材料力学1、2第五版(刘鸿文_主编)课后习题答案
- 格式:ppt
- 大小:10.21 MB
- 文档页数:510
刘鸿文第五版材料力学思考题答案材料力学复习思考题1. 材料力学中涉及到的内力有哪些,通常用什么方法求解内力, 轴力,剪力,弯矩,扭矩。
用截面法求解内力2. 什么叫构件的强度、刚度与稳定性,保证构件正常或安全工作的基本要求是什么,杆件的基本变形形式有哪些,构件抵抗破坏的能力称为强度。
构件抵抗变形的能力称为刚度。
构件保持原有平衡状态的能力称为稳定性。
基本要求是:强度要求,刚度要求,稳定性要求。
基本变形形式有:拉伸或压缩,剪切,扭转,弯曲。
3. 试说出材料力学的基本假设。
连续性假设:物质密实地充满物体所在空间,毫无空隙。
均匀性假设:物体内,各处的力学性质完全相同。
各向同性假设:组成物体的材料沿各方向的力学性质完全相同。
小变形假设:材料力学所研究的构件在载荷作用下的变形或位移,其大小远小于其原始尺寸。
4. 什么叫原始尺寸原理,什么叫小变形,在什么情况下可以使用原始尺寸原理,可按结构的变形前的几何形状与尺寸计算支反力与内力叫原始尺寸原理。
可以认为是小到不至于影响内力分布的变形叫小变形。
绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时可以使用原始尺寸原理。
5. 轴向拉伸或压缩有什么受力特点和变形特点。
受力特点:外力的合力作用线与杆的轴线重合。
变形特点:沿轴向伸长或缩短6. 低碳钢在拉伸过程中表现为几个阶段,各有什么特点,画出低碳钢拉伸时的应力,应变曲线图,各对应什么应力极限。
,,E,弹性阶段:试样的变形完全弹性的,此阶段内的直线段材料满足胡克定律。
,p --比例极限。
,e—弹性极限。
屈服阶段:当应力超过点后,试样的荷载基本不b,s变而变形却急剧增加,这种现象称为屈服。
--屈服极限。
强化阶段:过屈服阶段后,材料又恢复了抵抗变形的能力,要使它继续变形必须增加拉力.这种,b现象称为材料的强化。
——强度极限局部变形阶段:过点后,试样在某一段内的横截e面面积显箸地收缩,出现颈缩 (necking)现象,一直到试样被拉断。
第1章 绪 论1.1 对图1-1所示钻床,试求n-n 截面上的内力。
图1-1解:应用截面法,沿n-n 截面将钻床分成两部分,取n-n 截面右半部分进行受力分析,如图1-2所示。
由平衡条件可得:0,0y S F F F =-=∑;0,0C M Fb M =-=∑则n-n 截面内力为:S F F =,M Fb =。
图1-21.2 试求图1-3所示结构m-m 和n-n 两截面上的内力,并指出AB 和BC 两杆的变形属于何类基本变形。
图1-3解:(1)应用截面法,取n-n 截面以下部分进行受力分析,如图1-4(a )所示。
由平衡条件可得:0,3320A N M F =⨯-⨯=∑则截面内为:2N F kN =BC 杆属于拉伸变形。
(2)应用截面法,取m-m 截面右侧部分及n-n 截面以下部分进行受力分析,如图1-4(b )所示。
由平衡条件可得:0,3310O N M F M =⨯-⨯-=∑;0,30y S N F F F =+-=∑则截面内为:1S F kN =,1M kN m =⋅AB 杆属于弯曲变形。
图1-41.3 在图1-5所示简易吊车的横梁上,F 力可以左右移动。
试求截面1-1和2-2上的内力及其最大值。
图1-5解:(1)应用截面法,取1-1截面以下部分进行受力分析,如图1-6(a )所示。
由平衡条件可得:10,sin 0A N M F l Fx α=-=∑解得:1sin N Fx F l α= 故当x l =时,1-1截面内力有最大值:1max sin N F F α=。
(2)应用截面法,取1-1截面以下,2-2截面右侧部分进行受力分析,如图1-6(b )所示。
由平衡条件可得:210,cos 0x N N F F F α=-=∑210,sin 0y S N F F F F α=--=∑()120,sin 0O N M F l x M α=--=∑解得2-2截面内力:2cot N Fx F l α=,21S x F F l ⎛⎫=- ⎪⎝⎭,()2x l x M F l -= 综上可知,当x l =时,2N F 有最大值,且2max cot N F F α=;当0x =时,2S F 有最大值,且2max S F F =;当2l x =时,弯矩2M 有最大值,且2max 4Fl M =。