《材料力学》自学辅导材料
- 格式:doc
- 大小:110.00 KB
- 文档页数:16
名词解释1.弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力2.塑性:指材料在外力作用下发生不可逆的永久变形的能力3.强度:指材料在外力作用下抵抗塑性形变和破坏的能力4.比例极限ζp:应力与应变保持正比关系的最大应力5.弹性极限ζe:在拉伸试验过程中,材料不产生塑性变形时的最大应力6.屈服极限:①对拉伸曲线上有明显屈服平台的材料,塑性变形硬化不连续,屈服平台所对应的应力即为屈服强度ζs②对拉伸曲线上没有屈服平台的材料,塑性变形硬化是连续的,此时将屈服强度定义为产生0.2%残余伸长时的应力ζ0.27.抗拉强度ζb:材料断裂前所能承受的最大应力8.应变强化:材料在应力作用下进入塑性变形阶段后,随着变形量的增大,性变应力不断提高的现象9.断裂延性:拉伸断裂时的真应变10.弹性比功We(弹性应变能密度):材料开始塑性变形前单位体积所能吸收的弹性变形功。
We = ζeEe/2 = ζe^2/(2E)[需弹性较大材料时,增大We的措施是增加ζe,降低E]11.弹性后效:在弹性范围内加速加载或卸载后,随时间延长产生附加弹性应变的现象12.弹性滞后:在非瞬间加载条件下的弹性后效13.内耗Q-1=1/2π*△W/W:加载时消耗的变形功大于卸载时释放的变形功,或弹性滞后回线面积为一个循环所消耗的不可逆功,这部分被金属吸收的功,称为内耗14.循环韧性(消振性):金属材料在单向循环载荷或交变循环载荷作用下吸收不可逆功的能力15.包申格效应:产生了少量塑性变形的材料,再同向加载,则弹性极限与屈服强度升高,反向加载则弹性极限与屈服强度降低的现象16.孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系17.硬度:指材料抵抗其他硬物体压入其表面的能力18.应力状态柔度因数:表示应力状态对材料塑性变形的影响。
α=ηmax/ζmax=(ζ1 –ζ3)/2[ζ1 –ν(ζ2 + ζ3)]19.解理断裂:材料在拉应力作用下,由于原子间结合键遭到破坏,严格地沿一定的结晶学平面(即所谓“解理面”)劈开而造成的断裂。
材料力学学习指导与练习第二章2.1预备知识一、基本概念1、 轴向拉伸与压缩承受拉伸或压缩杆件的外力作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。
2、 轴力和轴力图轴向拉压杆的内力称为轴力,用符号F N 表示。
当F N 的方向与截面外向法线方向一致时,规定为正,反之为负。
求轴力时仍然采用截面法。
求内力时,一般将所求截面的内力假设为正的数值,这一方法称为“设正法”。
如果结果为正,则说明假设正确,是拉力;如是负值,则说明假设错误,是压力。
设正法在以后求其他内力时还要到。
为了形象的表明各截面轴力的变化情况,通常将其绘成“轴力图”。
作法是:以杆的左端为坐标原点,取χ轴为横坐标轴,称为基线,其值代表截面位置,取F N 轴为纵坐标轴,其值代表对应截面的轴力值,正值绘在基线上方,负值绘在基线下方。
3、 横截面上的应力根据圣维南(Saint-Venant)原理,在离杆一定距离之外,横截面上各点的变形是均匀的,各点的应力也是均匀的,并垂直于横截面,即为正应力,设杆的横截面面积为A ,则有AN =σ 正应力的符号规则:拉应力为正,压应力为负。
4、 斜截面上的应力与横截面成α角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:()⎪⎪⎩⎪⎪⎨⎧=+=αστασσαα2sin 22cos 12α角的符号规则:杆轴线x 轴逆时针转到α截面的外法线时,α为正值;反之为负。
切应力的符号规则:截面外法线顺时针转发900后,其方向和切应力相同时,该切应力为正值;反之为负值。
当α=00时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。
当α=±450时,切应力达到极值。
5、轴向拉伸与压缩时的变形计算与虎克定律(1) 等直杆受轴向拉力F 作用,杆的原长为l ,面积为A ,变形后杆长由l 变为l +∆l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAll N F =∆ 上式为杆件拉伸(压缩)时的虎克定律。
材料力学同步辅导及习题全解材料力学是力学中用于研究材料行为的一门学科。
它研究材料响应外力时的变形特性和破坏行为等, 为工程设计、制造和维护提供了基础。
以下是材料力学同步辅导及习题全解:一、材料力学基础理论1、定义: 材料力学是研究材料响应外力时的变形特性和破坏行为的学科。
2、弹性: 材料在短暂的外力作用下可产生变形(例如弹性变形),材料力学研究变形的特性。
3、塑性: 如果外力超出材料的弹性极限,材料就会产生塑性变形,材料力学研究塑性变形的特性。
4、破坏: 如果塑性变形超出材料承受力的极限,材料就会损坏,材料力学研究材料的破坏行为。
二、材料力学实验1、材料: 材料力学实验需要先选择合适的材料,常用的材料有:金属、塑料、木材等。
2、设备: 实验所需的设备包括:拉力机、应力应变测试仪、标定和检查工具等。
3、数据采集: 在实验过程中,需要采集外力和变形数据,并将其用于计算应力应变关系和/或强度等力学性能。
三、材料力学计算1、数值模拟: 材料力学计算可以使用数值模拟的方法,模拟材料响应外力的变形和破坏现象。
2、强度计算: 使用经典的强度理论,可以计算真实外力下材料屈服的强度值。
3、有限元法:通过有限元法,可以计算复杂结构(如空间网格模型)多体系统的动力学变形和受力性能。
四、材料力学习题1、金属及复合材料应力 - 应变: 对于材料应力 - 应变曲线,能否求解出材料的屈服强度和塑性应变?2、有限元模拟: 有限元模拟能够模拟出材料的失效行为及其原因,材料力学中体现有限元的应用有哪些?3、复合材料: 复合材料是由不同材料组合而成,它比纯净材料更具有弹性和塑性强度,复合材料在哪些领域中有广泛应用?五、材料力学习题全解1、金属及复合材料应力 - 应变:可以通过绘制出材料应力 - 应变曲线求解出材料的屈服强度和塑性应变,即根据材料的应力 - 应变曲线,可以计算出外力施加时的屈服应力和塑性应变。
2、有限元模拟:材料力学中,有限元模拟的应用可以计算复杂结构的动力变形和受力性能,用于分析复杂结构的强度、稳定性等特性,也可以用于模拟复杂结构在外力作用下的变形和开裂现象。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力ζ与切应力η。
解:应力p与斜截面m-m的法线的夹角α=10°,故ζ=p cosα=120×cos10°=118.2MPaη=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为ζmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。