠=︒,△24BE EF ==,△4PBE S =,△1242BP ⨯⨯=,△4BP =, △BP BE =,△()()11180180307522PEB ABC ∠=⨯︒-∠=⨯︒-︒=︒;当点P 在AC 边上时,如图2,过点P 作PG △AB 于点G ,△4PBE S =,△142BE PG ⨯⨯=,即1442PG ⨯⨯=, △2PG =,△PC BC ⊥,PG AB ⊥,2PG PC ==,△BP 平分△ABC ,即点P 与点D 重合,△∥DE BC ,△180********DEB ABC ∠=︒-∠=︒-︒=︒,即150PEB ∠=︒,综上所述,75PEB ∠=︒或150︒,故选:D .【点评】本题考查了直角三角形性质,角平分线性质和判定定理,平行线性质,等腰三角形性质等,添加辅助线构造直角三角形是解题关键.12.(2022·全国·八年级)如图所示,,AB CD O ∥为BAC ∠与ACD ∠平分线的交点,OE AC ⊥于,E 若2OE =,则AB 与CD 之间的距离是( )A .2B .4C .8D .无法确定【答案】B【分析】 过点O 作MN AB ⊥于M ,交CD 于N ,利用角平分线的性质求出OM 、ON ,最后即可求出AB 与CD 之间的距离.【详解】如图,过点O 作MN AB ⊥于M ,交CD 于N ,//AB CD ,MN CD ∴⊥,AO BAC ∠是的平分线,,,2OM AB OE AC OE ⊥⊥=,2∴==OM OE ,CO 是ACD ∠的平分线,OE AC ⊥,ON CD ⊥,2∴==ON OE ,4∴=+=MN OM ON ,即AB CD 与之间的距离是4.故选:B .【点睛】本题主要是考查了角平分线的性质,熟练地应用角平分线的性质:角平分线上的点到角的两边相等,求出对应相等的边,是解决本题的关键.二、填空题(每小题4分,共24分)13.(2022·广东东莞·八年级期末)若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .【答案】9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm为底时,腰长应该是12(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,△7.5+7.5=15>9,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,△6+9=15>9,△以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.14.(2021·广东南沙·八年级期末)如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则△BAC=_____.【答案】108°108度【分析】先设△B=x,由AB=AC可知,△C=x,由AD=DB可知△B=△DAB=x,由三角形外角的性质可知△ADC=△B+△DAB=2x,根据DC=CA可知△ADC=△CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【详解】设△B=x,△△C=△B=x,△AD=DB,△△B=△DAB=x,△△ADC=△B+△DAB=2x,△DC=CA,△△ADC=△CAD=2x,在△ABC中,x+x+2x+x=180°,解得:x=36°.△△BAC=108°.故答案为:108°.【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理15.(2021·江苏赣榆·八年级期末)如图,点P是等边△ABC内的一点,PA=6,PB=8,PC =10,若点P′是△ABC外的一点,且△P′AB△△PAC,则△APB的度数为___.【答案】150°【分析】如图:连接PP′,由△PAC△△P′AB可得PA=P′A、△P′AB=△PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且△BPP′=90°,最后根据角的和差即可解答.解:连接PP′,△△PAC△△P′AB,△PA=P′A,△P′AB=△PAC,△△P′AP=△BAC=60°,△△APP′为等边三角形,△PP′=AP=AP′=6;△PP′2+BP2=BP′2,△△BPP′为直角三角形,且△BPP′=90°,△△APB=90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.∠16.(2021·辽宁铁岭·八年级期末)如图,△80=,O是AB,AC垂直平分线的交点,则BOCA︒的度数是________︒.【答案】160【分析】首先需要根据条件作出辅助线OA,根据垂直平分线得性质:线段垂直平分线上任意一点到∠和该线段两端点的距离相等,可以构造等腰三角形,即可进行角度转换求解,解得BCO∠的度数为10︒,最终根据三角形的内角和求得BOC∠的度数为160︒.CBO【详解】解:如图所示:连接OA,△△A=80°,△△ABC+△ACB=180°-△A =100°,△O是AB,AC垂直平分线的交点,△OA=OB,OA=OC,△△OAB =△OBA ,△OCA =△OAC ,OB =OC ,△△OBA +△OCA =△OAB +△OAC =△A =80°,△△OBC +△OCB =100°﹣80°=20°,△OB =OC ,△△BCO =△CBO =10°,△△BOC=180°-△BCO -△CBO =180°-10° - 10°=160°故答案为:160°.【点睛】本题重点考查的是线段垂直平分线的性质的运用,利用性质进行构造等腰三角形,并进行求解是解本题的关键. 17.(辽宁省抚顺市2021-2022学年八年级上学期期末数学试题)如图,ABC 中,90C ∠=︒,AC BC =,AD 是CAB ∠的平分线,DE AB ⊥于点E ,已知8cm AC ,则BD DE +=______cm .【答案】8【分析】由角平分线的性质可得CD =DE ,则BD +DE =BD +CD =BC ,由此进行求解即可.【详解】解:△DE △AB ,△C =90°,AD 是△BAC 的角平分线,△CD =DE ,△BD +DE =BD +CD =BC ,又△AC =BC =8cm ,△BD +DE =8cm ,故答案为:8.【点睛】本题主要考查了角平分线的性质,解题的关键在于能够熟记角平分线上的点到角两边的距离相等.18.(2021·广西隆安·八年级期中)如图,已知ABC 的周长是23,,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥于D ,且4,OD ABC =的面积是_______.【答案】46【分析】连接AO ,过点O 作OE △AB 于点E ,OF △AC 于点F ,根据角平分线的性质定理,可得OD =OE ,OD =OF =4,再由ABC AOB BOC AOC S S S S =++△△△△,即可求解.【详解】解:如图,连接AO ,过点O 作OE △AB 于点E ,OF △AC 于点F ,△,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥,4OD =,△OD =OE ,OD =OF =4,△111222ABC AOB BOC AOC S S S S AB OE CB OD AC OF =++=⋅+⋅+⋅ ()114234622OD AB BC AC =⨯⨯++=⨯⨯= . 故答案为:46【点睛】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题一(每小题8分,共16分)19.(2021·广东南沙·八年级期末)如图,在△ABC 中,AD △BC ,垂足为D .(1)尺规作图:作线段AC 的垂直平分线EF ,分别交BC 、AC 于点E 、F .(保留作图痕迹,不写作法)(2)若AB =EC ,AC =6,CD =5,求△ABC 的周长.【答案】(1)见解析;(2)16;【分析】(1)利用基本作图,作AC的垂直平分线即可;(2)根据线段垂直平分线的性质得到EA=EC,则AB=AE,根据等腰三角形的性质得到BD =ED,然后利用等线段代换得到△ABC的周长=2CD+AC.【详解】解:(1)如图,EF为所作;(2)连接AE,如图,△EF垂直平分AC,△EA=EC,△AB=CE,△AB=AE,△AD△BC,△BD=ED,△△ABC的周长=AB+BD+CD+AC=CE+DE+CD+AC=2CD+AC=2×5+6=16.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质.20.(2021·陕西临渭·八年级期中)如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求△B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.【答案】(1)△B=90°;(2)P、Q两点之间的距离为13cm【分析】(1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可;(2)依据运动时间和运动速度,即可得到BP和BQ的长,再根据勾股定理进行计算,即可得到PQ的长.【详解】解:(1)△AB=7cm,AC=25cm,BC=24cm,△AB2+BC2=625=AC2,△△ABC是直角三角形且△B=90°;(2)运动2s时,AP=1×2=2(cm),BQ=2×6=12(cm),△BP=AB﹣AP=7﹣2=5(cm),Rt△BPQ中,2222+=+=,PQ BP BQ51213cm△P、Q两点之间的距离为13cm.【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出△B=90°.四、解答题二(每小题10分,共20分)21.(2021·湖北·监利市朱河镇初级中学.八年级期中)已知:如图,在△ABC中,△ABC和△ACB 的角平分线相交于点P,且PE△AB,PF△AC,垂足分别为E、F.(1)求证:PE=PF;(2)连接AP,若△ACB=80°,求△APB的度数.【答案】(1)见解析;(2)130°【分析】(1)过点P作PD△BC于D,可得PD=PE=PF;(2)根据三角形内角和求出△BAC+△ABC=100°,再根据角平分线的定义得到AP平分△BAC,从而得出△PAB+△PBA,再次根据三角形内角和求出△APB.【详解】解:(1)过点P作PD△BC于D,△△ABC和△ACB的角平分线相交于点P,且PE△AB,PF△AC,△PD=PE,PD=PF,△PE=PF;(2)△△ACB=80°,△△BAC+△ABC=180°-80°=100°,△△ABC和△ACB的角平分线相交于点P,△AP平分△BAC,△△PAB+△PBA=1(△BAC+△ABC)=50°,2△△APB=180°-50°=130°.【点睛】本题考查了角平分线的定义和性质,三角形内角和,熟记定理是解题的关键.22.(2022·辽宁大石桥·八年级期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12 BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)求证:DE=2DF.【答案】(1)6;(2)见解析【分析】(1)根据等边三角形的性质得出AC=BC,△A=△ACB=60°,求出△E=△CDE,根据三角形外角性质和等腰三角形的性质求出BD=DE,求出AD的长即可;(2)连接BD,求出BD=DE,根据含30°角的直角三角形的性质得出BD=2DF,即可得出答案.【详解】解:(1)△△ABC为等边三角形,△AC=BC,△A=△ACB=60°,△D为AC中点,△CD=AD=12 AC,△CE=12 BC,△CD=CE,△△E=△CDE,△△ACB=△E+△CDE,△△E=△CDE=30°,△△ADF=△CDE=30°,△△A=60°,△△AFD=180°-△A-△ADF=90°,△AF=3,△AD=2AF=6,(2)连接BD,△△ABC为等边三角形,D为AC中点,△BD平分△ABC,△ABC=60°,△△DBC=△ABD=12△ABC=30°,△△BFD=90°,△BD=2DF,△△DBC=△E=30°,△BD=DE,△DE=2DF,【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,等腰三角形的判定,三角形的外角性质,三角形的内角和定理等知识点,能综合运用定理进行推理是解此题的关键.五、解答题三(每小题12分,共24分)23.(2021·湖北·监利市朱河镇初级中学.八年级期中)如图,△ABC中,AB=AC,BF△AE于E 交AF于点F,连结CF.△BAC;(1)如图1所示,当EF=BE+CF,求证△EAF=12△BAC,求证:CF=BF+2BE.(2)如图2所示,△EAF=12【答案】(1)见解析;(2)见解析【分析】(1)在EF上截取EH=BE,由“SSS”可证△ACF△△AHF,可得△CAF=△HAF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF△△ANF,可得CF=NF,可得结论.【详解】解:(1)如图,在EF上截取EH=BE,连接AH,△EB=EH,AE△BF,△AB=AH,△AB=AH,AE△BH,△△BAE=△EAH,△AB=AC,△AC=AH,△EF =EH +HF =BE +CF ,△CF =HF ,在△ACF 和△AHF 中,AC AHAF AF CF HF=⎧⎪=⎨⎪=⎩,△△ACF △△AHF (SSS ),△△CAF =△HAF ,△△BAE +△CAF =△EAH +△FAH =△EAF ,即△EAF =12△BAC ;(2)如图,在BE 的延长线上截取EN =BE ,连接AN ,△AE △BF ,BE =EN ,AB =AC ,△AN =AB =AC ,△AN =AB ,AE △BN ,△△BAE =△NAE ,△△EAF =12△BAC ,△△EAF +△NAE =12(△BAC +2△NAE )△△FAN =12△CAN ,△△FAN =△CAF ,在△ACF 和△ANF 中,AC AN CAF NAF AF AF =⎧⎪∠=∠⎨⎪=⎩,△△ACF △△ANF (SAS ),△CF =NF ,△CF =BF +2BE .【点睛】本题考查了全等三角形的判定和性质,垂直平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.24.(2022·四川仁寿·八年级期末)如图,已知△ABC 中,△C =90°,AC =5cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿AC 运动,且速度为每秒1cm ,点Q 从点C 开始沿CB 运动,且速度为每秒2cm ,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求运动时间为几秒时,△PQC 是等腰三角形?(3)P 、Q 在运动的过程中,用含t(0<t <5)的代数式表示四边形APQB 的面积.【答案】(1)PQ =5cm ;(2)t =53;(3)S 四边形APQB =30﹣5t +t 2.【分析】(1)先分别求出CQ 和CP 的长,再根据勾股定理解得即可;(2)由△C =90°可知,当△PCQ 是等腰三角形时,CP =CQ ,由此求解即可;(3)由S 四边形APQB =S △ACB ﹣S △PCQ 进行求解即可.【详解】解:(1)由题意得,AP =t ,PC =5﹣t ,CQ =2t ,△△C =90°,△PQ 2222(5)(2)PC CQ t t +-+,△t =2,△PQ 22345cm +,(2)△△C =90°,△当CP =CQ 时,△PCQ 是等腰三角形,△5﹣t =2t ,解得:t =53,△t =53秒时,△PCQ 是等腰三角形;(3)由题意得:S 四边形APQB =S △ACB ﹣S △PCQ=1122AC CB PC CQ ⋅-⋅=11512(5)222t t ⨯⨯-⨯-⨯=30﹣5t +t 2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解。
第六章 证明(一) 单元测试
班级:________ 姓名:________
一、填空题
1.命题“任意两个直角都相等”的条件是________,结论是___________,它是________(真或假)命题.
2.如图6-77,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.
图6-77 3.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.
图6-78
4.已知,如图6-78,AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.
5.已知,如图6-79,AB ∥CD ,若∠ABE =130°,∠CDE =152°,则∠BED =__________.
图6-79
二、选择题
1.下列语言是命题的是( )
A B
C
D
A C
B
D
E
1
2
3A B
E D
C
F
A.画两条相等的线段
B.等于同一个角的两个角相等吗?
C.延长线段AO 到C ,使OC =OA
D.两直线平行,内错角相等.
图6-80
2.如图6-80,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于( ) A.63° B.62° C.55°
D.118°
3.下列语句错误的是( ) A.同角的补角相等 B.同位角相等
C.同垂直于一条直线的两直线平行
D.两条直线相交只有一个交点 三、解答题
1.举例说明“两个锐角的和是锐角”是假命题.
图6-81
2.已知,如图6-81,AE ∥BD ,∠1=3∠2,∠2=26°,求2
1
∠C. 四、证明题
图6-82
1.已知,如图6-82,AD ⊥BC ,EF ⊥BC ,∠4=∠C. 求证:∠1=∠
2.
2.已知,如图6-83,△ABC 中,∠C >∠B ,AD ⊥BC 于D ,AE 平分∠BA C.
图6-83
求证:∠DAE =2
1
(∠C -∠B ).
参考答案
一、1.两个角都是直角 这两个角相等 真 2.90° 3.120° 4.180° 5.78° 二、1.D 2.B 3.B
三、1.如:60°和50°都是锐角,但它们的和是钝角. 2.解:∵AE ∥B D. ∴∠1=∠3 ∵∠3=∠2+∠C ∴∠C =∠3-∠2 ∵∠3=∠1=3∠2 ∴∠C =3∠2-∠2=2∠2 ∴
2
1
∠C =∠2=26° 四、1.证明:∵AD ⊥BC ,EF ⊥BC (已知) ∴AD ∥EF (垂直于同一条直线的两直线平行) ∴∠2=∠CAD (两直线平行,同位角相等) ∵∠4=∠C (已知)
∴DG ∥AC (同位角相等,两直线平行) ∴∠1=∠CAD (两直线平行,内错角相等) ∴∠1=∠2(等量代换) 2.证明:∵AD ⊥BC 于D (已知) ∴∠ADC =∠ADB =90°(垂直的定义) ∵AE 平分∠BAC (已知) ∴∠CAE =
2
1
∠BAC (角平分线的定义) ∵∠B +∠BAC +∠C =180°(三角形内角和定理) ∴
2
1
(∠B +∠BAC +∠C )=90°(等式的性质) ∵∠1+∠DAE =∠CAE (已知) ∴∠DAE =∠CAE -∠1
=
21
∠BAC -(90°-∠C ) =21∠BAC -[2
1
(∠B +∠BAC +∠C )-∠C ]
=21∠BAC -21∠B -21∠BAC -21
∠C +∠C =2
1
(∠C -∠B )(等式的性质) 即:∠DAE =2
1
(∠C -∠B ).。