第2讲_工具变量法最终版.ppt
- 格式:ppt
- 大小:1.37 MB
- 文档页数:64
工具变量法工具变量法具体步骤工具变量法(Instrumental Variable Method)是一种用于处理内生性问题的统计方法,它通过引入一个“工具变量”来解决内生性问题。
工具变量是一个有着良好相关性但不会受到内生性干扰的变量,它可以用来代替内生变量,从而解决内生性的影响。
1.确定内生变量和工具变量:首先,需要确定研究中存在的内生变量和可能的工具变量。
内生变量是对所研究问题有影响的变量,而工具变量是与内生变量具有相关性但不会受到内生性干扰的变量。
内生性问题是由于内生变量的存在而导致的因果关系估计偏倚。
2.检验工具变量的相关性:接下来,需要检验所选取的工具变量与内生变量之间的相关性。
这可以通过计算相关系数或进行统计检验来实现。
如果工具变量与内生变量存在显著相关性,那么它可能是一个有效的工具变量。
3.确定工具变量的外生性:除了相关性外,工具变量还需要满足外生性的要求,即工具变量对因变量的影响是通过内生变量而不是其他方式引起的。
这可以通过进行实证分析来判断,例如通过回归模型来检验工具变量对因变量的影响是否通过内生变量进行中介。
如果工具变量的影响仅通过内生变量介导,则可以认为工具变量满足外生性的要求。
4.估计工具变量模型:一旦确定了有效的工具变量,可以使用工具变量法来估计因果关系。
工具变量法的核心思想是通过回归模型来解释内生变量对因变量的影响,并利用工具变量对内生变量进行替代。
通过将工具变量引入估计方程中,可以消除内生性的影响,从而得到无偏的因果关系估计。
5.进行统计推断:在估计了工具变量模型之后,可以进行统计推断来评估估计结果的显著性。
这可以通过计算标准误差、置信区间和假设检验等来实现。
统计推断可以帮助判断估计结果的可靠性,并验证因果关系的存在与否。
总结而言,工具变量法是一种用于解决内生性问题的统计方法。
它通过引入一个有效的工具变量来代替内生变量,消除内生性的干扰,从而得到无偏的因果关系估计。
工具变量法的具体步骤包括确定内生变量和工具变量、检验工具变量的相关性和外生性、估计工具变量模型,并进行统计推断。
工具变量法一、工具变量法得主要思想在无限分布滞后模型中,为了估计回归系数,通常得做法就是对回归系数作一些限制,从而对受限得无限分布滞后模型进行估计。
在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好得解决此类问题得思路。
经过变换,新得模型中,随机扰动项得表达式为:考伊克模型: ( ,为衰减率) (1、1);适应性期望模型:(,为期望系数)(1、2);部分调整模型:( ,为调整系数) (1、3)。
为原无限分布滞后模型中得扰动项,为变换后得扰动项。
在原模型中得随机扰动项满足经典假设得前提下,部分调整模型也满足经典假设,但就是考伊克模型与适应性期望模型得随机扰动项由于存在原随机扰动项得滞后项,也就就是说考伊克模型与适应性期望模型得解释变量势必与误差项相关,因此,可能会出现上述两个模型得最小二乘估计甚至就是有偏得这样严重得问题。
那么,我们就是否可以找到一个与高度相关但与不相关得变量来替代?在这里,一个可行得估计方法就就是工具变量法。
在讨论工具变量法之前,我们先来了解一下外生变量与内生变量。
一般来说:一个回归模型中得解释变量有得与随机扰动项无关,我们称这样得解释变量为外生变量;而模型中有得解释变量与随机扰动项相关,我们可称这样得解释变量为内生解释变量。
内生解释变量得典型情况之一就就是滞后应变量为解释变量得情形,如上述考伊克模型与适应性期望模型中得。
外生解释变量:回归模型中得解释变量与随机扰动项无关;内生解释变量:回归模型中得解释变量与随机扰动项无关;了解了内生变量与外生变量得概念,我们接着讨论工具变量法得主要思想:工具变量法与普通最小二乘法就是模型参数估计得两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数得普通最小二乘估计就是非一致得,这时就需要引入工具变量。
工具变量,顾名思义就是在模型估计过程中被作为工具使用,以替代模型中与随机误差性相关得随机解释变量(即内生变量)。
工具变量法Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】工具变量法一、工具变量法的主要思想在无限分布滞后模型中,为了估计回归系数,通常的做法是对回归系数作一些限制,从而对受限的无限分布滞后模型进行估计。
在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好的解决此类问题的思路。
经过变换,新的模型中,随机扰动项的表达式为:考伊克模型:1t t t v u u λ-=- (01λ<< ,λ为衰减率) (); 适应性期望模型:1(1)t t t v u u λ-=--(01λ<< ,λ为期望系数)();部分调整模型:(1)t t v u γ=-(01γ≤< ,1γ-为调整系数) ()。
t u 为原无限分布滞后模型中的扰动项,t v 为变换后的扰动项。
在原模型中的随机扰动项满足经典假设的前提下,部分调整模型也满足经典假设,但是考伊克模型与适应性期望模型的随机扰动项由于存在原随机扰动项的滞后项,也就是说考伊克模型与适应性期望模型的解释变量1t Y - 势必与误差项t v 相关,因此,可能会出现上述两个模型的最小二乘估计甚至是有偏的这样严重的问题。
那么,我们是否可以找到一个与1t Y -高度相关但与t v 不相关的变量来替代1t Y -在这里,一个可行的估计方法就是工具变量法。
在讨论工具变量法之前,我们先来了解一下外生变量和内生变量。
一般来说:一个回归模型中的解释变量有的与随机扰动项无关,我们称这样的解释变量为外生变量;而模型中有的解释变量与随机扰动项相关,我们可称这样的解释变量为内生解释变量。
内生解释变量的典型情况之一就是滞后应变量为解释变量的情形,如上述考伊克模型与适应性期望模型中的1t Y 。
外生解释变量:回归模型中的解释变量与随机扰动项无关; 内生解释变量:回归模型中的解释变量与随机扰动项无关;了解了内生变量和外生变量的概念,我们接着讨论工具变量法的主要思想:工具变量法和普通最小二乘法是模型参数估计的两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数的普通最小二乘估计是非一致的,这时就需要引入工具变量。
工具变量法一.为什么需要使用工具变量法?当模型存在内生解释变量问题,一般为以下三种情形:(1)遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。
否则,就会造成解释变量与残差项相关,从而引起内生性问题。
(2)解释变量与被解释变量相互影响(3)度量误差 (measurement error ):由于在关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。
Ex :i 01122Y i i k ik i X X X ββββμ=+++⋅⋅⋅++ 其中:X 2为内生解释变量 当22Cov(X ,)=E[X ]0i i i i μμ≠时,内生解释变量与随机干扰项同期相关。
此时会导致回归参数估计量是有偏的且不一致,需要用工具变量法进行回归。
二.如何使用工具变量? (一)判断是否需要用工具变量当存在内生性变量时,则需使用工具变量,所以需要对内生性变量进行检验。
在实践中,往往是通过经济学理论先说明是否存在内生性变量,最后再通过检验证明确实存在内生变量。
(1)豪斯曼检验(Hausman )原假设H 0:所有解释变量均为外生变量将内生解释变量关于工具变量与外生变量进行OLS 回归估计 记录残差序列(^^IV OLS ββ−),加入原模型后进行OLS 估计 结果:若差值依概率收敛于0,接受原假设;反之,拒绝。
(2)杜宾-吴-豪斯曼检验(DWH )注:存在异方差的情况下传统豪斯曼检验不适用。
回归模型:'1122y x x ββε=++ z=(x 1,z 2) 第一阶段回归:''21x x z v γδ=++ 检验扰动项v 与ε相关性模型:=v+ερξ 其中:ρ为ε对v 回归系数,ε与v 不相关则ρ=0. 对 ^'''1122y=x x v e ββρ+++ 回归 对原假设H 0:ρ=0. 进行t 检验。
工具变量法(二):弱工具变量世上没有完美的计量方法,因为所有的计量方法与模型均依赖于一定的前提假设。
因此,在估计完计量模型后,通常需要对模型的前提假设进行检验,称为“诊断性检验”(diagnostic checking)或“模型检验”(model checking)。
工具变量法也不例外。
工具变量法的成立依赖于有效的工具变量(valid instruments),即所使用的工具变量须满足相关性(与内生解释变量相关)与外生性(与扰动项不相关)。
工具变量的相关性(Instrument Relevance)在大样本下,2SLS为一致估计。
但对于大多数实践中的有限样本(finite sample),2SLS估计量依然存在偏差(bias),并不以真实参数为其分布的中心,即而且,如果工具变量与内生变量的相关性较弱,则 2SLS 的偏差会变得更为严重。
直观来看,2SLS 的基本思想是通过外生的工具变量,从内生变量中分离出一部分外生变动(exogenous variations),以获得一致估计。
如果工具变量与内生变量的相关性很弱,则通过工具变量分离出的内生变量之外生变动仅包含很少的信息。
因此,利用这些少量信息进行的工具变量法估计就不准确,即使样本容量很大也很难收敛到真实的参数值。
这种工具变量称为“弱工具变量”(weak instruments)。
弱工具变量的后果弱工具变量的后果类似于样本容量过小,会导致 2SLS 的小样本性质变得很差,而 2SLS 的大样本分布也可能离正态分布相去甚远,致使基于大样本理论的统计推断失效。
下面通过蒙特卡洛模拟(Monte Carlo simulation)来直观地考察弱工具变量的后果。
考虑最简单的一元回归模型,假设其数据生成过程(data generating process)为:其中,为内生变量,与扰动项相关;而的真实系数为 2。
假设样本容量为10,000,并使用工具变量进行2SLS 回归。
heckman两阶段和工具变量法HECKMAN两阶段和工具变量法是实证经济学中常用的两种方法,用于解决因果关系推断中的内生性问题。
在实际研究中,由于某些变量可能同时受到自变量和误差项的影响,从而引起内生性问题。
HECKMAN 两阶段和工具变量法可以帮助研究者解决这些内生性问题,使得研究得出的结论更加可靠和准确。
HECKMAN两阶段方法是一种广泛应用于计量经济学领域的方法,用于解决由于选择性取样引起的内生性问题。
在实际研究中,选择性取样可能导致观测数据的偏误,使得最终的结论不准确。
HECKMAN两阶段方法通过两个单独的方程来处理内生性问题,第一阶段通过一个选择方程来估计选择概率,并计算出选择性取样的影响,第二阶段再通过一个回归方程来估计变量之间的关系。
通过这种方式,HECKMAN两阶段方法能够有效地解决选择性取样引起的内生性问题,提高研究的准确度和可信度。
另一种常用的方法是工具变量法,工具变量法是一种通过利用第三方变量来解决内生性问题的方法。
在实际研究中,由于自变量与误差项之间存在内生性关系,导致OLS回归得到的估计值存在一定的偏误。
工具变量法通过引入一个外源性的工具变量来解决内生性问题,使得估计值更加准确和可靠。
工具变量法的关键在于选择合适的工具变量,这些工具变量需要满足一定的条件,即与内生变量具有相关性,但与误差项无关。
通过引入合适的工具变量,可以有效地消除内生性问题,提高估计的准确性。
无论是HECKMAN两阶段还是工具变量法,都是解决内生性问题的有效方法,但在具体应用时需要根据研究问题和数据特点来选择合适的方法。
在实际研究中,研究者需要认真分析研究对象的特点,选择合适的方法来解决内生性问题,从而得到更加准确和可靠的研究结果。
综上所述,HECKMAN两阶段和工具变量法是解决内生性问题常用的两种方法。
通过这两种方法,研究者可以有效地处理因果关系推断中的内生性问题,提高研究结论的可靠性。
在今后的研究中,研究者可以根据具体问题选择合适的方法,以得到更加准确和可信的研究结果。