信号完整性分析基础系列之一——眼图测量
- 格式:docx
- 大小:1.07 MB
- 文档页数:25
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,信号通过信道后,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间干扰的。
在码间干扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于实际评价系统的性能,常用所谓“眼图”。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的波形。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很象一只人的眼睛。
在图1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就指明失真的严重程度。
为便于说明眼图和系统性能的关系,我们将它简化成图2的形状。
由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。
衡量眼图质量的几个重要参数有:1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。
无畸变眼图的开启度应为100%。
眼图——概念与测量(摘记)中文名称:眼图英文名称:eyediagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
眼图实验报告眼图实验报告引言:眼图是一种常用的电信测量工具,用于分析数字信号的质量和稳定性。
通过观察信号在示波器屏幕上的显示,我们可以获得信号的波形、噪声和时钟抖动等信息。
本实验旨在通过眼图分析方法,对数字信号进行测量和评估。
一、实验目的本实验的主要目的是通过眼图实验,了解数字信号的质量和稳定性,并掌握使用眼图进行信号分析的方法。
二、实验原理眼图是一种通过示波器观察信号波形的方法。
在示波器屏幕上,我们可以看到一系列的“眼睛”,每个“眼睛”代表了一个数据位。
通过观察这些“眼睛”的开闭程度和位置,我们可以判断信号的质量和稳定性。
在眼图中,水平轴代表时间,垂直轴代表信号的电压。
每个“眼睛”由上下两条边界线和中间的开放区域组成。
边界线的位置和开放区域的大小反映了信号的噪声和时钟抖动情况。
边界线越平整,开放区域越大,表示信号质量越好;反之,表示信号质量较差。
三、实验步骤1. 连接示波器和信号源:将信号源的输出与示波器的输入相连。
2. 设置示波器参数:根据实际情况,设置示波器的触发模式、时间基准和垂直尺度等参数。
3. 调整示波器触发:通过调整示波器的触发模式和触发电平,使信号能够稳定地显示在示波器屏幕上。
4. 观察眼图:调整示波器的水平和垂直尺度,观察眼图的显示情况。
注意观察边界线的平整程度和开放区域的大小。
5. 分析眼图:根据眼图的显示结果,分析信号的质量和稳定性。
可以通过观察边界线的位置和开放区域的大小,判断信号是否存在噪声和时钟抖动。
6. 记录实验数据:将实验中观察到的眼图结果记录下来,以备后续分析和比较。
四、实验结果与分析通过眼图实验,我们观察到了不同信号的眼图,并进行了分析。
在实验中,我们发现开放区域较大、边界线平整的眼图代表了较好的信号质量和稳定性,而开放区域较小、边界线波动较大的眼图则表示信号质量较差。
实验中,我们还观察到了一些常见的眼图特征。
例如,当信号存在噪声时,眼图的开放区域会变小,边界线会变得不规则;当信号存在时钟抖动时,眼图的边界线会出现波动。
眼图测量的概念眼图测量是一种用于分析和评估数字通信系统的技术。
在数字通信中,信息以数字信号的形式传输,而数字信号由一系列离散的样本组成。
眼图测量通过显示和分析这些样本的时域波形,从而提供关于系统性能的重要信息。
在眼图中,每个数字信号样本被绘制为一个脉冲,这些脉冲被垂直堆叠在一起形成一个图像,类似于一个开放的眼睛。
每个脉冲代表着一个时刻的信号状态,而整个眼图则显示了多个时刻的信号状态的叠加。
通过观察眼图的形状、宽度和高度等特征,可以获得关于系统的多种信息。
眼图主要提供以下几个方面的信息:1. 时基抖动:眼图的开口宽度可以反映系统的时基抖动性能。
时基抖动是由于时钟不准确或传输路径中的噪声引起的,它会导致样本位置的不确定性。
如果眼图的开口很窄,意味着系统中存在较大的时基抖动,这可能会导致信号误码率的增加。
2. 眼图的对称性:眼图的对称性可以反映系统的码间干扰情况。
如果眼图两边的形状不对称,即开口宽度不一致,可能表明系统中存在码间干扰或码间失配。
码间干扰会导致信号间的互相干扰,增加误码率。
3. 眼图的噪声水平:眼图的噪声水平可以反映系统的噪声性能。
噪声会导致信号波形的不规则性和抖动,从而影响系统的可靠性和性能。
通过观察眼图的噪声水平,可以评估系统的抗噪声性能。
4. 采样时刻偏移:眼图可以显示信号采样时刻的偏移情况。
采样时刻偏移会导致信号样本的错位,从而影响信号的恢复和解调。
通过观察眼图的采样时刻偏移情况,可以判断系统是否存在采样时刻同步问题。
除了以上几个方面的信息,眼图还可以用于估计信号的传输带宽、检测系统中的串扰和非线性等问题。
通过对眼图的仔细分析,可以发现可能存在的问题,并采取相应的调整和优化措施,以提高系统的性能和稳定性。
眼图测量可以使用专用的示波器、时钟回路、采样仪等设备进行。
这些设备可以通过触发和同步功能来捕获和显示眼图。
通过调整样本时钟、增加采样速率、降低噪声等措施,可以改善眼图的质量和可读性,并获得更准确的眼图测量结果。
眼图的概念眼图是指在频谱分析中常出现的一种信号特征,通常用来表示信号的带宽与中心频率。
它是通过对信号进行傅里叶变换后,在频域中观察信号的频谱特征得到的。
眼图主要用于对数字通信系统中的时域信号进行分析和评估,以了解信道传输性能和判断系统的可靠性。
眼图的原理是基于信号的采样和重构过程。
当信号经过采样和重新构造后,得到的信号会受到噪声和其他干扰的影响,因此在信号的波形上会出现一定的失真和扭曲。
而眼图可以通过观察信号的波形特征来判断信号的质量和误码率等性能指标。
眼图的基本形状是一串类似于“眼睛”的波形,其中包含了信号的多个周期。
在眼图中,通常可以观察到信号的上下垂直边界和左右水平边界,它们分别代表了信号的幅度和时间轴。
而眼图中的开口宽度和深度则代表了信号的峰-峰值(也即电平差)和噪声信号。
眼图的开口宽度反映了信号的峰-峰值。
如果开口很窄,代表峰-峰值很小,即信号的幅度很小。
而如果开口很宽,代表峰-峰值较大,即信号的幅度较大。
通过对眼图开口宽度的观察,可以判断信号的灵敏度和抗干扰能力。
眼图的深度则反映了信号中的噪声。
如果眼图深度很浅,代表噪声信号很小,即信号的质量很好。
而如果眼图深度很深,代表噪声信号很大,即信号的质量较差。
通过对眼图深度的观察,可以判断信号的信噪比和误码率。
眼图的另一个重要特征是眼图的跳动,即眼图上各个周期的变化。
这种跳动反应了信号在传输过程中的时钟偏移和抖动等问题。
通过对眼图跳动的观察,可以判断信号的时钟同步性和时钟失真程度。
眼图的分析主要通过眼图的偏移、闭合度和对称性等指标进行。
眼图的偏移表示了信号的直流偏移情况,可以判断信号的偏置和直流分量。
眼图的闭合度表示了信号的完整性,可以判断信号的时钟同步性和时延扩大情况。
而眼图的对称性表示了信号的对称性,可以判断信号的相位和频率稳定性。
在实际应用中,眼图常用于数字通信系统的调试和优化。
通过对眼图进行分析,可以发现系统中的时钟同步问题、噪声干扰问题和时域失真问题等,并采取相应的措施进行改进和优化。
眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
高速信号完整性测试之抖动分析和眼图JITTER ANAL YSIS&EYE DIAGRAM高速信号完整性测试的意义随着电子技术的飞速发展,数字信号的传输速率不断提升,码元周期(一个码元的持续时间或周期)越来越窄。
使得信号在传输过程中更容易受到各种干扰和损耗。
信号完整性测试能够帮助工程师准确评估信号质量,预测系统在实际运行中的性能,从而在设计阶段就避免潜在的问题。
通过信号完整性测试,可以优化电路设计、选择合适的元器件和布线方式,提高系统的抗干扰能力和稳定性。
高速串行总线介绍优势:1.并行总线时钟速率物理限制在1GHz至2GHz左右,因为单个时钟和数据线引入的偏斜会在更高的速率下导致误码。
串行总线有效的解决了这个问题;2.以差分信号进行传输,有很高的共模抑制比;3.使用嵌入式时钟,免除时钟与数据传输的延时误差;4.多条串行链路可以连贯地捆绑在一起,使之有更高的数据吞吐量,PCB布线也更加简洁;5.更长的传输距离,更快地传输速度。
如USB3.2单条lane传输速率可以达到10Gbps,更高的USB4.0可以达到20Gbps。
劣势:1.码元周期越来越窄,信号高于5Gbps时,信号质量会给模拟设计带来极大的挑战;码元:数字通信系统中的基本单位,一个码元可包括一位二进制数“1”、“0”,也可包括二位二进制数“00”、“01”、“10”、“11”,当然也可包括三位及以上二进制数。
这个码元的持续时间长度就是码元周期,码元周期越窄,信号速率越高,因为单位时间内传输更多的码元需要更短的码元周期。
2.需要使用高质量的PCB、连接器和线缆才能保证高速信号完美的传输;3.设计高速串行链路时需要考虑采用合适的技术来最大限度地减少信号失真;在如此快速的信号环境中,信号完整性测试就变得尤为重要。
特别是数据的抖动以及使用眼图进行信号质量的评估,是工程师最常用最直接的方法。
高速信号中的抖动抖动的概念:抖动指的是信号理想边沿和实际边沿之间的偏差。
眼图的名词解释眼图(Eye diagram)是一种用于电信领域信号质量评估的图形分析工具。
它利用实际信号的采样数据绘制而成,通常呈现为上方为信号波形,下方为相关的信号参数。
眼图通过将连续波形的多个周期叠加在一起,形成多个瞬态过程的重叠,从而提供了信号的稳态和瞬态特征的直观展示。
它能够有效地反映信号的时域和频域特征,以及信号的抗干扰能力、传输质量和时钟恢复性能。
眼图的形状和特征对于信号的质量评估至关重要。
通过观察眼图,我们可以判断信号的完整性和稳定性。
一个清晰、稳定的眼图表示信号传输良好,存在较高的抗噪声和干扰能力。
相反,如果眼图模糊或变形,可能意味着信号存在时钟偏移、抖动、畸变或其他噪声问题。
眼图常用于高速数字通信系统的设计、调试和故障排除中。
它可以帮助工程师确定信号失真的原因,并调整系统参数以提高传输质量。
通过观察眼图,工程师可以识别出信号的主要问题,例如噪声、时钟偏移、串扰、 ISI(Inter-Symbol Interference,符号间干扰)等。
在信号调试中,工程师通常会根据眼图上的特征,对发送和接收端的设备进行相应的调整和优化。
眼图在不同应用领域具有广泛的应用。
在电信领域,眼图可以用于评估数字通信系统的性能,例如以太网、光纤通信、无线通信等。
在光学领域,眼图可以帮助工程师分析光信号的传输质量,以便改善光通信系统的性能。
在高频电路设计中,眼图可以用于评估高速信号的时钟恢复和数据传输能力。
综上所述,眼图是一种用于信号质量评估的重要工具,具有直观、全面的特点。
通过观察眼图,我们可以深入了解信号的稳态和瞬态特征,从而改进通信系统的性能。
眼图的应用范围广泛,对于电信、光学和电路设计等领域都具有重要意义。
随着通信技术的发展,眼图将继续发挥其重要的作用,帮助我们理解和优化信号传输的质量和性能。
班级通讯1403学号2姓名裴振启指导教师邵军花日期实验 2眼图察看丈量实验一、实验目的学会察看眼图及其剖析方法,调整传输滤波器特征。
二、实验仪器1. 眼图察看电路2.时钟与基带数据发生模块,位号:G3. PSK调制模块,位号A4.噪声模块,位号B5. PSK解调模块,位号C6.复接 / 解复接、同步技术模块,位号:I7. 20M 双踪示波器 1 台三、实验原理在整个通讯系统中,往常利用眼图方法预计和改良(经过调整)传输系统性能。
所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少量码元周期频频扫描在示波器屏幕上显示的波形称为眼图。
扰乱和失真所产生的传输畸变,能够在眼图上清楚地显示出来。
因为关于二进制信号波形,它很像人的眼睛故称眼图。
在图 2-1 中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰 )。
图 2-1 中能够看出,眼图是由虚线分段的接收码元波形叠加构成的。
眼图中央的垂直线表示取样时辰。
当波形没有失真时,眼图是一只“完整张开”的眼睛。
在取样时辰,全部可能的取样值仅有两个: +1 或 -1。
当波形有失真时,“眼睛”部分闭合,取样时辰信号取值就散布在小于 +1 或大于 -1 邻近。
这样,保证正确裁决所允许的噪声电平就减小了。
换言之,在随机噪声的功率给准时,将使误码率增添。
“眼睛”张开的大小就表示失真的严重程度。
眼图图 2-1 无失真及有失真时的波形及眼图(a)无码间串扰时波形;无码间串扰眼图(b)有码间串扰时波形;有码间串扰眼图通讯工程实验教课中心通讯系统原理实验报告在图 2-2 中给出从示波器上察看到的比较理想状态下的眼图照片。
本实验主假如达成PSK解调输出基带信号的眼图观察实验。
(a) 二进制系统(b) 随机数据输入后的二进制系统图 2-2 实验室理想状态下的眼图四、各丈量点和可调元件作用底板右侧“眼图察看电路”W06 :接收滤波器特征调整电位器。
信号完整性分析基础系列之关于眼图测量(上)作者:汪进进来源:不详发布时间:2010-3-17 11:47:24 [收藏] [评论]信号完整性分析基础系列之关于眼图测量(上)眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,19 62年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。
眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。
SI-list【中国】信号完整性基础▏眼图(EyeDiagram)眼图(Eye Diagram)可以显示出数字信号的传输质量,经常用于需要对电子设备、芯片中串行数字信号或者高速数字信号进行测试及验证的场合,归根结底是对数字信号质量的一种快速而又非常直观的观测手段。
消费电子中,芯片内部、芯片与芯片之间经常用到高速的信号传输,如果对应的信号质量不佳,将导致设备的不稳定、功能执行错误,甚至故障。
眼图反映的是数字信号受物理器件、信道的影响,工程师可以通过眼图,迅速得到待测产品中信号的实测参数,并且可以预判在现场可能发生的问题。
1.眼图的形成对于数字信号,其高电平与低电平的变化可以有多种序列组合。
以3个bit为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。
如图1。
对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。
图1. 眼图的形成2.眼图中包含的信息对于一幅真实的眼图,如图2,首先我们可以看出数字波形的平均上升时间(Rise Time)、下降时间(Fall Time)、上冲(Overshoot)、下冲(Undershoot)、门限电平(Threshold/Crossing Percent)等基本的电平变换的参数。
图2. 电平变换参数信号不可能每次高低电平的电压值都保持完全一致,也不能保证每次高低电平的上升沿、下降沿都在同一时刻。
如图3,由于多次信号的叠加,眼图的信号线变粗,出现模糊(Blur)的现象。
所以眼图也反映了信号的噪声和抖动:在纵轴电压轴上,体现为电压的噪声(Voltage Noise);在横轴时间轴上,体现为时域的抖动(Jitter)。
图3. 噪声和抖动由于噪声和抖动,眼图上的空白区域变小。
如图4,在除去抖动和噪声的基础上,眼图上空白的区域在横轴上的距离称为眼宽(Eye Width),在眼图上叠加的数据足够多时,眼宽很好的反映了传输线上信号的稳定时间;同理,眼图上空白的区域在纵轴上的距离称为眼高(Eye Height),在眼图上叠加的数据足够多时,眼高很好的反映了传输线上信号的噪声容限,同时,眼图中眼高最大的地方,即为最佳判决时刻。
最常用的就是眼图的测量方法,眼图测试分析
波形参数测试是数字信号质量评估最常用的测量方法,但是随着数字信号速率的提高,仅仅靠幅度、上升时间等的波形参数的测量方法越来越不适用了。
比如下图的一个5Gbps的信号来说,由于受到传输通道的损耗的影响,不同位置的信号的幅度、上升时间、脉冲宽度等都是不一样的。
不同的操作人员在波形的不同位置测量得到的结果也是不一样的。
因此我们必须采用别的方法对于信号的质量进行评估,对于高速数字信号来说最常用的就是眼图的测量方法。
所谓眼图,实际上就是高速数字信号不同位置的数据比特按照时钟的间隔叠加在一起自然形成的一个统计分布图。
下面几张图显示了眼图的形成过程。
我们可以看到,随着叠加的波形数量的增加,数字信号逐渐形成了一个个类似眼睛一样的形状,我们就把这种图形叫做眼图。
硬件测试中的信号完整性与时序分析硬件测试在现代电子领域中起着至关重要的作用。
其中,信号完整性与时序分析是硬件测试过程中的两个关键方面。
本文将深入探讨信号完整性与时序分析的概念、重要性以及测试方法,以帮助读者更好地理解和应用于实际项目中。
一、信号完整性信号完整性指的是电子系统中信号的传输过程中是否能够保持其原始质量、准确性和稳定性。
在高速数字电路设计和通信系统中,信号完整性是确保信号正确、可靠地传输的关键因素。
信号完整性问题可能导致信号失真、时序错误、干扰噪声等问题,从而降低系统性能甚至引发系统故障。
为了确保信号完整性,硬件测试中常常采用以下几种方法:1. 眼图测量:眼图可以直观地展示信号的质量和稳定性。
通过该方法,测试人员可以判断信号的抖动情况、噪声水平和时钟同步等问题。
2. 波形分析:利用示波器等测试仪器,测试人员可以对信号的电压、频率、上升沿和下降沿等参数进行精确测量,并与标准波形进行比较,以评估信号质量。
3. 串扰分析:在高密度布线的电子系统中,邻近信号线之间可能会发生串扰现象,影响信号完整性。
通过串扰分析,测试人员可以发现并修复潜在的信号干扰问题。
4. 电磁兼容性(EMC)测试:在电子设备中,电磁辐射和电磁感应可能会对信号完整性产生不利影响。
EMC测试可以评估设备在电磁环境下的安全性和干扰抗性。
二、时序分析时序分析是硬件测试中另一个重要的方面,它涉及到信号在电路中传输的时间和顺序。
在高速数字系统和通信领域中,准确地控制和分析信号的时序关系至关重要,任何时序错误都可能导致系统失效。
在时序分析中,常用的测试方法有:1. 时钟信号分析:时钟信号是数字系统中的同步基准,对于时序分析至关重要。
通过测量时钟信号的频率、占空比和抖动等参数,可以评估系统的时序稳定性。
2. 延迟分析:在数字电路中,各个逻辑门的延迟可能存在差异,从而导致时序错误。
通过测量电路中各个节点的延迟情况,可以发现潜在的时序问题并进行优化。
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。
眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
图一眼图(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
”是该专门写篇文章详细讲解眼图了!写得不正确、不到位的地方,恳请大家指正,以使这篇文章将能不断修改完善,有益于广大工程师们的学习。
一、串行数据的背景知识串行信号种类繁多,在图二所示的有PCI Express,Rapid IO,DVI,S-ATA,USB,SDH,XAUI,等,其实现在的流行总线还远不止这些。
每年都出来一些新流行的串行总线。
每些总线差不多都有一个权威机构来定义该总线的信号标准和测试规范,这些机构成员多是由来自于不同公司的专家兼职担任。
当然,关于PC的串行总线差不多由Intel来领导。
图三所示某基于Intel Chipset的笔记本电脑的框架图中的各种总线,除了DDR和FSB是并行数据之外,其它都是串行数据了。
这些权威机构除了定义规范,当然也会有一些利益博弈。
所以有新的利益集团(这是一个中性的词)策划推广的时候就可能有新的总线规范出台,这就象3G有三种标准一样。
你方唱罢我登场,搞得下游厂商手忙脚乱。
串行数据总线越来越多,权威机构定义的测试规范也纷繁芜杂,我一直觉得该将这么多的权威机构统一为一个权威机构,就叫“串行总线国际工程师协会”好了,如果力科最先发起并领导这个协会,然后定义一系列的串行信号测试规范中都只推荐力科示波器,那么亲爱的朋友们,这个Day Dream的最终结果是什么?示波器行业也许会重新大洗牌。
人们总相信权威机构推荐的,譬如我们平时用牙膏等都会相信“中华医学会”之类的推荐.信号速率不断加倍再加倍,2004年我刚到力科的时候,主流的串行信号速率在PC行业是2.5Gb/s,在通信行业是3.125Gb/s,如今,PC行业已Double到5Gb/s,通信行业已Double到6.25Gb/s,而且PC行业的8Gb/s,通信行业的12.5Gb/s似乎已指日可待。
速率越来越高,并行数据必然要让位于串行数据。
串行数据传输的典型结构框图如图三所示,“万变不离其宗”,都是“两根差分线”。
相比于并行数据,串行数据的优点是:1,信号线的数量减少。
2,消除了并行数据之间传输的延迟问题。
图二串行数据的整体特点图三某笔记本电脑架构示意图3,因为时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了。
4, 传输线的PCB设计也更容易些。
5, 信号完整性测试也更容易。
图四串行信号实例串行数据的测试点包括了芯片的发送端和接收端等不同节点。
描述串行数据的常用单位是波特率和UI,譬如3.125Gb/s表示为每秒传送的数据比特位是3.125G比特(bit),对应的一个单位间隔(1UI)表示为一个比特位的宽度是波特率的倒数,1UI=1/(3.125Gb/s)=320ps。
现在比较常见的串行信号码形是NRZ码。
正电平表示”1”,负电平表示“0”。
图三所示是示波器捕获到的一组串行信号,虚线之间的时间间隔代表了一个UI,图中对应的码型是101100101010001。
二、眼图的一些基本概念—“什么是眼图?”—“眼图就是象眼睛一样形状的图形。
”眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。
眼睛的形状各种各样,眼图的形状也各种各样。
通过眼图的形状特点可以快速地判断信号的质量。
图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。
图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。
图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。
图五眼图定义图六“双眼皮”眼图由于眼图是用一张图形就完整地表征了串行信号的比特位信息,所以成为了衡量信号质量的最重要工具,眼图测量有时侯就叫“信号质量测试(Signal Quality Test,SQ Test)”。
此外,眼图测量的结果是合格还是不合格,其判断依据通常是相对于“模板(Mask)”而言的。
模板规定了串行信号“1”电平的容限,“0”电平的容限,上升时间、下降时间的容限。
所以眼图测量有时侯又被称为“模板测试(Mask Test)”。
模板的形状也各种各样,通常的NRZ信号的模板如图五和图八蓝色部分所示。
在串行数据传输的不同节点,眼图的模板是不一样的,所以在选择模板时要注意具体的子模板类型。
如果用发送端的模板来作为接收端眼图模板,可能会一直碰模板。
但象以太网信号、E1/T1的信号,不是NRZ码形,其模板比较特别。
当有比特位碰到模板时,我们就认为信号质量不好,需要调试电路。
有的产品要求100%不能碰模板,有的产品是允许碰模板的次数在一定的概率以内。
(有趣的是,眼图85%通过模板的产品,功能测试往往是没有问题的,譬如我在用的电脑网口总是测试不能通过,但我上网一直没有问题。
这让很多公司觉得不用买示波器做信号完整性测试以一样可以做出好产品来,至于山寨版的,更不会去买示波器测眼图了。
)示波器中有测量参数可自动统计出碰到模板的次数。
此外,根据“侵犯”模板的位置就能知道信号的哪方面有问题从而指导调试。
如图九表明信号的问题主要是下降沿太缓,图十表明1电平和0电平有“塌陷”,可能是ISI问题导致的。
图七“眼睛布满血丝”的眼图图八最漂亮的“眼睛”图九下降沿碰到模板的眼图图十“1”电平和“0”电平有“塌陷”的模板和眼图相关的眼图参数有很多,如眼高、眼宽、眼幅度、眼交叉比、“1”电平,“0”电平,消光比,Q因子,平均功率等。
图十二表示幅度相关的测量参数的定义。
“1”电平和”0”电平表示选取眼图中间的20%UI部分向垂直轴投影做直方图,直方图的中心值分别为“1”电平和“0”电平。
眼幅度表示“1”电平减去“0”电平。
上下直方图的3sigm之差表示眼高。
图十二、十三、十四,十五表示了其它一些眼图参数的定义,一目了然,在此不再一一描述。
不过,有经验的工程师知道,在眼图形象很糟糕的时候,眼图参数测试的结果显得很不准确。
这时候,建议您可以用力科的自定义眼高测量方法来测量,如图十六所示。
图十一眼图参数定义图十二眼图参数定义图十三眼图参数定义图十四眼图参数定义图十五眼图参数定义图十六自定义眼高测量方法信号完整性分析基础系列之二——关于眼图测量(下)汪进进美国力科公司深圳代表处三、眼图测量方法之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。
传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single-Bit Eye”。
现代眼图测量方法用另外两个英文关键词来表示:“Continuous-Bit Eye ”和“Single-Shot Eye”。
传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。
两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。
“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。
“叠加显示”就是用模拟余辉的方法不断累积显示。
传统的眼图方法就是同步触发一次,然后叠加一次。
每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single-Bit Eye”,每触发一次眼图上只增加了一个比特位。