大学物理 恒定电流稳恒磁场知识点总结
- 格式:docx
- 大小:83.84 KB
- 文档页数:2
41 磁 学基本内容一、稳恒磁场 磁感应强度1. 稳恒磁场电流、运动电荷、永久磁体在周围空间激发磁场。
稳恒磁场是指不随时间变化的磁场。
稳恒电流激发的磁场是一种稳恒磁场。
2. 物质磁性的电本质无论是永磁体还是导线中的电流,它们的磁效应的根源都是电荷的运动。
因此,磁场是运动电荷的场。
3. 磁感应强度磁感应强度B是描述磁场的基本物理量,它的作用与E 在描述电场时的作用相当。
磁场对处于其中的载流导线、运动电荷、载流线圈、永久磁体有力及力矩的作用。
可以根据这些作用确定一点处磁场的强弱和方向——磁感应强度B。
带电q 的正点电荷在磁场中以速度v运动,若在某点不受磁力,则该点磁感应强度B 的方向必与电荷通过该点的速度v平行。
当该电荷以垂直于磁感应强度B 通过该点时受磁力⊥F ,则该点磁感应强度大小qvF B ⊥=,且⊥F ,v ,B两两互相垂直并构成右手系。
二、毕奥—萨伐尔定律 运动电荷的磁场1. 磁场的叠加原理空间一点的磁感强度等于各电流单独存在时在该点产生磁感应强度的矢量和:∑=ii B B 可推广为 ⎰=B d B42B d是电流强度有限而长度无限小的电流元l d I 或电流强度无限小而空间大小不是无限小的元电流的磁场。
上式中矢量号一般不能略去,只有当各电流产生磁场方向相同时,才能去掉矢量号。
2. 毕奥—萨伐尔定律电流元l d I 在空间一点产生的磁场B d为: 304rr l d I B d πμ⨯= 大小: 02I sin(I ,r)dB 4r dl dl μπ∠=方向:B d 垂直于电流元l d I 与r 所形成的平面,且B d与l d I 、r构成右手螺旋。
3. 电流与运动电荷的关系导体中电荷定向运动形成电流,设导体截面积为S ,单位体积载流子数为n 。
每个载流子带电q ,定向运动速率为v ,则nqvS I =。
电量为q 的带电体作半径为R 、周期为T 的匀速圆周运动相当于半径为R 、电流强度T q I /=的圆电流,具有磁矩TqR I R p m 22ππ==。
11恒定电流和恒定磁场介绍恒定电流和恒定磁场是物理学中两个重要的概念。
恒定电流是指通过导体内的电荷在单位时间内流过的电量保持不变。
恒定磁场是指空间中的磁场在任何时刻都保持不变。
在本文档中,我们将讨论恒定电流和恒定磁场的性质、特点以及它们之间的关系。
恒定电流的特点恒定电流是指在一个完全闭合的电路中,电荷的流动保持一定方向和速度的现象。
恒定电流的特点如下:1.电流的方向不会改变:在一个封闭的电路中,电流的方向是固定的,不会发生改变。
这是因为电路中的导线和电源的极性确定了电流的流动方向。
2.电流强度保持恒定:恒定电流的强度保持不变,可以通过电流表测量。
3.电荷在导体内的自由移动:恒定电流是由正电荷和负电荷的自由移动形成的。
正电荷沿着电流方向移动,而负电荷则相反。
恒定磁场的特点恒定磁场是指在空间中的磁场保持不变的现象。
恒定磁场的特点如下:1.磁场强度保持不变:恒定磁场的强度在空间中的各个点都是恒定的。
这是因为磁场的源是恒定的磁体或电流。
2.磁场的方向不变:恒定磁场的方向在空间中的各个点都是不变的。
这是因为磁场的源确定了磁场的方向。
3.磁场的作用力不变:恒定磁场对磁体或电流所施加的磁场力保持不变。
恒定电流和恒定磁场的关系恒定电流和恒定磁场之间存在一种密切的关系,即安培定律。
安培定律表明,电流在磁场中会受到力的作用。
具体而言,当一个导体中有恒定电流通过时,该导体会受到与电流方向垂直的力。
安培定律的数学表达式如下:F = BIL其中,F是电流所受的力,B是恒定磁场的强度,I是电流的强度,L是电流所在导体的长度。
通过安培定律可以看出,恒定电流和恒定磁场之间存在一种相互作用的关系。
当电流通过导体时,导体会在恒定磁场中受到力的作用。
反过来,恒定磁场对电流的流动也起到了一定的限制作用。
应用恒定电流和恒定磁场在现实生活中有很多实际应用。
以下是一些常见的应用示例:1.电磁铁:电磁铁是一种利用恒定电流和恒定磁场相互作用的装置。
大学物理 恒定电流稳恒磁场知识点总结1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度dQ I dt =, dIj e dS= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dqj dS dt=-⎰⎰ , ( j tρ∂∇=-∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: UI R=, j E σ=, ,焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功AK dl q ε+-==⎰ , K dl ε=⎰5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin FB q v θ=,式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:sB dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=34L Idl rB r μπ⨯=⎰7.磁场的高斯定理和安培环路定理磁场的高斯定理: 0SB dS =⎰⎰、 ( 0B ∇= ) (表明磁场是无源场)安培环路定理:0i LiB dl I μ=∑⎰、LSB dl j dS =⎰⎰⎰ 、(0B j μ∇⨯=)(安培环路定理表明磁场是有旋场)8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩m IS =)9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力f qv B =⨯带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为mv R qB⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==霍尔效应 : 12HIBV V K h-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq=10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理mM τ∑=∆ 、 LL M dl I =∑⎰,内、n i M e =⨯, 0BH M μ=- 、m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i LiH dl I =∑⎰、LSH dl j dS =⎰⎰⎰。
大学物理恒定磁场总结引言恒定磁场是大学物理中重要的概念之一,它广泛应用于电磁学、电动力学等领域。
本文将对恒定磁场的基本概念、性质以及应用进行总结,希望能够帮助读者更好地理解和掌握恒定磁场的知识。
恒定磁场的基本概念恒定磁场是指在空间中磁场强度大小和方向都不随时间变化的磁场。
磁场由磁场源产生,一般来说,磁体是最常见的磁场源。
恒定磁场的强度由磁感应强度或磁场强度来描述,用符号B表示。
恒定磁场的性质恒定磁场有许多特殊的性质,下面将对其中的若干性质进行讨论。
磁通量磁通量是描述恒定磁场穿过某个闭合曲面的总磁场量的物理量。
它由磁场强度和曲面的面积以及两者之间的夹角决定。
磁通量的单位是韦伯(Wb)。
高斯定律高斯定律是磁学的基本定律之一,它描述了恒定磁场中磁场线的性质。
根据高斯定律,恒定磁场的磁感应强度线是闭合的,不存在磁单极子。
洛伦兹力洛伦兹力是指带电粒子在恒定磁场中受到的力。
它是由粒子电荷、粒子速度和磁场强度之间的相互作用产生的。
洛伦兹力的方向垂直于磁场和粒子速度的平面,并且遵循右手定则。
磁场线磁场线是描述恒定磁场分布的曲线。
根据磁场线的性质,可以确定磁场强度的大小和方向。
磁场线的定义是:在任何点上,磁场强度的方向与通过该点的磁场线的切线方向相同。
恒定磁场的应用恒定磁场在生活中和科学研究中有许多重要的应用,下面将对其中的几个应用进行介绍。
电动机电动机是利用洛伦兹力的原理工作的设备。
它由一个电流线圈和一个恒定磁场构成。
当电流通过线圈时,产生的磁场与恒定磁场相互作用,从而产生力矩使电动机运转。
磁共振成像磁共振成像是一种医学成像技术,利用恒定磁场和射频脉冲来观察人体内部结构。
通过对人体各种组织的不同磁性质的分析,可以得出人体内部的详细结构信息。
磁存储技术磁存储技术是计算机存储中使用的关键技术之一。
它通过在磁性介质中记录信息,利用恒定磁场对信息进行存储和读取。
结论恒定磁场是大学物理中的重要概念,它有许多特性和应用。
本文对恒定磁场的基本概念、性质以及应用进行了总结,并且介绍了一些重要的应用领域。
稳恒磁场小结1、磁感应强度 B 描写磁场大小和方向的物理量2、磁通量mΦ:穿过某一曲面的磁力线根数。
定义:θφcos ⋅⋅=⋅=⎰⎰⎰⎰S B S B d d ss m单位:韦伯, Wb nˆ NIS S NI P m == 3、磁矩m :描写线圈性质的物理量。
定义:单位:安培·米2方向:与电流满足右手定则。
一、基本概念n I二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ1)载流直导线的磁场aI B πμ20=)cos (cos 4210θθπμ-=aI B 无限长直导线的磁场1 利用毕萨定律求B PlId rθB1θIa P2θ二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ2)圆电流轴线上的磁场232220)(2x R R I B +=μ在圆弧电流圆心处:πθμ220R I B =在圆电流圆心处:RI B 20μ=1利用毕萨定律求B IB⊗θI⊗B l I d ROPxBiLI 1I 2I 3∑-=12I I Ii应用:分析磁场对称性;选定适当的安培环路。
各电流的正、负:I 与L呈右手螺旋时为正值;反之为负值。
⎰∑=⋅LIl d B 0μ2 利用安培环路定理计算磁场 B⎰∑=⋅LI l d B 0μ 1)、密绕长直螺线管内部nIB 0μ=rIN B πμ20=2) 螺绕环内部3)圆柱载流导体内部r < R 区域圆柱载流导体外一点r > R 区域r R IB 202πμ=rI B πμ20=4)圆柱面载流导体内部r < R 区域圆柱载流导体外一点r > R 区域I B μ0==B20 ˆ4rr v q B ⨯= πμ3 运动电荷的磁场Pqv+rθ大小 20 sin 4rv q B θπμ=三、两个重要定理1、磁场中的高斯定理0=⋅=Φ⎰⎰S m S d B2、磁场中的环路定理⎰∑=⋅LIl d B 0μ(1)磁场是“无源场”。
大学物理 恒定电流稳恒磁场知识点总结
1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度
dQ I dt =
, dI
j e dS
= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dq
j dS dt
=-⎰⎰ , ( j t
ρ∂∇=-
∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: U
I R
=, j E σ=, ,
焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功
A
K dl q ε+
-
==⎰ , K dl ε=
⎰
5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin F
B q v θ
=
,
式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:
s
B dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)
6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=
34L Idl r
B r μπ⨯=⎰
7.磁场的高斯定理和安培环路定理
磁场的高斯定理: 0S
B dS =⎰⎰
、 ( 0B ∇= ) (表明磁场是
无源场)
安培环路定理:
0i L
i
B dl I μ=∑⎰
、
L
S
B dl j dS =⎰
⎰⎰ 、(0B j μ∇⨯=)
(安培环路定理表明磁场是有旋场)
8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰
磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩
m IS =)
9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力
f qv B =⨯
带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,
运动半径为mv R qB
⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==
霍尔效应 : 12H
IB
V V K h
-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq
=
10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理
m
M τ
∑=
∆ 、 L
L M dl I =∑⎰
,内
、
n i M e =⨯, 0
B
H M μ=- 、
m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i L
i
H dl I =∑⎰
、
L
S
H dl j dS =⎰
⎰⎰。