22.2.1配方法
- 格式:doc
- 大小:93.50 KB
- 文档页数:6
人教版数学九年级上册22.2.1《配方法》说课稿2一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,本节课的主要内容是让学生掌握配方法的原理和应用。
配方法是解一元二次方程的一种重要方法,它能把一般形式的一元二次方程转化为完全平方式,从而使方程的解法更加简单。
在初中数学中,配方法不仅是一元二次方程解法的基础,也是后续学习二次函数、一元二次不等式等知识的基础。
二. 学情分析九年级的学生已经学习过一元二次方程的基本概念和解法,对二次项、一次项、常数项有一定的了解。
但是,学生对于配方法的原理和推导过程可能还不太理解,对于如何运用配方法解决实际问题可能还存在困难。
因此,在教学过程中,我需要引导学生从已有的知识出发,逐步理解和掌握配方法,并能够运用配方法解决实际问题。
三. 说教学目标1.知识与技能目标:让学生掌握配方法的原理和步骤,能够运用配方法解一元二次方程。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的乐趣,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:配方法的原理和步骤,如何运用配方法解一元二次方程。
2.教学难点:配方法的推导过程,如何灵活运用配方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究和合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过复习一元二次方程的基本概念和解法,引出配方法的概念和作用。
2.自主探究:让学生自主探究配方法的原理和步骤,引导学生发现配方法的规律。
3.合作交流:让学生分组讨论,分享各自的方法和经验,互相学习和借鉴。
4.讲解示范:通过讲解和示范,让学生理解和掌握配方法的具体操作步骤。
5.练习巩固:布置一些练习题,让学生运用配方法解一元二次方程,巩固所学知识。
人教版数学九年级上册22.2.1《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,主要介绍了配方法的概念、意义和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,使问题更易于解决。
这一节内容是学生学习二次方程解决实际问题的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于解决一些简单的数学问题已经有了一定的方法。
但是在解决复杂的二次方程问题时,还需要进一步引导和培养。
在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行有针对性的教学,帮助学生理解和掌握配方法。
三. 教学目标1.理解配方法的概念和意义,掌握配方法的基本步骤。
2.能够运用配方法解决一些简单的二次方程问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的基本步骤的掌握。
3.运用配方法解决实际问题的能力的培养。
五. 教学方法1.讲解法:教师通过讲解配方法的概念、意义和步骤,帮助学生理解和掌握。
2.案例教学法:教师通过举例讲解,引导学生运用配方法解决实际问题。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学课件:教师准备相关的教学课件,帮助学生直观地理解和掌握配方法。
2.练习题:教师准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入配方法的概念,激发学生的兴趣和好奇心。
2.呈现(10分钟)教师讲解配方法的概念、意义和步骤,通过举例讲解,让学生理解和掌握。
3.操练(10分钟)学生分组讨论,共同解决问题,教师巡回指导,帮助学生巩固学习效果。
4.巩固(10分钟)教师出示一些相关的练习题,学生独立完成,教师点评和讲解。
5.拓展(10分钟)教师引导学生运用配方法解决一些实际问题,培养学生的解决问题的能力。
63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日1.式子44x +配成完全平方式,应加上( D )A. 4xB. ±4xC. 4x 2D. ±4x 22.用配方法解方程2250x x --=时,原方程应变形为( B )A .()216x +=B .()216x -=C .()229x +=D .()229x -=3.+-px x 2_________=(x -_________)2.4.x ab x -2+_________=(x -_________)2.5.方程2x 2+5x-3=0的解为6.解方程x 2-2x -1=0.7.解方程y 2-6y +6=0.8.解方程3x 2-4x =2.(完成时间:45分钟,满分:100分)一、选择题(每题5分,共25分)1.方程x 2-3x +2=0的解是 ( )A .1和2B .-1和-2C .1和-2D .-1和22.用配方法解方程x 2+2x =8的解为 ( )A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=23.用配方法解方程01322=--x x 应该先变形为 ( ) A .98)31(2=-x B .98)31(2-=-x C .910)31(2=-x D .0)32(2=-x 4.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).A .-2B .-4C .-6D .2或65.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为() A .12 B .15 C .12或15 D .不能确定二、填空题(每题5分,共25分)6.x x 232-+_________=(x -_________)2.7.方程x 2-6x +8=0的解是8.方程042=-x x 的解是______________.9.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.10.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______.三、解答题(每题10分,共50分)11.x 2+4x -3=0.12.x (x +4)=21.13.-2x 2+2x +1=0.14.2x -1=-2x 215.x 2+2mx =n .(n +m 2≥0).。
22.2.1配方法(第二课时)一、教学目标1、掌握配方法的推导过程,并能够熟练地进行配方.2、用配方法解数字系数的一元二次方程..二、重点难点重点:用配方法解一元二次方程。
难点:配方。
三、教学方法引导学习法四、教学过程【引入】1.解下列方程,3(x –2)2--36=0思考:利用直接开平方法解一元二次方程的特征是什么?形如(1)x2=b(b≥0 ),(2)(x+a)2=b (b≥0 )就可利用直接开平方法。
它的特征是:左边是一个关于未知数的完全平方式;右边是一个非负数。
符合这个特征的方程,就可利用直接开平方法。
2.要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各为多少?分析:设场地宽xm,长(x+6)m,根据矩形面积为16m2,列方程,x(x+6)=16即x2+6x-16=0.【互动】1. 怎样解方程x 2+6x-16=0?引导考虑用直接开方法解一元二次方程.(小组探索)移项: 1662=+x x配方: 916962+=++x x (方程两边同时加上一次项系数一半的平方)写成完全平方式: 25)3(2=+x采用直开法降次解题: 53±=+x解一元一次方程: 8,221-==x x像上边那样,通过配成完全平方的形式来解一元二次方程的方法,叫做配方法.强调:无论是直接开平方法还是配方法,其本质都是先降次,化成一元一次方程解决问题.2.复习完全平方公式:a 2± 2ab+b 2=(a ± b )2(1)x 2+6x+_____=(x+3)2(2)x 2+8x+_____=(x+___)2(3)x 2-16x+_____=( )2(4)x 2-5x+______=_________(5)x 2+px+______=_________师生共同讨论总结:给含有一个未知数的二次项和一次项配方时(二次项系数为1),要加上一次项系数一半的平方。
【讲解例题】例题1:解下列方程:(1) 0182=+-x x ;分 析:能否经过适当变形,将它们转化为(x+a )2=b 的形式,应用直接开方法求解?解(1)原方程化为 x 2 --8x=--1 (移项)x 2--8x+16=--1+16(方程两边同时加上16)15)4(2=-x (化为完全平方的形式)由此得: 154±=-x154;15421-=+=x x【小结】让学生反思本节课的解题过程,归纳小结出配方法解一元二次方程的步骤:1、把常数项移到方程右边,用二次项系数除方程的两边使新方程的二次项系数为1;2、在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。
教学过程设计一、复习引入导语:已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知探究课本问题1分析:1.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如 x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如 x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).探究课本问题21.根据题意列方程并整理成一般形式.2.将方程 x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像 x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?○1完成填空: x2+6x+ =(x+ )2○2方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习:。