概率论与数理统计第三章第三节(概率统计)
- 格式:ppt
- 大小:876.00 KB
- 文档页数:1
22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T e t f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u u t π令 8413.0)2060180(=-Φ=. 设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4=(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1, X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数;(2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X , 分布函数为821)(x X ex F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为585m ax )1()]([)(2z e z F z F --== (z ≥0),当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z . (2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )]=P (min{X , Y }>a )-P (min{X , Y }>b )=P (X >a , Y >a )-P (X >b , Y >b )=P (X >a )P (Y >a )-P (X >b )P (Y >b )=[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ),P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ).证明随机变量Z =X +Y 的分布律为∑=-==i k k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ),P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ),故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()(∑=-===i k k i Y k X P 0) ,(∑=-===i k k i Y P k X P 0)()(∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为1!)(1λλ-==e k k X P k (λ1>0), 2!)(2λλ-==e r r Y P r (λ2>0), 由25题结论知, Z =X +Y 的分布律为∑=-====i k k i Y P k X P i Z P 0)()()(∑=----⋅=i k k i k e k i e k 02121)!(!λλλλ ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为{Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===i k k i Y P k X P 0)()(∑=+-----⋅-=i k k i n k i k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik k i n k n k n n i C C p p 02121)1( i n i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C 21210+=-=⋅∑, 这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0);(2)求V =max{X , Y }的分布律;(3)求U =min{X , Y }的分布律;(4)求W =V +U 的分布律.解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P 08.005.005.005.003.001.005.0+++++= 2.025.005.0==. 同理 31)0|3(===X Y P . (2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1)+P (X =3, Y =2)+P (X =3, Y =3)+P(Y=3, X=0)+P(Y=3, X=1)+P(Y=3, X=2),=0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P(V=4)=P(X=4,Y=0)+P(X=4,Y=1)+P(X=4,Y=2)+P (X=4,Y=3)=0.07+0.06+0.05+0.06=0.24,P(V=5)=P(X=5,Y=0)+⋅⋅⋅+P(X=5,Y=3)=0.09+0.08+0.06+0.05=0.28.(3)显然U的取值为0, 1, 2, 3.P(U=0)=P(X=0,Y=0)+⋅⋅⋅+P(X=0,Y=3)+P(Y=0,X=1)+⋅⋅⋅+P(Y=0,X=5)=0.28.同理P(U=1)=0.30,P(U=2)=0.25,P(U=3)=0.17.(4)W=V+U的取值为0, 1,⋅⋅⋅, 8.P(W=0)=P(V=0,U=0)=0,P(W=1)=P(V=0, U=1)+P(V=1,U=0).因为V=max{X,Y}=0又U=min{X,Y}=1不可能上式中的P(V=0,U=1)=0,又P(V=1,U=0)=P(X=1,Y=0)+P(X=0,Y=1)=0.2,故P(W=1)=P(V=0, U=1)+P(V=1,U=0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1)=P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1)= P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2)=P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
第三章 多维随机变量及其分布 二维随机变量:一般,设E 是一个随机试验,它的样本空间是S={e}.设X=X(e)和Y=Y(e)是定义在S 上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。
设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:)}(){(),(y Y x X P y x F ≤⋂≤=),(y Y x X P ≤≤=称为二维随机变量(X,Y )的分布函数,或称随机变量X 和Y 的联合分布函数分布函数F(x,y)具有以下基本性质: 1.F (x,y)是变量x 和变量y 的不减函数,即对于任意固定的y ,当);,(),(,1212y x F y x F x x ≥> 对于任意固定的x ,当),(),(,1212y x F y x F y y ≥> 2.0≤F(x,y)≤1,且对于任意固定的y ,F (-∞,y)=0, 对于任意固定的x, F (x ,-∞)=0, F (-∞,-∞)=0,F (∞,∞)=13.F(x,y )=F(x+0,y ),F(x,y+0),即F(x,y )关于x 右连续,关于y 也右连续4.对于任意,,),,(),,(21212211y y x x y x y x <<下述不等式成立 0),(),(),(),(21111222≥-+-y x F y x F y x F y x F离散型随机变量:如果二维随机变量(X,Y)全部可能取到的不相同的值是有限对或可列无限多对,则称(X,Y )是离散型随机变量称,2,1,,},{====j i p y Y x X P ij i i ……为二维离散型随机变量(X,Y )的分布律,或随机变量X 和Y 是联合分布律 表格形式表示联合分布律: Y X1x… i x… 1y11p … 1i p… ………j yj p 1… ij p… ………离散型随机变量X 和Y 的联合分布函数为∑∑≤≤=x x yy ij i i p y x F ),(,其中和式是对一切满足y y x x i i ≤≤,的i,j 来求和的连续型随机变量:对于二维随机变量(X,Y )的分布函数F (x,y),如果存在非负的函数f(x,y)使得对于任意x,y 有 ⎰⎰∞-∞-=y xdudv v u f y x F ),(),(,则称(X,Y )是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度概率密度的性质: 1.f(x,y)≥0 2.⎰⎰∞∞-∞∞-=∞∞=1),(),(F dxdy y x f3.设G 是xOy 平面上的区域,点(X,Y )落在G 内的概率为 ⎰⎰=∈Gdxdy y x f G Y X P ),(}),{(4.若f(x,y)在点(x,y )连续,则有),(),(2y x f y x y x F =∂∂∂一般,设E 是一个随机试验,它的样本空间是S={e},设),(),(2211e X X e X X ==…),(,e X X n n =是定义在S 上的随机变量,由它们构成的一个n 维向量,,(21X X …),n X 叫做n 维随机向量或n 维随机变量对于任意n 个实数n x x x n ,,^,,21元函数},^,{),^,(111n n n x X x X P x x F ≤≤=称为n 维随机变量,,(21X X …),n X 的分布函数或随机变量n X X X ,^,,21的联合分布函数。