八年级数学:基本作图(教学设计)
- 格式:docx
- 大小:35.09 KB
- 文档页数:12
教学过程:一、情境引入,再现尺规上课伊始,播放《尺规之恋》视频动画。
面对尺与规的流线动作,构造出完美的五角星图案,学生会从内心产生一种愉悦的心情,不但为本节课的学习在情境上进行引入,我想也会为学生对尺规画出的图案和画图案的过程产生美的熏陶。
二、尺规作图,知识梳理第一环节:基本的尺规作图活动内容:通过自主学习、练习的方式复习尺规作图的四个基本作图。
活动目的:使学生通过这种方式对所学的知识进行巩固,最终达到掌握并灵活应用的目的。
活动过程:1、作一条线段等于已知线段;(作图略)2、作一个角等于已知角;(作图略)3、作线段的垂直平分线;(作图略)4、作已知角的平分线。
(作图略)第二环节:尺规作三角形活动内容:通过小组合作练习的方式复习运用尺规作三角形。
活动目的:使学生对利用基本作图:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形的知识进行巩固,最终达到掌握并灵活应用的目的。
活动过程:1、已知三边作三角形;(作图略)2、已知两边及其夹角作三角形;(作图略)3、已知两角及其夹边作三角形;(作图略)4、已知底边及底边上的高作等腰三角形。
(作图略)第三环节:与圆有关的尺规作图活动内容:通过练习的方式复习运用尺规过三点作圆。
活动目的:主要训练学生对尺规作线段垂直平分线的运用能力活动过程:如图所示,要把破残的圆片复制完整,已知弧上的三点A、B、C,用尺规作图法找出弧BAC所在圆的圆心(保留作图痕迹,不写作法)三、学以至用,直击中考活动内容:训练近几年中考题中运用尺规作图的题型。
活动目的:主要训练学生对尺规作图的运用能力。
活动过程:1、(兰州)如图1,矩形纸片ABCD ,把它沿对角线BD 向上折叠。
⑴在图2中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)⑵折叠后重合部分是什么图形?说明理由。
2、(济宁)如图,AD 是∆ABC 的角平分线,过点D 作DE ∥AB ,DF ∥AC ,分别交AC ,AB 于点E 和F ,在图中画出线段DE 和DF 。
华东师大版八年级上册数学教学设计《13.4尺规作图(2)》一. 教材分析华东师大版八年级上册数学《13.4尺规作图(2)》这一节,是在学生已经掌握了尺规作图的基本方法和思想之后进行的一节课程。
在本节课中,学生需要进一步学习如何利用尺规作图来解决一些实际问题,如作一条线段等于已知线段,作一个角等于已知角等。
本节课的内容在数学几何学习中占有重要的地位,不仅可以帮助学生巩固尺规作图的基本技能,还可以培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节课之前,已经掌握了尺规作图的基本方法和步骤,对尺规作图有一定的了解和认识。
但是,学生在实际操作中,可能对一些细节问题把握不好,如作图的精确度、作图过程中的注意事项等。
此外,学生在解决实际问题时,可能缺乏思路和方法,需要老师在教学中进行引导和启发。
三. 教学目标1.知识与技能目标:使学生掌握尺规作图的基本方法和步骤,能够独立完成尺规作图的任务。
2.过程与方法目标:通过尺规作图的实际操作,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,增强学生学习数学的自信心和积极性。
四. 教学重难点1.教学重点:尺规作图的基本方法和步骤。
2.教学难点:如何利用尺规作图解决实际问题。
五. 教学方法采用问题驱动法、启发式教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。
同时,通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具准备:尺规作图的工具,如直尺、圆规等。
2.教学素材:一些关于尺规作图的实际问题,用于引导学生进行思考和操作。
七. 教学过程1.导入(5分钟)教师通过提出一个问题,如“如何用尺规作图作出一条线段等于已知线段?”来引导学生进入本节课的学习主题。
2.呈现(10分钟)教师通过讲解和示范,向学生讲解尺规作图的基本方法和步骤,如如何用尺规作图作出一条线段等于已知线段,如何用尺规作图作出一个角等于已知角等。
初中数学绘图教案教学目标:1. 让学生掌握基本的几何图形的绘制方法。
2. 培养学生独立思考、合作交流的能力。
3. 培养学生空间想象能力,提高解决问题的能力。
教学内容:1. 基本几何图形的绘制方法。
2. 利用绘图工具(如直尺、圆规、三角板等)进行绘图。
3. 绘制平面几何图形的步骤和技巧。
教学重点:1. 基本几何图形的绘制方法。
2. 利用绘图工具进行绘图。
教学难点:1. 绘制复杂平面几何图形。
2. 空间想象能力的培养。
教学准备:1. 教师准备相关几何图形绘制课件或黑板。
2. 学生准备直尺、圆规、三角板等绘图工具。
教学过程:一、导入(5分钟)1. 教师通过展示一些实际生活中的几何图形,引导学生关注几何图形在日常生活中的应用。
2. 学生分享自己对几何图形的认识和绘制经验。
二、新课导入(10分钟)1. 教师介绍基本几何图形的绘制方法,如直线、射线、角、三角形、圆形等。
2. 学生跟随教师一起绘制基本几何图形,掌握绘制方法。
三、绘图技巧讲解(10分钟)1. 教师讲解如何利用直尺、圆规、三角板等绘图工具进行绘图。
2. 学生通过实践,掌握绘图工具的使用方法。
四、课堂练习(10分钟)1. 学生独立完成课堂练习,绘制给定的几何图形。
2. 教师巡回指导,解答学生疑问。
五、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享自己的学习收获和感悟。
六、课后作业(课后自主完成)1. 绘制一个复杂的平面几何图形。
2. 总结自己在绘制过程中的经验和问题,与同学交流。
教学反思:本节课通过引导学生关注几何图形在日常生活中的应用,激发学生的学习兴趣。
在教学过程中,注重让学生动手实践,培养学生的动手能力和空间想象能力。
同时,教师应及时关注学生的学习情况,针对不同学生进行个别指导,提高学生的绘图水平。
在今后的教学中,可以尝试引入更多实际应用场景,让学生更好地理解几何图形的重要性。
新青岛版八年级数学上册1.3尺规作图教案
议一议:
作法:
想一想:做一做: 成的,前面我们学过的用尺规作一条线段等于
已知线段,这是一种基本作图,下面我们将再
学习一种新的基本作图。
如图,已知∠AOB,用直尺和圆规作∠A′
O′B′,使∠A′O′B′=∠AOB。
(1)作射线O′A′.
(2)以点 ___为圆心,以 ____ 为半径画
弧,交OA于点C,交OB于点D.
(3)以点 _____为圆心,以 ____长为半径
画弧,交O′A′于点C′.
(4)以点 _____为圆心,以 _____长为半
径画弧,交前面的弧于点D′.
(5)过点D′作射线 ______∠A′O′B′
就是所求作的角.
∠A′O′B′=∠AOB吗?如何验证?
1.已知:线段AB和CD,求作线段a,使
a=AB-CD.
2.已知:钝角∠
ABC,
求作:∠ABC′
使∠ABC′=∠ABC .
小组讨论,共同完
成
学生识记
小组交流
找两名学生板演,
师生共同评议
A
B
C。
13.4.4 经过一点作已知直线的垂线
一、学习目标确定的依据
(一)课程标准相关要求:
1、了解尺规作图中作图的道理,保留作图痕迹。
2、掌握用尺规,过一点作已知直线的垂线。
3、解决有关作图问题。
(二)教材分析:
过一点作已知直线的垂线是本节的重点,要求掌握
(三)中招考点
本节往往不以单个知识点出现在试卷上,它会以综合其他知识点以单项选择,填空题,大题的形式出现。
(四)学情分析:
学生刚刚接触尺规作图,在学习时,要结合学生熟悉的尺规问题,通过观察和分析尺规作图中掌握用尺规过一点作已知直线的垂线的作图方法,领会其思想方法。
二、学习目标:
1.掌握基本作图:经过一点作已知直线的垂线,并能利用其解决有关作图问题。
2.能按步骤写出作法。
三、评价任务:
1、掌握作图尺规:过一点作已知直线的垂线
2、能按步骤写出做法。
3解决尺规作图的相关问题
教学反思:
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt
文件格式。
本文档仅用于百度文库的上传使用。
北京版数学八年级上册《12.8 基本作图》教学设计2一. 教材分析《12.8 基本作图》是北京版数学八年级上册的一个重要内容,主要介绍了尺规作图的基本方法和技巧。
本节课的教学内容主要包括:了解尺规作图的定义和规则,掌握基本作图方法,能够运用尺规作图解决一些简单问题。
教材通过具体的例子引导学生掌握尺规作图的方法,培养学生的动手能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识和一些基本的作图方法。
但是,对于尺规作图这一概念和方法可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
同时,学生可能对于如何运用尺规作图解决实际问题还存在一定的困难。
三. 教学目标1.了解尺规作图的定义和规则,掌握基本作图方法。
2.能够运用尺规作图解决一些简单问题。
3.培养学生的动手能力和解决问题的能力。
四. 教学重难点1.尺规作图的定义和规则。
2.尺规作图的基本方法。
3.如何运用尺规作图解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的例子引导学生掌握尺规作图的方法,让学生在实践中学习和探索。
同时,通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备尺规作图的工具,如直尺、圆规等。
3.准备教学课件和黑板。
七. 教学过程1.导入(5分钟)通过一个简单的案例,引导学生思考如何用尺规作图来解决实际问题。
例如,如何用尺规作图来画一个等边三角形。
让学生感受到尺规作图的魅力和实用性。
2.呈现(10分钟)教师通过课件和黑板,向学生介绍尺规作图的定义和规则,讲解尺规作图的基本方法。
同时,通过具体的例子,让学生动手实践,加深对尺规作图方法的理解。
3.操练(10分钟)学生分组进行合作学习,每组选择一个练习题,运用尺规作图的方法来解决实际问题。
教师巡回指导,解答学生的疑问,帮助学生克服困难。
4.巩固(10分钟)学生独立完成一些关于尺规作图的练习题,巩固所学知识。
初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 八年级数学教案编订:XX文讯教育机构基本作图(教学设计)教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
教学目标:1、知识目标:(1)要掌握尺规作图的方法及一般步骤;(2)掌握五种,明确尺规作图的意义。
2、能力目标:(1)通过“作图题”练习,提高学生的几何语言表达能力;(2)通过画图,培养学生的作图能力及动手能力.3、情感目标:(1)体验数学语言的简洁严谨。
(2)体会数学作图语言和图形的和谐统一。
教学重点:熟练掌握五个,作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形。
教学难点:作图语言的准确应用,作图的规范与准确。
教学用具:直尺,圆规教学方法:讲练结合法教学过程:前面我们学习了全等三角形的性质、判定及一些较简单的几何证明题.在学习中常常感到需要有准确、方便的画图方法,画出符合条件的几何图形.本节我们学习这种几何作图方法.1、阅读教材,理解概念学生阅读教材第一部分,并回答问题:(1)尺规作图:在几何里,把限定用直尺和圆规来画图,称为尺规作图.(学生使用的尺子都有刻度,这里告诉学生,直尺是用来画直线的,或者延长线段、射线成直线的.我们作图时,可以使用一般的刻度尺、三角板,只要不用它们去度量长度,就是这里所说的直尺)(2):最基本、最常用的尺规作图,通常称.一些复杂的尺规作图,都是由组成的,第一册里曾讲过用尺规作一条线段等于已知线段,这是一种,下面再介绍几种:练习:作一条线段等于已知线段2、讲解例题,熟悉语言教师边作图边用语言叙述作法,让学生听懂。
前面我们学会了用直尺和圆规作一条线段等于已知线段,学习判定两个三角形全等“边边边”公理时曾经已知三边画三角形得到边边边公理而因全等三角形的对应角相等,进而达到角相等的目的.1.作一个角等于已知角分析:解作图题的方法与证明题解法不相同,它一般应包括已知,求作。
对于作图首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。
已知: AOB求作:使= AOB分析:假设∠A'O'B'已作出,且∠A'O'B'=∠AOB,如图2,在OA、OB、O'A'、O'B'上取点C、D、C'、D',使OC=OD=O'C'=O'D',那么△COD≌△C'O'D'.由此可知,要作出∠A'O'B',使∠A'O'B'=∠AOB,只要作出△O'C'D',使O'C'=OC,O'D'=OD,C'D'=CD,这就是前面学过的“已知三边画三角形”.作法:1、作射线2、以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D3、以点为圆心,以OC长为半径作弧,交于4、以点为圆心,以CD长为半径作弧,交前弧于5、经过点作射线。
就是所求的角证明:连结CD、C'D',由作法可知△C'O'D≌△COD(SSS)∴∠C'O'D'=∠COD(全等三角形对应角相等).即∠A'O'B'=∠AOB.说明:作图题的证明,常以作法为根据,只要“作法”中写明了作的是什么,证明中就可以用它作根据去证明.注意,在作图题的“证明”中,一般过程都写得比较简单.如这个证明三角形全等的地方,把条件省略了.练习:如图3,在∠AOB的外部作∠AOC,使∠AOC=∠AOB.首先要求作图工具——直尺(无刻度)、圆规.然后引导学生分析题意,弄清已知是什么,求作是什么?画出已知条件(一个角),写出已知、求作.在求作中先写出什么图形,再写使它合乎什么条件.作法可让学生或教师作图,学生叙述作法.让学生写出证明过程.2.平分已知角前面我们用量角器作一个已知角∠AOB的平分线OC,怎样用尺规来画已知角的平分线呢?分析:如图4,假如∠AOB的平分线OC已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD,那么CE=CD.这个实验也启发我们:如果有OE=OD,CE=CD,那么OC平分∠AOB吗?用“SSS”公理易证△OEC≌△ODC,∠EOC=∠DOC,即OC平分∠AOB.于是容易看出,要作∠AOB的平分线OC,在于怎样才能找到起关键作用的点C?怎样确定点C呢?不难看出,为了确定C点,必须先找点E、D.以O为圆心,任意长为半径作弧,分别交OA、OB于D、E,那么OD=OE吗?再分别以D、E为圆心,适当的长度为半径作弧,设两弧交于点C,那么CD=CE吗?而D、E为圆心,“适当”的长度为半径作弧,两弧有一交点时,怎样的长度才“适当”呢?已知:∠AOB如图5求作:射线OC,使∠AOC=∠BOC.作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于的长为半径作弧,在内,两弧交于点C.(3)作射线OC.OC就是所求的射线.证明:连结CD、CE,由作法可知△ODC≌△OEC∴∠COD=∠COE(全等三角形的对应角相等).即∠AOC=∠BOC.小结:(1)1、2有一个不同之点,即2要把射线OC作在∠AOB内部,位置有指定性,1所作的∠A'O'B'并不受∠AOB的位置限制,但通常把∠A'O'B'作在∠AOB的近旁.(2)作图工具只限直尺和圆规,用铅笔画图,并保留作图过程中的辅助线(作图痕迹).(3)只画图的题,要求画完图,写明所求作的图形.如中要写出“∠A'O'B'就是所求的角.”3.经过一点作已知直线的垂线分两种情况来考虑:(1)经过已知直线上的一点作这条直线的垂线.(2)经过已知直线外的一点作这条直线的垂线.引导学生写出解题的全过程:已知、求作、作法、证明.关键地方和疑点要向学生解释清楚.分析:现在要寻找“经过直线外一点作这条直线的垂线”的方法,能利用角平分线的作法吗?如图6,用直尺和圆规作∠AOB的平分线OF,如果画出直线DE,那么∠AOB的平分线OF与直线DE垂直吗?为什么?如果我们把D、E看成一条直线上的两点,那么点O就是这条直线外的一点,图6启发我们经过直线DE外一点O作这条直线的垂线的关键在于确定点F,你会确定点F吗?①已知:直线AB和AB上一点C,如图7.求作:AB的垂线,使它经过点C.作法:证明引导学生写出.②已知:直线AB和AB外一点C,如图8.求作:AB的垂线,使它经过点C.作法:引导学生写出,要向学生说明所取的点K必须要使它和C在AB的两旁,通过反例说明不这样作不行的道理.对教材中略去的证明要让学生补出来.提示:连结CD、CE、FD、FE,设CF与AB交于点O.首先证明△CDF≌△CEF,再证明△CDO≌△CEO或△FDO≌△FEO,从而得∠DOF=∠EOF=90°.4.作线段的垂直平分线先让学生理解线段垂直平分线的概念.垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线,或中垂线.分析:在图6中OF是线段DE的垂直平分线吗?为什么?想一想:确定线段DE的垂直平分线的关键是什么?引导学生写出已知、求作、作法.参照1.让学生补上证明过程.以判定两个三角形全等的公理或推论为根据,做几何作图题的证明,一方面可以使学生确信作图的正确性;另一方面也可以复习巩固证明三角形全等的方法.因为直线CD与线段AB的交点,就是AB的中点,所以我们也用这种方法作线段的中点.小结:作角平分线、垂线、中垂线从本质上讲是一致的:根据“SSS”公理,确定两点,从而确定所求直(射)线.至此,共讲了5个,第一章中有一个“作一条线段等于已知线段”,本章又有4个.对于这些应该牢固掌握,灵活运用,因为它是几何作图的基础.反复练习5个,让学生熟悉解作图题的全过程,及时准确总结出几种常见几何作图语言即作图范句例4、已知:线段求作:,使作法:1、作线段BC=a2、分别以点B、C为圆心,以为半径作弧,两弧交于点A3、连结AB、AC就是所求作的三角形例5、已知两角和其中一角的对边,求作三角形已知:求作:作法:1、作线段2、在BC的同侧作DE、EC交于点A。
为所求的三角形证明:(略)让学生补充证明。
3、总结归纳,便于掌握(一)常用的作图语言:(1)过点、作线段或射线、直线;(2)连结两点、;(3)在线段或射线上截取=;(4)以点为圆心,以的长为半径作圆(或画弧),交于点;(5)分别以点,点为圆心,以,的长为半径作弧,两弧相交于点;(6)延长到点,使=。
(二)作图题说明在作图中,有属于的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。
(1)作线段=;(2)作∠=∠;(3)作(射线)平分∠;(4)过点作,垂足为点;(5)作线段的垂直平分线;4、课堂练习,巩固内容(1)平分已知角(2)作线段的垂直平分线学生板书并讲解,教师点评。
5、布置作业:a、书面作业P88#1b、上交作业P88#3、9板书设计:XX文讯教育机构WenXun Educational Institution。