工程力学(第8章-第9章)_作业答案
- 格式:ppt
- 大小:1.27 MB
- 文档页数:10
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力p 和B R的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理,可以判断支座A 点的约束反力必沿通过A 、O 两点的连线。
(b )同上。
由于力p 和B R的作用线交于O 点,根据三力平衡汇交定理,可判断A 点的约束反力方向如下图(b )所示。
2.不计杆重,画出下列各图中AB 解:(a )取杆AB 为研究对象,杆除受力p外,在B 处受绳索作用的拉力B T ,在A 和E 两处还受光滑接触面约束。
约束力A N 和E的方向分别沿其接触表面的公法线,并指向杆。
其中力E N与杆垂直,力A N通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N 和C N ,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且B N =C N 。
研究杆A N 和B N,以及力偶m 的作用而平衡。
根据力偶的性质,A N 和B N必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T 和C T,在B 点受到支座反力B N 。
A T 和C T相交于O 点,根据三力平衡汇交定理,可以判断B N必沿通过B 、O 两点的连线。
见图(d).第二章力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
eBook工程力学习题详细解答教师用书(第8章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题8-1 习题8-2 习题8-3 习题8-4 习题8-5 习题8-6 习题8-7 习题8-8 习题8-9 习题8-10 习题8-9 习题8-10习题8-11 习题8-12 习题8-13 习题8-14 习题8-15 习题8-16 习题8-17 习题8-18 习题8-19 习题8-20习题8-21工程力学习题详细解答之八第8章 弯曲强度问题8-1 直径为d 的圆截面梁,两端在对称面内承受力偶矩为M 的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E 。
根据d 、ρ、E 可以求得梁所承受的力偶矩M 。
现在有4种答案,请判断哪一种是正确的。
(A) ρ64π4d E M =(B) 4π64d E M ρ=(C) ρ32π3d E M =(D) 3π32dE M ρ=正确答案是 A 。
8-2 矩形截面梁在截面B 处铅垂对称轴和水平对称轴方向上分别作用有F P1和F P2,且F P1=F P2,如图所示。
关于最大拉应力和最大压应力发生在危险截面A 的哪些点上,有4种答案,请判断哪一种是正确的。
(A) +max σ发生在a 点,−max σ发生在b 点M习题8-1图A Ba b cd P2z固定端习题8-2图(B) +max σ发生在c 点,−max σ发生在d 点 (C) +max σ发生在b 点,−max σ发生在a 点 (D) +max σ发生在d 点,−max σ发生在b 点正确答案是 D 。
8-3 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
——————————————工程力学习题——————————————第一章绪论思考题1)现代力学有哪些重要的特征?2)力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3)工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R.习题2-1图2-2 已知F 1=7kN,F 2=5kN , 求图中作用在耳环上的合力F R .2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1。
5kN , 方向沿x 轴。
b)合力为零。
2习题2-2图(b)F 1F 1F 2习题2-3图(a )F 1习题2-4图2—5二力作用如图,F 1=500N.为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
F 12习题2-5图(b)(a)(c)(d)AC2-7 画出图中各物体的受力图。
(f)(g) 习题2-6图(b)(a )D2—8 试计算图中各种情况下F 力对o 点之矩.(d)习题2-7图习题2-8图 P(d)(c)(a ) A2—9 求图中力系的合力F R 及其作用位置。
习题2-9图( a )1F 3 ( b )F 3F 2( c) 1F /m( d )F 32-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
2—11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
( a )q 1=600N/m2( b )q ( c )习题2-10图B习题2-11图第三章静力平衡问题习题3—1 图示液压夹紧装置中,油缸活塞直径D=120mm,压力p=6N/mm2,若α=30︒,求工件D所受到的夹紧力F D。
习题3-1图3—2 图中为利用绳索拔桩的简易方法。
第1章:1-2 选择题:(1)加减平衡力系原理适用于下列哪种情况。
(A)单一刚体;(B)单一变形体;(C)刚体系统;(D)变形体系统正确答案:A。
(2)二力平衡原理适用于下列哪种情况。
(A)单一刚体;(B)单一变形体;(C)刚体系统;(D)变形体系统正确答案:A。
(3)力的可传性原理适用于下列哪种情况。
(A)单一刚体;(B)单一变形体;(C)刚体系统;(D)变形体系统正确答案:A。
(4)作用力与反作用力定律适用于下列哪种情况。
(A)只适用刚体;(B)只适用变形体;(C)只适用平衡状态的物体;(D)任何物体正确答案:D。
(5)三力汇交定理适用于下列哪种情况。
(A)三个互不平行的共面力的作用下处于平衡状态的刚体;(B)三个共面力的作用下处于平衡状态的刚体;(C)三个互不平行的力的作用下处于平衡状态的刚体;(D)三个互不平行的共面力的作用下的刚体正确答案:A。
(6)若等式F R=F1+F2成立,下列哪种情况成立。
(A)必有F R=F1+F2;(B)不可能有F R=F1+F2;(C)必有F R>F1、F R>F2;(D)可能有F R>F1+F2;正确答案:D。
第2章:2-1 选择题:(1)平面力偶系最多可以求解未知量。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:A。
(2)平面汇交力系最多可以求解未知量。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:B。
(3)平面平行力系最多可以求解未知量。
正确答案:B。
(A)1个;(B)2个;(C)3个;(D)4个(4)平面一般力系最多可以求解未知量。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:C。
(5)平面一般力系简化的最终结果有情况。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:C。
(6)作用在刚体上点A的力F,可以等效地平移到刚体上的任意点B,但必须附加一个A,此附加B。
(A )力偶;(B )力偶的矩等于力F 对点B 的矩; (C )力; (D )力的大小方向与原力相同(7)对于一般力系,其主矢与简化中心 C ,其主矩与简化中心 A 。
第9章 压杆稳定9-1解:求柔度值查表得Q235钢:a=304MPa, b=1.12MPa 3.99==p p Eσπλ 57=-=b a s s σλ (2)求各杆的临界压力P cr1杆:p l d l i l λμλ>=⨯==12541111 644d I π= KN l EI P cr 2540)(221==∴μπ 2杆: 5.6222==i l l μλ p l s λλλ<<2 MPa b a cr 2342=-=∴λσKN A P cr cr 470522==σ3杆:s l i l λμλ<==25.3133 KN A P s cr 47253==∴σ9-2解:查表得I=158cm 4,A=35.578cm 2μ=1 KN l EI P cr 5.19741015810200)(28922=⨯⨯⨯⨯==-πμπMPa A P cr cr5.5510578.35105.19743=⨯⨯==-σ9-3 解:473108200120121mm I y ⨯=⨯⨯=,463108.28120200121mm I z ⨯=⨯⨯=112115120200108.284000146=>=⨯⨯⨯==p mmi lλμλa cr MP E 4.7115101023222=⨯⨯==πλπσ9-4解:i=d/4=13mm查表得μ=2,则 λ=μl/i=76.9查表得45号钢 λp=100, λs=60 所以为中长杆查表11-2得,a=578Mpa, b=3.744 Mpaσcr = a-b λ=290.08MPa Pcr=σcr A=639.41KNn w = Pcr/P=4.19-5解:(1)受力分析以梁AC 为研究对象,由静力平衡方程可求得 N BD =106.7KN(2)BD 压杆的柔度查型钢表,20号槽钢: A=32.837cm 2 i y =2.09cm I y =14.1cm 4μ=1,l=1.5/cos30=1.732m 87.82==y i lμλ ∴ p s λλλ<<BD 杆为中长杆(3)计算临界压力KNA b a A P cr cr 5.693)(=-==λσ(4)稳定性校核0.5][5.6=>==w BDcr n N P n 满足稳定要求。
第8章 压杆稳定习题:1.【解】d 图临界力最大,b 图临界力最小。
2.【解】σBC =11.25MPa <[σst ]=16.83MPa ,BC 杆满足稳定性要求3.【解】最合理的情况为AB 、BC 两杆同时失稳,此时F 最大。
()βθ22222cr cos ππcos AC AB AB l EI l EI F F === ()βθ22222cr sin ππsin AC BC BCl EI l EI F F === 两式相除得到βθ2cot tan =即()βθ2cot arctan = 4. 【解】由于杆端的约束在各个方向相同,因此,压杆将在抗弯刚度最小的平面内失稳,即杆件横截面将绕其惯性矩为最小的形心主惯性轴转动。
32123min min b bh hb AI i === 欧拉公式适用于λ≥p λ,即min i l μ≥p2πσE 由此得到 l ≥m 76.1m 10200102105.032π103032π693p =⨯⨯⨯⨯⨯=-σμE b 故此压杆适用于欧拉公式时的最小长度为1.76m 。
5. 【解】(1)F cr =329.64kN(2)n =2.29<[n st ]=2.5,结构不安全6. 【解】(1)求挺杆的柔度挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i=d/4计算柔度λ=μli=4μld=4×1×0.2570.008=128.5λ1=π√EσP =π√210×109240×106=92.9挺杆是细长压杆,使用欧拉公式计算临界压力(2)校核挺杆的稳定性I=πd464=π×0.008464=2.01×10−10m4P cr=π2EI(μl)2=π2×210×109×2.01×10−10(1×0.257)2=6.31kN工作安全系数n=P crP max=6.311.76=3.59所以挺杆满足稳定性要求7. 【解】[F]=53.31kN8. 【解】(1)F cr=355.31kN(2)bℎ=0.525。
第8章弹性杆件横截面上的切应力分析8-1扭转切应力公式r(p)^M x p/I p的应用范圉有以下几种,试判断哪一种是正确的。
(A)等截面圆轴,弹性范囤内加载:(B)等截面圆轴:(C)等截面圆轴与椭恻轴:(D)等截面圆轴与椭恻轴.弹性范鬧内加较。
知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是A cTip) = M x p/l?在推导时利川J'等截面鬪轴受扭后.其横截血保持平血的假设•同时推导过程中还应用了剪切胡克定律.婆求在线弹性范刑加載。
8-2两根长度相等、直径不等的圆轴受扭后.轴表iftlJJU线转过相同的角度。
设直径大的轴和直径小的轴的横截面上的最大切应力分别为耳吨'和r2max,切变模虽分别为Gi和G2O试判断下列结论的正确性。
(A)(B)(C)若G、>G“则有r Inux > r2nux:(D)若G>G“则有右叭沁。
知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是c °因两恻轴等长,轴表面上母线转过相同角度,指切应变相同,即/,=/,=/由剪切胡克定律2“知> °2 时,f lnux > r2max °8-3承受相同扭矩且长度相等的直径为山的实心恻轴与内.外径分别为D2(a = d2/D2)的空心圆轴.二者横截面上的垠大切应力相等。
关于二者重之比(M/WJ有如下结论.试判断哪一种是正确的。
(A)(l-a4严;(B)(l-a4)V2(l-a2):(C)(l-^Xl-a2):(D)(1 一a」)的/(I一小)。
知识点:组合圆轴扭转时横截面上的切应力难度:难解答•\6M X I6M正确答案是D即A-d-a4)7D2匹=如=必W2人D;(l-a2)习题8/图⑴代入(2〉.得8-4由两种不同材料组成的圆轴,里层和外 层材料的切变模址分别为Gi 和Gi.且G = 2G 2. 圆轴尺寸如图所示。
圆轴受扭时.里、外层之间无相对滑动。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2—2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2—3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2—5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2—6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2—7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2—9解:各处全为柔索约束,故反力全为拉力,以D,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2—10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2—11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tanα≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图 作BD 两节点的受力图 联合解得:kN F F F A80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
第9章平面体系的几何组成分析习题.【解】若上部结构与地基之间的连接比较多(N4),能够考虑先将上部结构中的某•刚片与地基连成一个大刚片。
然后,在考虑这个大刚片与上部其它杆件的连接。
本例中,上部结构与地基之间用4个约束连接。
杆件ABE与地基之间用钗A和一根不同过该絞的链杆B相连,组成几何不变体系,且没有多余约束。
所以,能够将杆件ABE与地基看成一个没有多余约束的大刚片。
杆件FCD用三根既不相互平行又不相交于一点的链杆(链杆EF、链杆C、链杆D)与这个大刚片相连,组成一个更大的几何不变体系,且没有多余约束。
杆件ABE与地基之间用平行链杆A和一根不同过该絞的链杆B相连,组成几何不变体系,且没有多余约束。
将杆件ABE与地基看成一个没有多余约束的大刚片。
杆件FCD用三根既不相互平行又不相交于一点的链杆(链杆EF、链杆C、链杆D)与这个大刚片相连,组成一个更大的几何不变体系,且没有多余约束。
-I*羡诊为习题(C)图若上部结构中有皎接三角形,能够考虑将这些三角形看成刚片,然后在进行分析。
刚片I与地基组成•个没有多余约束的大刚片。
这个大刚片与刚片II用三根既不相互平行又不相交于一点的链杆相连,组成一个更大的几何不变体系,且没有多余约束。
习题(d)图将扩大的三角形看成刚片。
先分析一部分:左边的刚片与地基组成一个大刚片ABCD。
增加二元体:在大刚片ABCD上增加二元体DE杆和链杆E,组成一个更大的刚片。
此刚片与刚片GH1F由三根延长线交于H点的链杆(杆件CG、杆件FE、链杆1)相连。
故,体系为瞬变体系。
若上部结构与地基之间用三个约束连接,且符合几何不变体系的组成规律,能够只分析上部结构。
上部结构的分析结论就是整个体系的分析结论。
若折杆只用两个较与其它物体相连,能够将折杆看成是连接两个钗的直杆。
去掉二元体。
剩下部分为两个刚片用两个钗连接,为几何不变体系,且有一个多余约束。
故,整体体系也为几何不变体系,且有一个多余约束。
习题9-1图 x15-'x x'σy'x'τ 1.25MPa15 (b-1)15a 4MP15-y'x'τx'x'σa1.6MP x (a-1) 习题9-2图302MPa 0.5MPa-60x'σ'x ''y x τ 工程力学(工程静力学与材料力学)习题与解答第9章 应力状态分析9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。
试求: 1.面内平行于木纹方向的切应力;2.垂直于木纹方向的正应力。
知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:(a )平行于木纹方向切应力6.0))15(2cos(0))15(2sin(2)6.1(4=︒-⨯⋅+︒-⨯---=''y x τMPa 垂直于木纹方向正应力84.30))15(2cos(2)6.1(42)6.1(4-=+︒-⨯---+-+-='x σMPa (b )切应力08.1))15(2cos(25.1-=︒-⨯-=''y x τMPa正应力625.0))15(2sin()25.1(-=︒-⨯--='x σMPa9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。
若已知胶层切应力不得超过1MPa 。
试分析是否满足这一要求。
知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:55.1))60(2cos(5.0))60(2sin(2)1(2-=︒-⨯⋅+︒-⨯---=''y x τMPa 1MPa 55.1||>=''y x τMPa ,不满足。
9-3 结构中某点处的应力状态为两种应力状态的叠加结果。
试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。
知识点:平面应力状态分析 难度:难 解答:习题9-2图yσxσxyτ=yσxσxyτx=yσxσxyτ=左微元⎪⎪⎪⎩⎪⎪⎪⎨⎧-='-='-=-='+=--+='000000022cos 122sin )2sin(222cos 10)2cos(22σθσσσσθθστσθθσσσx y xy x 叠加 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+'=-=+=+=+'=''000022cos 1022sin 022cos 3σθσσσθττσθσσσy y y x xy x x0)cos 1()cos 1( )22sin (4)22cos 122cos 3(21222cos 122cos 330020202021=⎩⎨⎧-+=-+--+±-++=⎭⎬⎫σσθσθσθσθθσθθσσ 面内最大切应力:θσσστcos 2021max=-='该点最大切应力:031max2cos 12σθσστ+=-=左微元0023))30(2sin()(ττσ=︒-⨯-='x ,0230τσσ-='-='x y ,2))30(2cos(00τττ=︒-⨯='xy 右微元0023)302sin()(ττσ=︒⨯-=''x,0230τσσ-=''-=''x y ,2))30(2cos()(00τττ-=︒⨯-=''xy 叠加 03τσσσ='+'=y x x ,03τσσσ-=''+'=y y y ,0=''+'=xyxy xy τττ 013τσ=,02=σ,033τσ-= 面内031max32||τσστ=-='xABOσOσαα(a)习题9-4图A60CB60100-x σxσyxτxyτ92MPa(a)习题9-5图该点031max 32||τσστ=-=叠加[]⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡︒-⨯--+==--+==⎥⎦⎤⎢⎣⎡︒-⨯--+-++=MPa 30))45(2sin(2)30(5070MPa 1010)3050(0MPa 90))45(2cos(2)30(502)30(5080xy y x σσσ主应力0MPa 0MPa100304)]100(90[212109022231=⎩⎨⎧=⨯+-±+=⎭⎬⎫σσσ面内及该点:5021002||||31max max=-=-=='σσττMPa9-4 已知平面应力状态的最大正应力发生在与外力作用的自由表面AB 相垂直的面上,其值为0σ。
1. 一物体在两个力的作用下,平衡的充分必要条件是这两个力是等值、反向、共线。
( √ ) 2。
若作用在刚体上的三个力的作用线汇交于同一个点,则该刚体必处于平衡状态。
( × ) 3。
理论力学中主要研究力对物体的外效应。
( √ ) 4。
凡是受到二个力作用的刚体都是二力构件. ( × ) 5。
力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果. ( √ ) 6。
在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( √ ) 7. 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 8。
力的可传性只适用于刚体,不适用于变形体。
( √ ) 9。
只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 10。
力的平行四边形法则只适用于刚体. ( √ ) 1。
作用在刚体上两个不在一直线上的汇交力F 1和F 2 ,可求得其合力R = F 1 + F 2 ,则其合力的大小 ( B ;D )(A) 必有R = F 1 + F 2 ; (B ) 不可能有R = F 1 + F 2 ;(C) 必有R 〉 F 1、R 〉 F 2 ; (D ) 可能有R 〈 F 1、R 〈 F 2。
2。
以下四个图所示的力三角形,哪一个图表示力矢R 是F 1和F 2两力矢的合力矢量 ( B )3. 以下四个图所示的是一由F 1 、F 2 、F 3 三个力所组成的平面汇交力系的力三角形,哪一个图表示此汇交力系是平衡的 ( A )4.以下四种说法,哪一种是正确的 ( A ) (A)力在平面内的投影是个矢量; (B )力对轴之矩等于力对任一点之矩的矢量在该轴上的投影; (C )力在平面内的投影是个代数量; (D )力偶对任一点O 之矩与该点在空间的位置有关。
5。
以下四种说法,哪些是正确的? ( B ) (A ) 力对点之矩的值与矩心的位置无关。
(B) 力偶对某点之矩的值与该点的位置无关. (C) 力偶对物体的作用可以用一个力的作用来与它等效替换. (D) 一个力偶不能与一个力相互平衡。
工程力学习题及最终答案(总63页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论思 考 题1) 现代力学有哪些重要的特征2) 力是物体间的相互作用。
按其是否直接接触如何分类试举例说明。
3) 工程静力学的基本研究内容和主线是什么 4) 试述工程力学研究问题的一般方法。
第二章 刚体静力学基本概念与理论习 题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
习题2-1图NN22-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角?。
使 a )合力F R =, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和?角。
2习题2-2图(b )F 1F 1F 2习题2-3图(a )F 1习题2-4图2-6 画出图中各物体的受力图。
F12习题2-5图(b) B(a)A(c)(d)(eA42-7 画出图中各物体的受力图。
) 习题2-6图(b ))(d(a ) A BC DB ABCB52-8 试计算图中各种情况下F 力对o 点之矩。
2-9 求图中力系的合力F R 及其作用位置。
习题2-7图习题2-8图P(d )(c ))) 1F 362-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
q 1=600N/m2习题2-9图F 3F 2( c1F 4F 372-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
第三章 静力平衡问题q=4kN/m( b )q( c )习题2-10图B习题2-11图8习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若?=30?, 求工件D 所受到的夹紧力F D 。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:3R F KN== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300ACAB FF -=0Y =∑ cos300ACFW -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700ACAB FF -=0Y =∑ sin 700ABFW -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300ACAB FF -=0Y =∑ sin 30sin 600ABAC FF W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300ABAC FF -=0Y =∑ cos30cos300ABAC FF W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑cos 450RA F P -=15.8RA F KN∴=由Y =∑sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --= 0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN= (压力) 5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑ sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x=∑cos60cos300AC ABF F W⋅--= 0Y=∑sin30sin600AB ACF F W+-=联立上二式,解得:7.32ABF KN=-(受压)27.3ACF KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程(1)取D点,列平衡方程由x=∑sin cos0DBT Wαα-=DBT Wctgα∴==(2)取B点列平衡方程:由Y=∑sin cos0BDT Tαα'-=230BDT T ctg Wctg KNαα'∴===2-10解:取B为研究对象:由0Y =∑ sin 0BC F P α-= sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑ cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑ sin sin 300RAFP α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q =联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑ sin 450RBRA FF P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。