第十五章工具变量估计和TSLS4
- 格式:ppt
- 大小:1.31 MB
- 文档页数:2
第15章工具变量估计与两阶段最小二乘法摘要: 本章继续讨论如何解决模型中的内生解释变量(endogenous explanatory variables )问题。
遗漏变量(omitted variables )是导致内生性问题的一个原因。
本章采用工具变量法(method of instrumental variables,IV )来解决模型中的一个或多个解释变量的内生性问题。
所采用的估计方法被称为两阶段最小二乘估计(method of two stage least squares ,2SLS or TSLS),其受欢迎程度仅次于OLS. IV 也能在某些特定的情形下解决变量带误差(errorsin-variables )的问题.15.1 动机: 简单回归中的遗漏变量如何处理可能发生的变量遗漏带来的偏误,已有三种选择: 1)直接忽略,讨论偏误的方向;2)寻找一个合适的代理变量;3)如果该遗漏变量不随时间变化时,采用FE 或FD 方法。
工具变量法的思路:不是考虑如何处理遗漏变量(此时遗漏变量在误差项中),而是寻找被遗漏的解释变量的替代变量,使得替代变量和误差项不再存在相关性。
y =β0+β1x +u ,此时该模型不满足MLR.4,从而不能保证Cov (x,u )=0,特别地,假定Cov (x,u )≠0. 如果x 的替代变量z 同时满足下面两个条件:1) 工具外生性(instrument exogeneity )条件:Cov (z,u )=0,2) 工具相关性(instrument relevance )条件:Cov (z,x )≠0,则称z 为x 的工具变量(instrumental variable ),或简称工具(instrumental ). 几点说明:1) 工具变量的外生性意味着z 对y 没有偏效应(当x 和u 中遗漏变量被控制时),同时也和其它被遗漏变量不相关;2) 工具外生性检验在多数情况下只能通过经济行为或反思来判断;3) 工具相关性检验借助t 和F 检验就行;外生性和相关性假设足以帮助我们识别(Identification )出β1=COv(z,y)Cov(z,x),那么β1的工具变量估计(instrumental variables (IV) estimator )为:β̂1=∑(z i −z ̅)(y i −y ̅)n i=1∑(z i −z ̅)(x i −x ̅)n i=1, 其是β1的一致但有偏的估计;4)β̂1显然当z=x,该估计就是OLS 估计,但这要以x 和u 无关为条件,也即工具变量法适于u 和x 无关的情形。
一、概述工具变量估计法是一种在计量经济学中常用的方法,用于解决内生性问题。
内生性问题是指自变量与误差项之间存在相关性,这会导致普通最小二乘法(OLS)估计出现偏误,从而影响结果的准确性。
为了解决这一问题,研究者引入了工具变量估计法,其基本思想是利用外生的工具变量来代替内生的自变量,从而消除内生性。
二、工具变量估计法的基本模型1. 基本假设在介绍工具变量估计法的基本模型之前,我们首先来说明其基本假设。
工具变量估计法的基本假设包括两部分:(1)内生性假设:自变量与误差项之间存在相关性,即自变量不满足外生性假设。
(2)工具变量假设:工具变量与自变量相关,但与误差项不相关,即工具变量满足外生性假设。
2. 简单的工具变量模型工具变量估计法的基本模型可以表示为:Y = β1X + u (1)其中,Y 表示因变量,X 表示内生的自变量,β1 表示自变量 X 对因变量 Y 的影响。
由于 X 存在内生性问题,因此我们引入工具变量 Z 来代替 X,得到以下两个方程:X = γ1Z + v (2)Y = β2Z + e (3)其中,Z 表示外生的工具变量,γ1 和β2 分别表示 Z 对 X 和 Y 的影响,v 和 e 分别表示方程(2)和方程(3)的误差项。
根据方程(2)和方程(3),我们可以得到工具变量估计法的渐进方程。
三、工具变量估计法的渐进方程1. 渐进方程的基本形式工具变量估计法的渐进方程可以表示为:β2slim = [(∑zi*zi)^(-1) * (∑zi*yi)] / [(∑zi*zi)^(-1) * (∑zi*xi)] (4)其中,β2slim 表示工具变量估计法的渐进系数估计值,zi 表示工具变量,yi 和 xi 分别表示因变量和内生自变量的观测值。
2. 渐进方程的意义通过渐进方程(4)可以得到工具变量估计法的渐进系数估计值。
工具变量估计法的渐进方程引入了工具变量 Z,并利用 Z 来代替内生自变量 X,从而消除内生性问题。
应用计量之一——工具变量(IV)本期推文来自首都经贸大学朱超的博客,关于上海对外经贸大学左翔老师暑期课上工具变量的介绍。
今年上海对外经贸大学李辉文老师和YES团队继续办暑期班(/thread-3742527-1-1.html),一个很好的福利,国内青年经济学者愿意分享的精神值得推广。
一个好的工具变量可以直接MIT博士毕业,可见找工具变量是一件有挑战性的事情。
在我看来,找工具变量是一项有趣的智力活动,除了需要一个人有经济学的素养和逻辑,还需要这个人知识面广,自然、地理、人文、世俗智慧和经验等,通常,这跟一个人熟悉的领域,由长期观察和思考产生的洞见有关。
当然还需要一点运气,学术不是苦思冥想,也许做一个梦,喝一杯下午茶,灵感就闪现了。
工具变量的原理最早出现在菲利普·莱特( Philip G.Wright) 1928年写的书《The Tariff on Animal and Vegetable Oils》里。
为了进一步解释这个原理,首先给出一个典型的线性回归模型:y = β0 + β1x1 + βX + ε (1)这里y为被解释变量,x1为自变量,或者解释变量,也即“因”。
大写的 X 为外生控制项向量( 也即一组假定为外生的其他控制变量,例如年龄、性别等等) ,ε则为误差项。
如果ε与x1不相关,那么我们可以利用OLS 模型对方程进行无偏估计。
然而,如果一个重要变量x2被模型(1) 遗漏了,且x1和x2也相关,那么对β1的OLS 估计值就必然是有偏的。
此时,x1被称作“内生”的解释变量,这就是“内生性”问题。
遇到“内生性”问题肿木办?有一个方法就是找工具变量Z。
工具变量(IV)可以用来解决1 )遗漏变量偏差2)经典的测量误差问题3)联立性(逆向因果)工具变量的条件·变量z可以作为变量x的有效工具变量,当满足:·工具变量必须外生·即, Cov(z,u) = 0·工具变量必须与内生变量x相关·即, Cov(z,x) ≠0 Cov(z,u) = 0无法验证,Cov(z,x) ≠0可以验证对工具变量的两个要求之间有一个非常重要的差别。