第1章信号与系统基础
- 格式:pdf
- 大小:1.46 MB
- 文档页数:81
矩形脉冲信号 脉冲宽度
平移特性
正弦信号
指数信号
抽样函数
偶函数
高斯函数
偶函数,以后会涉及均值和方差 在
随机信号和信号时
地位。
高斯函数的傅里叶变换仍然是高斯函数。
单位阶跃函数
定义
单位阶跃函数的积分
单位阶跃函数的单边特性
“符号函数”的阶跃函数表示
单位冲激函数
定义
狄拉克(Dirac )定义
应用特性
冲激函数的抽样性
单位冲激函数与单位阶跃函数的关系
单位冲激函数为偶函数
单位冲激函数的尺度特性
单位冲激函数与任何函数的乘积
单位冲击偶
另外一些特性,+∞)区间内所有平移形成抽样定理,即连续信号离散化中非常重要。
三角函数集
三角函数形式的傅里叶展开
复指数函数集
指数函数形式的傅里叶展开
线性特性
非时变特性
卷积积分定义
卷积的图解换、翻转、平移、相乘、积分
卷积的基本性质换律、分配律、结合律
卷积的微分
卷积的积分
函数与冲激函数的卷积
函数与阶跃函数的卷积。
信号与系统基础知识 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 信号与系统的基本概念引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。
我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。
我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。
更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。
我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。
例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。
系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。
很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。
隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。
信号用函数表示,可以是数学表达式,或是波形,或是数据列表。
在本课程中,信号和函数的表述经常不加区分。
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。
系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。
这些区别导致分析方法的重要差别。
本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。
例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。
第一章信号与系统的基本概念§1.1 绪言信号与系统是一门重要的专业基础课。
是许多专业(通信、信息处理、自动化、计算机、系统工程)的必修课。
重要性体现在两个方面:一是我们将来从事专业技术工作的重要理论基础;二是上述各类专业硕士研究生入学考试课程。
在教学计划中起着承前启后的作用,前期课程是高数、微分方程、差分方程、工程数学中的积分变换(傅立叶变换和拉普拉斯变换),还有电路分析基础;而其本身是后续专业课(通信原理、数字信号处理)的基础。
信号研究的主要内容:顾名思义系统合成:信号一个典型的电系统—通信系统信息源转换电信号电信号还原受信者(声音、文字、图象)/响应通信系统○1系统:控制系统抽象为理想化的模型,讨论激励与响应的关系经济系统○2信号:时间的函数f(t),一维函数,确定信号* 信号与系统的关系:互相依存信号是运载消息的工具,要很好的利用信号,需经过系统的传输、处理.系统则是为传输信号或对信号进行处理而由元器件构成的某种组合。
离开了信号,系统就失去了意义.§1.2 信号一.定义:信号是带有信息的(如声音、图象等)随时间(或空间)变化的物理量。
本课程主要研究电信号(电流、电压)。
二.信号的分类:从不同的角度1 从函数的定义域(时间)是否连续:○1连续时间信号:在连续的时间范围内有定义。
t是连续的,f (t)可是,也可不是表达方式时间的函数(解析式),如f(t)=Asinπt波形图表示:上述两种表达方式,可以互换。
信号和函数两个词可互相通用○2离散时间信号:在一些离散的瞬间才有定义。
t=kT点上有定义,其余无定义序列f (k )=2k ,k ≥0 表达方式 图形表示:序列值f (k )={0、1、2、4、8、……}2 从信号的重复性:○1 周期信号:定义在(-∞,+∞)区间,每隔一定时间T 重复变化连续f (t )=f (t+mT )离散f (k )=f (k+mK ) K 为整数 ○2 非周期信号:不具有周期性的信号 例:正弦序列f (k )=sink β β为角频率,反映周期性重复的速率, 决定序列是否具有周期性按定义:sink β=sin(β·k+m ·2π) β=6π时,βπ2 =12,为整数,是周期序列,k =12β=318π时,βπ2=431,为有理数,是周期序列,k =31β=21时,βπ2 =4π,为无理数,是非周期序列tf (kt )−−→−简化f (k ) 0 T 2T 3T间隔相等 kT3 实信号:物理可实现的复信号:实际上不能产生,但理论分析重要——复指数信号 表达式:f (t )=e st ,-∞<t <+∞, δ= σ+j ω f (t )=e (σ+j ω)t =e σ t ·e j ωt = e σ t cos ωt+j e σ t sin ωt σ>0,增幅振荡 σ<0,衰减振荡 σ=0,等幅振荡当ω=0,f (t )= e σt 为实指数信号当σ=ω=0,f (t )=1,为直流信号 重要特性:对时间的微分和积分仍然是复指数信号。