大学物理第九章《稳恒磁场》
- 格式:ppt
- 大小:1.18 MB
- 文档页数:42
41 磁 学基本内容一、稳恒磁场 磁感应强度1. 稳恒磁场电流、运动电荷、永久磁体在周围空间激发磁场。
稳恒磁场是指不随时间变化的磁场。
稳恒电流激发的磁场是一种稳恒磁场。
2. 物质磁性的电本质无论是永磁体还是导线中的电流,它们的磁效应的根源都是电荷的运动。
因此,磁场是运动电荷的场。
3. 磁感应强度磁感应强度B是描述磁场的基本物理量,它的作用与E 在描述电场时的作用相当。
磁场对处于其中的载流导线、运动电荷、载流线圈、永久磁体有力及力矩的作用。
可以根据这些作用确定一点处磁场的强弱和方向——磁感应强度B。
带电q 的正点电荷在磁场中以速度v运动,若在某点不受磁力,则该点磁感应强度B 的方向必与电荷通过该点的速度v平行。
当该电荷以垂直于磁感应强度B 通过该点时受磁力⊥F ,则该点磁感应强度大小qvF B ⊥=,且⊥F ,v ,B两两互相垂直并构成右手系。
二、毕奥—萨伐尔定律 运动电荷的磁场1. 磁场的叠加原理空间一点的磁感强度等于各电流单独存在时在该点产生磁感应强度的矢量和:∑=ii B B 可推广为 ⎰=B d B42B d是电流强度有限而长度无限小的电流元l d I 或电流强度无限小而空间大小不是无限小的元电流的磁场。
上式中矢量号一般不能略去,只有当各电流产生磁场方向相同时,才能去掉矢量号。
2. 毕奥—萨伐尔定律电流元l d I 在空间一点产生的磁场B d为: 304rr l d I B d πμ⨯= 大小: 02I sin(I ,r)dB 4r dl dl μπ∠=方向:B d 垂直于电流元l d I 与r 所形成的平面,且B d与l d I 、r构成右手螺旋。
3. 电流与运动电荷的关系导体中电荷定向运动形成电流,设导体截面积为S ,单位体积载流子数为n 。
每个载流子带电q ,定向运动速率为v ,则nqvS I =。
电量为q 的带电体作半径为R 、周期为T 的匀速圆周运动相当于半径为R 、电流强度T q I /=的圆电流,具有磁矩TqR I R p m 22ππ==。
大 学 物 理 作 业班级 学号 姓名 成绩第九章 稳恒磁场一、选择题1、如图9.1所示,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 [ ] (A) ⎰LB • d l=0,且环路上任意一点B =0;(B) ⎰LB • d l=0,且环路上任意一点B≠0; (C) ⎰LB • d l≠0,且环路上任意一点B≠0; (D)⎰LB • d l≠0,且环路上任意一点B =0。
2、如图9.2所示,电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源。
已知直导线上电流为I ,2/π=∠aOb 。
若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B、2B , 3B 表示,则圆环中心O 点的磁感强度大小 [ ](A) B = 0,因为B 1 = B 2 = B 3 = 0;(B) B = 0,因为021=+B B,B 3 = 0;(C) B ≠ 0,因为虽然021=+B B,但B 3≠0;图9.1 图9.2(D) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠0。
3、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,X坐标轴垂直圆筒轴线,原点在中心轴线上,图9.3(A)~(E)哪一条曲线表示B~X的关系?[ ]4、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I ,这四条导线被纸面截得的断面如图9.4所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向如图所示。
则在图中正方形中心点O 的磁感强度的大小为 [ ](A) I a B π=02μ (B) I aB2π=02μ (C) B = 0 (D) I aB π=μ5、如图9.5所示的圆弧AB 与弦AB 中通以同样的电流,试比较它们各自在圆心处的磁感应强度的大小1B 和2B [ ](A) 12B B = (B) 12B B >(C) 12B B < (D) 不能确定.图9.3E图9.4Ia 图9.5AB6、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等。
第九章 稳恒磁场9-1 如图所示,无限长载流导线附近,球面S向导线靠近,穿过S的磁通量Φ将不变,面上各点磁感应强度的大小将增大。
(均填“增大”或“减小”或“不变”)9-2 如图,载有电流I 的无限长直导线的一侧有一等腰直角三角形的回路MNO,回路和长直导线共面,回路的MN边与导线平行,相距为a ,而且MN和MO的长度也等于a ,求通过此回路的磁通量。
解:取如图所示的面积元(阴影部分),通过此面积元的磁通量为dr r a rIS d B d )2(20-=⋅=Φπμ所以,通过三角形面积的磁通量为)12ln 2(2)2(2020-=-=Φ=Φ⎰⎰πμπμIadr r a r I d aa9-3 图示为一张某粒子在均匀磁场B 中运动轨迹的照片,中间阴影区为铅板,粒子通过铅板后速度变小,从图中可以看出左半部轨迹较右半部弯曲得厉害些,则该粒子(B)(A)不带电。
()带正电。
(C)带负电。
(D)不能判断。
解:从图中可以看出粒子由右向左运动。
设粒子带正电,判断后发现其运动轨迹与图形符合,所以带正电。
9-4 如图,质量m 、电量e -的电子以速度v 水平射入均匀磁场B中,当它在水平方向运动l 距离后,有人计算其横向偏移y 如下(不计重力):evB f =,加速度m evB a =,时间vlt =,所以 )2/(2122mv eBl at y ==其错误在于电子做匀速圆周运动,不是抛物线运动。
正确答案是___。
解:正确解法如下:设电子作圆周运动的半径为R ,则eBmvR =。
由图可以得出 22l R R y --=-=eBmv 22)(l eBmv - 9-5 图为某载流体(通电导体或半导体)的横截面,电流的方向垂直于纸面向。
若在铅直向上方向加一磁场,发现在载流体左右两侧堆积如图所示的电荷,则该载流体中运动的电荷是(B)。
(A)正电荷 (B)负电荷 (C)正、负电荷都可能9-6 如图,载流I的无限长直导线附近有导线PQ,载流1I ,如用下面的方法计算PQ受力:Ba I f 1=,b b a I dx x I B ba b+=⋅=⎰+ln 2200πμπμ,所以bb a a II f +=ln 210πμ 则是错误的,正确的解法是_______________________。
课时:2课时教学目标:1. 理解稳恒磁场的基本概念,包括磁感应强度、磁场中的高斯定理、毕奥-萨伐尔定律等。
2. 掌握毕奥-萨伐尔定律的应用,能够计算载流导线产生的磁场。
3. 理解安培环路定理,并能够运用其解决实际问题。
4. 了解磁矩、磁力矩、洛伦兹力等概念,并掌握其应用。
教学重点:1. 稳恒磁场的基本概念和公式。
2. 毕奥-萨伐尔定律的应用。
3. 安培环路定理的推导和应用。
教学难点:1. 毕奥-萨伐尔定律公式的推导和应用。
2. 安培环路定理的推导和应用。
教学过程:第一课时一、导入1. 回顾静电场的基本概念,引出稳恒磁场。
2. 介绍稳恒磁场的基本概念,如磁感应强度、磁场中的高斯定理等。
二、新课讲授1. 磁感应强度:- 定义磁感应强度,讲解其大小和方向。
- 举例说明磁感应强度在生活中的应用。
2. 磁场中的高斯定理:- 介绍高斯定理的概念,讲解其数学表达式。
- 举例说明高斯定理在解决实际问题中的应用。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁感应强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁感应强度。
四、总结1. 回顾本节课所学内容,强调稳恒磁场的基本概念和公式。
2. 布置课后作业,巩固所学知识。
第二课时一、导入1. 回顾上一节课所学内容,引出毕奥-萨伐尔定律。
2. 介绍毕奥-萨伐尔定律的概念,讲解其数学表达式。
二、新课讲授1. 毕奥-萨伐尔定律:- 定义毕奥-萨伐尔定律,讲解其数学表达式。
- 举例说明毕奥-萨伐尔定律在解决实际问题中的应用。
2. 安培环路定理:- 介绍安培环路定理的概念,讲解其数学表达式。
- 推导安培环路定理,讲解其推导过程。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁场强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁场强度。
四、总结1. 回顾本节课所学内容,强调毕奥-萨伐尔定律和安培环路定理的应用。
2. 布置课后作业,巩固所学知识。
教学反思:1. 本节课通过理论讲解和实例分析,帮助学生掌握了稳恒磁场的基本概念和公式。