大学物理 恒定电流稳恒磁场知识点总结
- 格式:docx
- 大小:83.84 KB
- 文档页数:2
41 磁 学基本内容一、稳恒磁场 磁感应强度1. 稳恒磁场电流、运动电荷、永久磁体在周围空间激发磁场。
稳恒磁场是指不随时间变化的磁场。
稳恒电流激发的磁场是一种稳恒磁场。
2. 物质磁性的电本质无论是永磁体还是导线中的电流,它们的磁效应的根源都是电荷的运动。
因此,磁场是运动电荷的场。
3. 磁感应强度磁感应强度B是描述磁场的基本物理量,它的作用与E 在描述电场时的作用相当。
磁场对处于其中的载流导线、运动电荷、载流线圈、永久磁体有力及力矩的作用。
可以根据这些作用确定一点处磁场的强弱和方向——磁感应强度B。
带电q 的正点电荷在磁场中以速度v运动,若在某点不受磁力,则该点磁感应强度B 的方向必与电荷通过该点的速度v平行。
当该电荷以垂直于磁感应强度B 通过该点时受磁力⊥F ,则该点磁感应强度大小qvF B ⊥=,且⊥F ,v ,B两两互相垂直并构成右手系。
二、毕奥—萨伐尔定律 运动电荷的磁场1. 磁场的叠加原理空间一点的磁感强度等于各电流单独存在时在该点产生磁感应强度的矢量和:∑=ii B B 可推广为 ⎰=B d B42B d是电流强度有限而长度无限小的电流元l d I 或电流强度无限小而空间大小不是无限小的元电流的磁场。
上式中矢量号一般不能略去,只有当各电流产生磁场方向相同时,才能去掉矢量号。
2. 毕奥—萨伐尔定律电流元l d I 在空间一点产生的磁场B d为: 304rr l d I B d πμ⨯= 大小: 02I sin(I ,r)dB 4r dl dl μπ∠=方向:B d 垂直于电流元l d I 与r 所形成的平面,且B d与l d I 、r构成右手螺旋。
3. 电流与运动电荷的关系导体中电荷定向运动形成电流,设导体截面积为S ,单位体积载流子数为n 。
每个载流子带电q ,定向运动速率为v ,则nqvS I =。
电量为q 的带电体作半径为R 、周期为T 的匀速圆周运动相当于半径为R 、电流强度T q I /=的圆电流,具有磁矩TqR I R p m 22ππ==。
11恒定电流和恒定磁场介绍恒定电流和恒定磁场是物理学中两个重要的概念。
恒定电流是指通过导体内的电荷在单位时间内流过的电量保持不变。
恒定磁场是指空间中的磁场在任何时刻都保持不变。
在本文档中,我们将讨论恒定电流和恒定磁场的性质、特点以及它们之间的关系。
恒定电流的特点恒定电流是指在一个完全闭合的电路中,电荷的流动保持一定方向和速度的现象。
恒定电流的特点如下:1.电流的方向不会改变:在一个封闭的电路中,电流的方向是固定的,不会发生改变。
这是因为电路中的导线和电源的极性确定了电流的流动方向。
2.电流强度保持恒定:恒定电流的强度保持不变,可以通过电流表测量。
3.电荷在导体内的自由移动:恒定电流是由正电荷和负电荷的自由移动形成的。
正电荷沿着电流方向移动,而负电荷则相反。
恒定磁场的特点恒定磁场是指在空间中的磁场保持不变的现象。
恒定磁场的特点如下:1.磁场强度保持不变:恒定磁场的强度在空间中的各个点都是恒定的。
这是因为磁场的源是恒定的磁体或电流。
2.磁场的方向不变:恒定磁场的方向在空间中的各个点都是不变的。
这是因为磁场的源确定了磁场的方向。
3.磁场的作用力不变:恒定磁场对磁体或电流所施加的磁场力保持不变。
恒定电流和恒定磁场的关系恒定电流和恒定磁场之间存在一种密切的关系,即安培定律。
安培定律表明,电流在磁场中会受到力的作用。
具体而言,当一个导体中有恒定电流通过时,该导体会受到与电流方向垂直的力。
安培定律的数学表达式如下:F = BIL其中,F是电流所受的力,B是恒定磁场的强度,I是电流的强度,L是电流所在导体的长度。
通过安培定律可以看出,恒定电流和恒定磁场之间存在一种相互作用的关系。
当电流通过导体时,导体会在恒定磁场中受到力的作用。
反过来,恒定磁场对电流的流动也起到了一定的限制作用。
应用恒定电流和恒定磁场在现实生活中有很多实际应用。
以下是一些常见的应用示例:1.电磁铁:电磁铁是一种利用恒定电流和恒定磁场相互作用的装置。
大学物理 恒定电流稳恒磁场知识点总结1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度dQ I dt =, dIj e dS= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dqj dS dt=-⎰⎰ , ( j tρ∂∇=-∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: UI R=, j E σ=, ,焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功AK dl q ε+-==⎰ , K dl ε=⎰5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin FB q v θ=,式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:sB dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=34L Idl rB r μπ⨯=⎰7.磁场的高斯定理和安培环路定理磁场的高斯定理: 0SB dS =⎰⎰、 ( 0B ∇= ) (表明磁场是无源场)安培环路定理:0i LiB dl I μ=∑⎰、LSB dl j dS =⎰⎰⎰ 、(0B j μ∇⨯=)(安培环路定理表明磁场是有旋场)8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩m IS =)9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力f qv B =⨯带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为mv R qB⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==霍尔效应 : 12HIBV V K h-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq=10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理mM τ∑=∆ 、 LL M dl I =∑⎰,内、n i M e =⨯, 0BH M μ=- 、m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i LiH dl I =∑⎰、LSH dl j dS =⎰⎰⎰。
大学物理恒定磁场总结引言恒定磁场是大学物理中重要的概念之一,它广泛应用于电磁学、电动力学等领域。
本文将对恒定磁场的基本概念、性质以及应用进行总结,希望能够帮助读者更好地理解和掌握恒定磁场的知识。
恒定磁场的基本概念恒定磁场是指在空间中磁场强度大小和方向都不随时间变化的磁场。
磁场由磁场源产生,一般来说,磁体是最常见的磁场源。
恒定磁场的强度由磁感应强度或磁场强度来描述,用符号B表示。
恒定磁场的性质恒定磁场有许多特殊的性质,下面将对其中的若干性质进行讨论。
磁通量磁通量是描述恒定磁场穿过某个闭合曲面的总磁场量的物理量。
它由磁场强度和曲面的面积以及两者之间的夹角决定。
磁通量的单位是韦伯(Wb)。
高斯定律高斯定律是磁学的基本定律之一,它描述了恒定磁场中磁场线的性质。
根据高斯定律,恒定磁场的磁感应强度线是闭合的,不存在磁单极子。
洛伦兹力洛伦兹力是指带电粒子在恒定磁场中受到的力。
它是由粒子电荷、粒子速度和磁场强度之间的相互作用产生的。
洛伦兹力的方向垂直于磁场和粒子速度的平面,并且遵循右手定则。
磁场线磁场线是描述恒定磁场分布的曲线。
根据磁场线的性质,可以确定磁场强度的大小和方向。
磁场线的定义是:在任何点上,磁场强度的方向与通过该点的磁场线的切线方向相同。
恒定磁场的应用恒定磁场在生活中和科学研究中有许多重要的应用,下面将对其中的几个应用进行介绍。
电动机电动机是利用洛伦兹力的原理工作的设备。
它由一个电流线圈和一个恒定磁场构成。
当电流通过线圈时,产生的磁场与恒定磁场相互作用,从而产生力矩使电动机运转。
磁共振成像磁共振成像是一种医学成像技术,利用恒定磁场和射频脉冲来观察人体内部结构。
通过对人体各种组织的不同磁性质的分析,可以得出人体内部的详细结构信息。
磁存储技术磁存储技术是计算机存储中使用的关键技术之一。
它通过在磁性介质中记录信息,利用恒定磁场对信息进行存储和读取。
结论恒定磁场是大学物理中的重要概念,它有许多特性和应用。
本文对恒定磁场的基本概念、性质以及应用进行了总结,并且介绍了一些重要的应用领域。
稳恒磁场小结1、磁感应强度 B 描写磁场大小和方向的物理量2、磁通量mΦ:穿过某一曲面的磁力线根数。
定义:θφcos ⋅⋅=⋅=⎰⎰⎰⎰S B S B d d ss m单位:韦伯, Wb nˆ NIS S NI P m == 3、磁矩m :描写线圈性质的物理量。
定义:单位:安培·米2方向:与电流满足右手定则。
一、基本概念n I二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ1)载流直导线的磁场aI B πμ20=)cos (cos 4210θθπμ-=aI B 无限长直导线的磁场1 利用毕萨定律求B PlId rθB1θIa P2θ二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ2)圆电流轴线上的磁场232220)(2x R R I B +=μ在圆弧电流圆心处:πθμ220R I B =在圆电流圆心处:RI B 20μ=1利用毕萨定律求B IB⊗θI⊗B l I d ROPxBiLI 1I 2I 3∑-=12I I Ii应用:分析磁场对称性;选定适当的安培环路。
各电流的正、负:I 与L呈右手螺旋时为正值;反之为负值。
⎰∑=⋅LIl d B 0μ2 利用安培环路定理计算磁场 B⎰∑=⋅LI l d B 0μ 1)、密绕长直螺线管内部nIB 0μ=rIN B πμ20=2) 螺绕环内部3)圆柱载流导体内部r < R 区域圆柱载流导体外一点r > R 区域r R IB 202πμ=rI B πμ20=4)圆柱面载流导体内部r < R 区域圆柱载流导体外一点r > R 区域I B μ0==B20 ˆ4rr v q B ⨯= πμ3 运动电荷的磁场Pqv+rθ大小 20 sin 4rv q B θπμ=三、两个重要定理1、磁场中的高斯定理0=⋅=Φ⎰⎰S m S d B2、磁场中的环路定理⎰∑=⋅LIl d B 0μ(1)磁场是“无源场”。
恒定电流一、电流:电荷的定向移动行成电流。
1、产生电流的条件:(1)自由电荷;(2)电场;2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A(3)常用单位:毫安mA、微安uA;二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;1、定义式:I=U/R;2、推论:R=U/I;3、电阻的国际单位时欧姆,用Ω表示;三、闭合电路:由电源、导线、用电器、电键组成;1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示;2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;4、电源的电动势等于内、外电压之和;E=U内+U外U外=RIE=(R+r)I四、闭合电路的欧姆定律:闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;1、数学表达式:I=E/(R+r)2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;补充:1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。
R=pl/S(电阻的决定式)P只与导体材料性质有关。
R与温度有关。
二极管:单向导电性;正极与电源正极相连。
2.串联特点:①总电压等于各部分电压之和。
②电流处处相等③总电阻等于各部分电阻和④总功率等于各部分功率和3.并联特点:①总电压等于各支路电压②总电流等于各支路电流和③总电阻的倒数等于各支路电阻倒数之和④总功率等于各支路功率和4.伏安法:(1)限流式;(2)分压式。
第六章稳恒磁场
1、主要的概念:电流强度,磁感应强度,电流元,磁感应线,磁通量,磁化和磁介质。
2、主要的了解定律:磁场叠加原理,毕奥—萨伐尔定律(推导一些特殊载流导线和运动电荷的B),磁场中的高斯定律,安培环路定律。
(了解定理的导出以及其重要的物理意义)
3、主要计算:利用毕奥—萨伐尔定律、安培环路定理计算一些特殊载流导线产生的磁感应强度;安培力和洛伦兹力的计算;磁介质中的磁化,以及应用介质中的安培环路定理计算磁场强度矢量(H)和磁感应强度(B)。
4、重点内容:毕奥—萨伐尔定律、安培环路定理、磁场力、力矩;磁介质的磁化、介质中的安培环路定理。
2.磁场方程: 磁场高斯定理:
(表明磁场是无源场)
(表明磁场是有旋场)
掌握推导过程
*通过霍尔电压可以求得磁场和电流大小。
6. 均匀磁化的B 、H 、M 关系及表面磁化电流密度与磁化强度的关系
)
(M H B 0 +=μ H M m χ= m r 1χμ+=
B 代表 H 代表 M 代表
—
——m r 0χμμ 4.载流线圈的磁矩 3.电磁相互作用 B
l Id f d ⨯=2)磁场对载流导线的安培力
⎰⨯=l
B
l Id f 3)磁场对载流线圈的作用力矩 B
m M
⨯=4)5.霍耳电压
1)安培定律。
大学恒定磁场知识点总结引言磁场是物质世界中一种重要的物理现象,广泛存在于我们周围,相较于电场,磁场的研究和应用在很多领域都有着重要作用。
在大学物理教育中,学生需要学习关于恒定磁场的知识,包括磁场的产生、磁感应强度、洛伦兹力等。
本文将对大学恒定磁场的相关知识进行总结和阐述,涵盖的内容将包括磁场的概念、磁场的产生、磁场中的运动粒子、磁场中的能量、电磁感应、磁场对物质的影响等多个方面。
一、磁场的概念磁场是指物质中由磁性物质或电流所产生的一种力场,它是由磁性物质或电流产生的,并能够对周围物质产生作用。
磁场又分为静磁场和动态磁场,静磁场对应着恒定磁场,而动态磁场对应着变化的磁场。
二、磁场的产生1. 电流产生的磁场安培环路定律:通过电流产生的磁场对应安培环路定律,它指出沿闭合回路的线积分等于这个回路所围绕的电流之代数和的某个常数。
这一定律为电流产生的磁场提供了数学表述。
2. 磁性物质产生的磁场微观角度来看,磁性物质是由具有自旋磁矩的元素构成的,这些自旋磁矩的相互作用会形成磁性物质的磁场。
从宏观角度来看,磁性物质会在外加磁场的作用下,发生磁化,在周围形成磁场。
3. 磁单极子在自然界中,我们还没有观察到有磁单极子的存在,即磁荷,所有磁场都要由磁偶极子或电流所产生,这与电场不同,因为我们已经知道电场是由正负电荷所产生。
三、磁场中的运动粒子粒子在磁场中会受到洛伦兹力的作用,洛伦兹力可以将粒子偏转。
根据洛伦兹力的方向,可以确定正电荷、负电荷和正电流、负电流在磁场中的运动轨迹。
粒子在磁场中的运动轨迹受到洛伦兹力的影响,电荷为q,在磁感应强度为B的磁场中运动,其受力为F=qvBsinθ,其中v为粒子的速度,θ为速度与磁感应强度B的夹角。
磁场中运动的粒子所受洛伦兹力与其速度方向垂直,因此它的运动轨迹是圆周形的,这一特点在实际物理实验和应用中都有着重要的意义。
四、磁场中的能量1. 磁场能磁场能是指磁场中由于各种物体的相互作用而具有的能量,它来源于磁性物质的存在和磁场的作用。
物理稳恒电流知识点整理与总结1.电流(1)定义:电荷的定向移动形成电流。
(2)电流的方向:规定正电荷定向移动的方向为电流的方向。
在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极)。
2.电流强度:(1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,i=q/t(2)在*单位制中电流的单位是安。
1ma=10-3a,1a=10-6a(3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和。
3.电阻(1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻。
(2)定义式:r=u/i,单位:(3)电阻是导体本身的属*,跟导体两端的电压及通过电流无关。
4★★.电阻定律(1)内容:在温度不变时,导体的电阻r与它的长度l成正比,与它的横截面积s成反比。
(2)公式:r=l/s。
(3)适用条件:①粗细均匀的导线;②浓度均匀的电解液。
5.电阻率:反映了材料对电流的阻碍作用。
(1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜)。
(2)半导体:导电*能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特*,光敏特*,掺入微量杂质特*。
(3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体。
6.电功和电热(1)电功和电功率:电流做功的实质是电场力对电荷做功。
电场力对电荷做功,电荷的电势能减少,电势能转化为其他形式的能。
因此电功w=qu=uit,这是计算电功普遍适用的公式。
单位时间内电流做的功叫电功率,p=w/t=ui,这是计算电功率普遍适用的公式。
(2)★焦耳定律:q=i2rt,式中q表示电流通过导体产生的热量,单位是j。
焦耳定律无论是对纯电阻电路还是对非纯电阻电路都是适用的。
大学物理 恒定电流稳恒磁场知识点总结
1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度
dQ I dt =
, dI
j e dS
= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dq
j dS dt
=-⎰⎰ , ( j t
ρ∂∇=-
∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: U
I R
=, j E σ=, ,
焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功
A
K dl q ε+
-
==⎰ , K dl ε=
⎰
5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin F
B q v θ
=
,
式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:
s
B dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)
6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=
34L Idl r
B r μπ⨯=⎰
7.磁场的高斯定理和安培环路定理
磁场的高斯定理: 0S
B dS =⎰⎰
、 ( 0B ∇= ) (表明磁场是
无源场)
安培环路定理:
0i L
i
B dl I μ=∑⎰
、
L
S
B dl j dS =⎰
⎰⎰ 、(0B j μ∇⨯=)
(安培环路定理表明磁场是有旋场)
8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰
磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩
m IS =)
9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力
f qv B =⨯
带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,
运动半径为mv R qB
⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==
霍尔效应 : 12H
IB
V V K h
-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq
=
10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理
m
M τ
∑=
∆ 、 L
L M dl I =∑⎰
,内
、
n i M e =⨯, 0
B
H M μ=- 、
m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i L
i
H dl I =∑⎰
、
L
S
H dl j dS =⎰
⎰⎰。