20150706三星高一数学试题(答案)
- 格式:doc
- 大小:391.00 KB
- 文档页数:4
2014-2015学年度第二学期期末调研考试高一数学试题(B )一、填空题:本大题共14小题,每小题5分,共计70分.1.3 2.56 3.83 4.4 5 6.4π 138.4或1-9.10 10.120 11.sin(2)12y x π=+ 12.[0,]3π 13.214.2-二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)因为),2(ππα∈,53sin =α,所以54cos -=α. ………3分于是2524)54(532cos sin 22sin -=-⨯⨯==ααα. ………7分(2)3sinsin 3coscos )3cos(παπαπα+=-………11分10433235321)54(-=⨯+⨯-=. ………14分 16.解:从6件产品中任意抽检2件,基本事件共有5+4+3+2+1=15个. ………4分 (1)记“两件产品中至多有1件是二等品”为事件A , 则A 表示事件“两件产品全是二等品”,则1()15P A =,故14()15P A =.………6分 或:无二等品的抽检方法共有3+2+1=6种;1件二等品另1件为一、三等品的抽检方法共有2×4=8种, 故事件A 含有14个基本事件,故14()15P A =. (2)记“两件产品的等级不同”为事件B .1件一等品、1件二等品的抽检方法共有6种; ………8分 1件二等品、1件三等品的抽检方法共有2种; ………10分 1件一等品、1件三等品的抽检方法共有3种. ………12分 于是,事件B 包含的基本事件共有6+2+3=11个,故11()15P B =. ………13分 答:两件中至多有1件是三等品的概率为1514; 两件产品的等级不同的概率为1115. ………14分 17.解:(1)取AB 中点E ,连结CE . 因AB ∥CD ,且2AB CD =,故AE CD =,AE ∥CD , ………3分四边形AECD 为平行四边形,EC AD ==a .EB EC CB =+=a -b ,AB =2(a -b ).AC AB BC =+=2(a -b )+b =2a -b . ………7分(2)因AD =a ,AB =2(a -b ),34AP =a λ+b ,故DB AB AD =-=2(a -b )-a =a -2b , ………10分DP AP AD =-=(34a λ+b )-a =14-a λ+b ,由B ,D ,P 三点共线得λ=12. ………14分18.解:(1)过B ,C 分别作BF OA ⊥,CE OA ⊥,垂足为F ,E , 则sin BF CE θ==,cos OF θ=,1cos AF DE θ∴==-.在Rt COE ∆中,3COE π∠=,tan3CE OE π∴==, cos BC EF θ∴== ………6()2AD BC BFS EA BF +⋅∴==⋅(1sin θ=-⋅2sin θ=,(0,)3πθ∈.………10分(2)存在面积为6等腰梯形ABCD . 由(1)得2sin 6θ=, ………12分 22sin 10θθ∴-+=,sin θ∴=………14分 sin θ<,sin θ∴=. 答:(1)等腰梯形ABCD 的面积S 的函数关系式为2sin S θ=,(0,)3πθ∈.(2)存在面积为6等腰梯形ABCD ,此时梯形的高即为12.………16分 (第18题图)ABCD E (第17题图)19.解:(1)因为||||OA λ=,||1OB =, ………2分OA OB =(sin cos cos sin )λαβαβ+=sin32πλλ=, ………4分 所以22||()AB OB OA =-222OB OB OA OA =-⋅+132+-=λλ21(24λ=-+14≥, ………8分当λ=时等号成立,所以||AB 的最小值为12. ………10分(2)因为OA ,OB 的夹角θ, 所以3cos ||||OA OB OA OB θ⋅==. ………12分 当0λ>时,23cos =θ,πθ≤≤0, 6πθ=; ………14分当0λ<时,23cos -=θ,πθ≤≤0,65πθ=. ………16分20.解:()sin()3f x x πω=+(0)ω>的最小正周期为4π,故12ω=.………2分 (1)()sin()23x f x θπθ++=+. 若()y f x θ=+(02θπ<<)为偶函数,则sin()23x θπ++sin()23x θπ-=+对x ∈R 都成立. ………4分 展开得sin cos()0223x θπ+=,于是cos()023θπ+=, ………6分所以232k θπππ+=+(k ∈Z ),即23k πθπ=+(k ∈Z ),又02θπ<<,所以3πθ=. ………8分(2)由4()5f α=得4sin()235απ+=. 因0απ<<,故53236παππ<+<. ………10分注意到14252<<,于是52236παππ<+<.所以3cos()235απ+=-, ………12分 于是24324sin()2()35525πα+=⨯⨯-=-. ………14分 所以sin()3πα-224sin()sin()3325ππαπα=--+=-+=. ………16分。
2015年楚雄州普通高中学年末教学质量检测高一数学试题参考答案与评分标准二、填空题:本大题共4小题,每小题5分,共20分。
三.解答题:本大题共6个小题,共70分。
(17) (本小题满分10分)解:(Ⅰ)样本数据的众数是12(1分)。
样本数据的中位数是121714.52+=(3分)。
样本数据的平均数是8910121217182021231510+++++++++= (6分)。
(Ⅱ)根据样本数据估计总体的思想可得,这100件中药材重量的平均数是15克,因此,估计这100件中药材的总重量约为100×15=1500克(10分)。
(18) (本小题满分12分)解:(I )由三角函数的定义得αcos =-53,αsin =54(2分),则原式=αααααααααααcos cos sin )cos (sin cos 2cos sin 1cos 2cos sin 22++=++=2=α2cos 2×(-53)2=2518(6分)。
(II )∵⋅=0,∴OP ⊥OQ ∴,2πβα=-∴2παβ-=(8分),∴53cos )2sin(sin =-=-=απαβ,54sin )2cos(cos ==-=απαβ(10分)。
∴βαβαβαsin cos cos sin )sin(+=+=54×54+(-53)×53=257(12分)。
(19) (本小题满分12分)解:设从甲、乙两个盒子中各取1个球,其数字分别为x ,y ,用(x ,y)表示抽取结果,则所有可能的结果有16种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(4分).(I )设“取出的两个球上的标号相同”为事件A ,则A ={(1,1),(2,2),(3,3),(4,4)}.所以取出的两个球上的标号为相同数字的概率为P(A)=164=41(6分). (II )设“取出的两个球上标号的数字之积能被3整除”为事件B ,则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)},所以取出的两个球上标号之积能被3整除的概率为P(A)=167(12分). (20)(本小题满分12分)证明:(I )在△BCD 中,点E 、F 分别是BD 、BC 的中点,故EF ∥CD (2分),又因EF ⊄平面PCD ,CD ⊂平面PCD ,故EF ∥平面PCD (4分)。
2015年普通高等学校招生全国统一考试课标全国Ⅰ文科数学考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,文1)已知集合A={x|x=3n+2,n ∈N },B={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 答案:D解析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14.所以A ∩B={8,14}.故选D .2.(2015课标全国Ⅰ,文2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 答案:A解析:∵AB=OB −OA =(3,2)-(0,1)=(3,1),AC =(-4,-3), ∴BC=AC −AB =(-4,-3)-(3,1)=(-7,-4). 3.(2015课标全国Ⅰ,文3)已知复数z 满足(z-1)i =1+i,则z=( ) A .-2-i B .-2+i C .2-i D .2+i 答案:C解析:∵(z-1)i =1+i,∴z=1+i i +1=(1+i )(-i )-i2+1=1-i +1=2-i . 4.(2015课标全国Ⅰ,文4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .3 B .1C .1 D .1 答案:C解析:从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为1.5.(2015课标全国Ⅰ,文5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB|=( ) A .3 B .6 C .9 D .12答案:B解析:∵抛物线y 2=8x 的焦点坐标为(2,0),∴E 的右焦点的坐标为(2,0).设椭圆E 的方程为x 22+y 2b2=1(a>b>0),∴c=2.∵c =1,∴a=4.∴b 2=a 2-c 2=12,于是椭圆方程为x 216+y 212=1.∵抛物线的准线方程为x=-2,将其代入椭圆方程可得A (-2,3),B (-2,-3),∴|AB|=6. 6.(2015课标全国Ⅰ,文6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案:B解析:设圆锥的底面半径为R,高为h.∵米堆底部的弧长为8尺,∴1 4·2πR=8,∴R=16π.∵h=5,∴米堆的体积V=1×1πR2h=1×π×162×5.∵π≈3,∴V≈320(立方尺).∴堆放的米约有320≈22(斛).7.(2015课标全国Ⅰ,文7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A.17B.19C.10D.12答案:B解析:∵公差d=1,S8=4S4,∴8(a1+a8)=4×4(a1+a4),即2a1+7d=4a1+6d,解得a1=1.∴a10=a1+9d=1+9=19.8.(2015课标全国Ⅰ,文8)函数f(x)=cos(ωx+φ)的部分图像如图所示,则f(x)的单调递减区间为()A. kπ-1,kπ+3,k∈ZB.2kπ-14,2kπ+34,k∈ZC. k-14,k+34,k∈ZD.2k-1,2k+3,k∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2×54-14=2,所以2π=2,解得ω=π.所以f(x)=cos(πx+φ).由图像可知,当x=1214+54=34时,f(x)取得最小值,即f3=cos3π+φ =-1, 解得3π+φ=2kπ+π(k∈Z), 解得φ=2kπ+π4(k∈Z).令k=0,得φ=π4,所以f(x)=cos πx+π4.令2kπ≤πx+π≤2kπ+π(k∈Z),解得2k-14≤x≤2k+34(k∈Z).所以函数f(x)=cos πx+π4的单调递减区间为2k-14,2k+34(k∈Z).结合选项知选D.9.(2015课标全国Ⅰ,文9)执行下面的程序框图,如果输入的t=0.01,则输出的n=()A .5B .6C .7D .8答案:C解析:由于S=1,n=0,m=12,t=0.01,则S=S-m=12,m=m 2=14,n=n+1=1,S>0.01;S=1,m=1,n=2,S>0.01;S=1,m=1,n=3,S>0.01; S=116,m=132,n=4,S>0.01; S=132,m=164,n=5,S>0.01; S=1,m=1,n=6,S>0.01; S=1128,m=1256,n=7,S<0.01,结束循环,此时输出的n=7.10.(2015课标全国Ⅰ,文10)已知函数f (x )= 2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A .-74B .-54C .-34D .-14答案:A解析:∵f (a )=-3,∴当a ≤1时,f (a )=2a-1-2=-3,即2a-1=-1,此等式显然不成立. 当a>1时,f (a )=-log 2(a+1)=-3,即a+1=23,解得a=7.∴f (6-a )=f (-1)=2-1-1-2=14-2=-74. 11.(2015课标全国Ⅰ,文11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,文12)设函数y=f (x )的图像与y=2x+a 的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a=( ) A .-1 B .1 C .2 D .4 答案:C解析:设(x ,y )是函数y=f (x )图像上的任意一点,它关于直线y=-x 的对称点为(-y ,-x ),由已知得点(-y ,-x )在曲线y=2x+a 上,∴-x=2-y+a ,解得y=-log 2(-x )+a ,即f (x )=-log 2(-x )+a.∴f (-2)+f (-4)=-log 22+a+(-log 24)+a=1, 解得a=2.第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,文13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 答案:6解析:∵a n+1=2a n ,即an +1n=2,∴{a n }是以2为公比的等比数列. 又a 1=2,∴S n =2(1-2n )1-2=126.∴2n =64,∴n=6.14.(2015课标全国Ⅰ,文14)已知函数f (x )=ax 3+x+1的图像在点(1,f (1))处的切线过点(2,7),则a= . 答案:1解析:∵f'(x )=3ax 2+1,∴f'(1)=3a+1,即切线斜率k=3a+1.又f (1)=a+2,∴已知点为(1,a+2).而由过(1,a+2),(2,7)两点的直线的斜率为a +2-71-2=5-a , ∴5-a=3a+1,解得a=1.15.(2015课标全国Ⅰ,文15)若x ,y 满足约束条件 x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z=3x+y 的最大值为 .答案:4解析:画出约束条件对应的可行域(如图阴影部分所示),由 x -2y +1=0,x +y -2=0解得 x =1,y =1,即点A 的坐标为(1,1).由z=3x+y ,得y=-3x+z.作出直线l 0:y=-3x ,并平移,当直线经过点A 时,直线在y 轴上的截距最大,即z 最大. 所以z max =3×1+1=4.16.(2015课标全国Ⅰ,文16)已知F 是双曲线C :x 2-y 2=1的右焦点,P 是C 的左支上一点,A (0,6 ).当△APF 周长最小时,该三角形的面积为 . 答案:12 6解析:设双曲线的左焦点为F 1,如图.由双曲线的定义知|PF|=2a+|PF 1|,∴△APF 的周长为|PA|+|PF|+|AF|=|PA|+(2a+|PF 1|)+|AF|=|PA|+|PF 1|+(2a+|AF|).由于2a+|AF|是定值,要使△APF 的周长最小,则应使|PA|+|PF 1|最小,即P ,A ,F 1三点共线. ∵A (0,6 ),F 1(-3,0),∴直线AF 1的方程为x -36 6=1,即x=2 6-3. 将其代入x 2-y 2=1得y 2+6 6y-96=0,解得y=2 6或y=-8 6(舍去), 因此点P 的纵坐标为2 6. ∴S △APF =S △AF 1F −S △PF 1F =12·|F 1F|·y A -12·|F 1F|·y P=1×6×6 6−1×6×2 6=12 6. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,文17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B=2sin A sin C. (1)若a=b ,求cos B ; (2)设B=90°,且a= ,求△ABC 的面积. 解:(1)由题设及正弦定理可得b 2=2ac.又a=b ,可得b=2c ,a=2c.由余弦定理可得cos B=a 2+c 2-b 22ac=14.6分(2)由(1)知b 2=2ac. 因为B=90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c=a= 2. 所以△ABC 的面积为1.12分18.(本小题满分12分)(2015课标全国Ⅰ,文18)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD. (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC=120°,AE ⊥EC ,三棱锥E-ACD 的体积为 63,求该三棱锥的侧面积. 解:(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.故AC ⊥平面BED.又AC ⊂平面AEC ,所以平面AEC ⊥平面BED. 5分(2)设AB=x ,在菱形ABCD 中,由∠ABC=120°,可得AG=GC= 32x ,GB=GD=x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG= 32x.由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE= 2x. 由已知得,三棱锥E-ACD 的体积 V E-ACD =13×12AC ·GD ·BE= 624x 3= 63.故x=2.9分从而可得AE=EC=ED=所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E-ACD 的侧面积为3+2 5.12分19.(本小题满分12分)(2015课标全国Ⅰ,文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.8888表中w i = i ,w =1∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.8=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值 y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 12分20.(本小题满分12分)(2015课标全国Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x-2)2+(y-3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ·ON=12,其中O 为坐标原点,求|MN|. 解:(1)由题设,可知直线l 的方程为y=kx+1.因为l 与C 交于两点,所以 1+k <1.解得4- 7<k<4+ 7.所以k 的取值范围为4- 73,4+ 73. 5分(2)设M (x 1,y 1),N (x 2,y 2).将y=kx+1代入方程(x-2)2+(y-3)2=1, 整理得(1+k 2)x 2-4(1+k )x+7=0. 所以x 1+x 2=4(1+k )1+k2,x 1x 2=71+k2.7分OM ·ON =x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8.由题设可得4k (1+k )1+k2+8=12,解得k=1,所以l 的方程为y=x+1.故圆心C 在l 上,所以|MN|=2.12分21.(本小题满分12分)(2015课标全国Ⅰ,文21)设函数f (x )=e 2x -a ln x. (1)讨论f (x )的导函数f'(x )零点的个数; (2)证明:当a>0时,f (x )≥2a+a ln 2.解:(1)f (x )的定义域为(0,+∞),f'(x )=2e 2x -a (x>0).当a ≤0时,f'(x )>0,f'(x )没有零点,当a>0时,因为e 2x 单调递增,-ax单调递增, 所以f'(x )在(0,+∞)单调递增.又f'(a )>0,当b 满足0<b<a 4且b<14时,f'(b )<0,故当a>0时,f'(x )存在唯一零点.6分(2)由(1),可设f'(x )在(0,+∞)的唯一零点为x 0,当x ∈(0,x 0)时,f'(x )<0;当x ∈(x 0,+∞)时,f'(x )>0. 故f (x )在(0,x 0)单调递减,在(x 0,+∞)单调递增,所以当x=x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0−ax 0=0, 所以f (x 0)=a 0+2ax 0+a ln2≥2a+a ln 2.故当a>0时,f (x )≥2a+a ln 2.12分请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号. 22.(本小题满分10分)(2015课标全国Ⅰ,文22)选修4—1:几何证明选讲如图,AB 是☉O 的直径,AC 是☉O 的切线,BC 交☉O 于点E. (1)若D 为AC 的中点,证明:DE 是☉O 的切线; (2)若OA= 3CE ,求∠ACB 的大小.解:(1)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC ,故∠DEC=∠DCE. 连结OE ,则∠OBE=∠OEB. 又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°, 故∠OED=90°,DE 是☉O 的切线. 5分(2)设CE=1,AE=x ,由已知得AB=2 3,BE= 12-x 2. 由射影定理可得,AE 2=CE ·BE , 所以x 2= 12-x 2,即x 4+x 2-12=0.可得x= 3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,文23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x-1)2+(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)因为x=ρcos θ,y=ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.5分(2)将θ=π代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3 ρ+4=0,解得ρ1=2 2,ρ2= 2. 故ρ1-ρ2= 2,即|MN|= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.10分24.(本小题满分10分)(2015课标全国Ⅰ,文24)选修4—5:不等式选讲 已知函数f (x )=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a=1时,f (x )>1化为|x+1|-2|x-1|-1>0.当x ≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1; 当x ≥1时,不等式化为-x+2>0,解得1≤x<2.所以f (x )>1的解集为 x 23<x <2 . 5分(2)由题设可得,f (x )= x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A 2a -13,0 ,B (2a+1,0),C (a ,a+1),△ABC 的面积为23(a+1)2.由题设得2(a+1)2>6,故a>2. 所以a 的取值范围为(2,+∞). 10分。
2014-2015学年第二学期高一数学试题【考试时间:120分钟,分值:150分】一、选择题:(本大题共10小题,共50分,在下列的四个选项中,只有一个选项是符合题目要求的)1.设 0 < b < a < 1,则下列不等式成立的是( )(A) ab < b 2 < 1 (B) log 12 b < log 12 a < 0 (C) 2 b <2 a < 2(D) a 2 < ab < 12.在△ABC 中,a=2 3 ,b=2 2 ,B =45°,则A 等于( ) (A) 30° (B) 60° (C) 60°或 120°(D) 30°或150°3.在△ABC 中∠A = 60︒,b = 1,△ABC 的面积为 3 ,则△ABC 外接圆的直径为( ) (A)2393(B)2633(C) 3 3(D) 2924.已知,3,2,==⊥b a b a 且b a 23+与b a-λ垂直,则实数λ的值为( ))(A ;23- )(B ;23 )(C ;23± )(D ;15.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .a >b 2 D .a 2>2b6.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( )A .1B .12 C . 52 D . 327. 有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积及体积分别为( )A .24πcm 2,12πcm 3B .15πcm 2,12πcm 3C .24πcm 2,36πcm 3D .以上都不正确8.在等差数列{a n }中,已知32na n =-,则该数列前20项之和是( )A .295B .390C .590D .7809.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是A .S 7B .S 8C .S 13D .S 1510.如果a 、x 1、x 2、b 成等差数列,a 、y 1、y 2、b 成等比数列,那么1212x x y y +等于( ) A .a b a b +- B .b a ab - C .ab a b + D .a bab+二、填空题(本大题共4小题,每题5分,共20分)11.在等腰三角形ABC 中,已知sin A ∶sin B =1∶2,底边BC =10,则△ABC 的周长是__________.12.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于__________. 13.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是__________.14.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是__________.三、解答题(本大题共6小题,共80分。
]3a (a(415.化简剑阁县2015年高中基地班选拔考试数学解答提示及参考答案.选择题(每小题4分,共32分)1-4 DBDB 5-8 CBBD . 填空题(每小题4分,共20分)9. -2 10. 1211. 112.7.513. 122.解答题(本大题共68分)请在答题卡上写出必要的解答步骤或证明过程。
14.1(7 分)解分式方程为x=l,代入求值,结果为—.(7分)1216. (1)坡顶A 到地面PQ 的距离10m.(4分) (2)古塔BC 的高度约为19m.(8分)5417. ⑴ 印、顷"=6, P(«)=6,所以游戏对双方不公平;(4分) (2)边宽x 为10cm 时,游戏对双方公平.(8分)18. (1) -4<x<-1(2分) ⑵ y=|x+| (5分) (3)P (-|-(8分)2 419. (1)A 型 75 盏,B 型 25 盏;(4 分)⑵A 型25盏,B 型75盏,获利最多,利润为1875元. (9分)(3 20.⑴连接OB,证左PAO^APBO (SAS),可得直线PA为。
O的切线.(6(2分) (6分)(8(2) EF 2=4OD«OP. 证明:ZPAO=ZPDA=90°A ZOAD+ZAOD=90°, ZOPA+ZAOP=90°, ZOAD=ZOPA, AOAD^AOPA,OD OA nn ,——=—,即 OA 2=OD ・OP ,OA OP又 VEF=2OA, .-.EF 2=4OD»OP.(3)VOA=OC, AD=BD, BC=6, .\OD=-BC=3 (二角形中位线定理), 2 设 AD=x,1V tanZF=—,2 FD=2x, OA=OF=2x-3,在RtAAOD 中,由勾股定理,得(2x-3) 2=x 2+32, 解之得,xi=4, x 2=0 (不合题意,舍去), .♦.AD=4, OA=2x-3=5, VAC 是AO 直径, .I ZABC=90°,又 VAC=2OA=10, BC=6, . / 6 3 .・cos/ACB=——=—.10 5VOA 2=OD «OP ,.♦.3 (PE+5) =25, •,•PE=y.(9 分)21. (1) A(-2, 0), B(6, 0)(2) y=-|x 2+2x+6,抛物线对称轴为x=2,顶点坐标(2, 8) (3) 点P 坐标(2, 4)⑷ 依题意,得 AB=8, QB=6-m,, AQ=m+2, OC=6,则 S AABC =-ABxOC=24.2由 DQ 〃AC, .♦.△BDQsABCA,^ABDQ BQ 2 6-m 2"疝)r),3即— (m-6),83 2 3 9 —m + —8 2 23 ——(m~2)2+6,8(12分)又S AACQ—一AQxOC=3m+6, 23S ACDQ=S AABC_S ABDQ_S AACQ-24-— (m - 6)2- (3m+6) -_8当m=2时,S最大.。
一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.)1、下列结论正确的是 ( )A .若ac>bc ,则a>bB .若a 2>b 2,则a>bC .若a>b,c<0,则 a+c<b+c Da<b2. 在△ABC 中,若2cosAsinB=sinC ,则△ABC 的形状一定是( )3、不等式组13y x x y y <⎧⎪+≤⎨⎪≥-⎩表示的区域为D ,点P (0,-2),Q (0,0),则( )A. P ∉D ,且Q ∉DB. P ∉D ,且Q ∈DC. P ∈D ,且Q ∉DD. P ∈D ,且Q ∈Dx ,y 满足2380x y +-≤且3270x y +-≤,则x y +的最大值是( )A .73B .83C .2D . 3 5.已知等比数列{a n }中, 有 31174a a a •= ,数列 {}n b 是等差数列,且 77b a =,则 59b b +=( )A . 2B . 4C .6D . 86.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是 ( )A .a 8B .a 9C .a 10D .a 117. n S 是等比数列{}n a 的前n 项和,若424S =,836S =,则12S 等于 ( )A. 42B. 63C. 75D. 838. 下列函数中,最小值为2的为 ( ) A. 1y x x=+ B. 1lg (110)lg y x x x =+<< C. (1)x x y a a a -=+> D. 1cos (0)cos 2y x x x π=+<< 9.正数a 、b 的等差中项是12,且11,,a b a b αβαβ=+=++则的最小值是 ( ) A .3B .4C .5D .6 10.已知2()1f x ax ax =+-<0在R 上恒成立,则a 的取值范围是( )A .0a ≤B .4a <-C .40a -<<D .40a -<≤11.已知△ABC 的面积为,AC=,∠ABC=,则△ABC 的周长等于( ) A.3+ B.3 C.2+ D.12. n S 为等差数列{}n a 的前n 项和,56S S >,67S S =,78S S <,以下给出了四个式子:① 公差0d <;②70a =;③94S S >; ④n S 的最小值有两个,其中正确的式子共有( )二、填空题( 每小题5分,共20分 )240x -≤的解集为 14. 在△ABC 中,若A =60°,a =,则=________.15.数列{}n a 满足12a =,112n n n a a --=,则n a = ; 16.两等差数列{}n a 和{}n b ,前n 项和分别为,n n S T ,且(5.),,ks u com 则220715a a b b ++等于 。
2014-2015学年度第二学期中联考试题高一数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至6页。
2. 答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将答题卡交回。
第Ⅰ卷(选择题 共60分)一、选择题(本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1 ( ) A. 输出a=10 B. 赋值a=10 C. 判断a=10 D. 输入a=12. 0600cos 的值为 ( )A.23 B.23- C.21 D 21- 3. 一个扇形的圆心角为︒120,半径为3,则此扇形的面积为 ( ) A.π B.45πC. 33π D.2932π 4.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数是 ( ) A .15,16,19 B .15,17,18 C .14,17,19 D .14,16,205.某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这射手在一次射击中不够9环的概率是( )A.0.48B.0.52C.0.71D.0.296.阅读右边的程序框图,运行相应的程序,则输出s 的值为 ( )A .-1B .0C .1D .3 7.将二进制数10001(2)化为十进制数为( )A .17B .18C .16D .19 8.设角θ的终边经过点P (-3,4),那么sin θ+2cos θ=( )A .15 B .15- C .25- D .259.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是( )A. 函数)(x f 的最小正周期为2πB. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数10.函数)20)(sin()(πϕϕω<>+=,A x A x f 其中的图象如图所示,为了得到xx g 2sin )(=的图象,则只需将)(x f 的图象( )A.向右平移6π个长度单位B.向右平移3π个长度单位C.向左平移6π个长度单位D.向左平移3π个长度单位11.函数()1f x kx =+,实数k 随机选自区间[-2,1].对[0,1],()0x f x ∀∈≥的概率是( ) A .13B .12C .23D .3412. 定义在R 上的函数()f x ,既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π02x ⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为 ( )A.12-C. D.12第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4题,每小题5分,共20分)13..图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________ .08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)14..函数tan()3y x π=-的单调递减区间为15.已知正边形ABCD 边长为2,在正边形ABCD 内随机取一点P ,则点P 满足||1PA ≤的概率是16.已知sin (0),()(1)1(0),x x f x f x x π⎧=⎨--⎩<> 则111166f f ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭= 三.解答题:(本大题共6个小题.共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(1)化简()fα。
2014—2015学年度第一学期期末教学质量检查高一数学(A 卷)一、选择题(本大题共10小题,每小题5分,共50分. 每小题各有四个选择支,仅有一个选择支正确. 请用2B 铅笔把答题卡中所选答案的标号涂黑.)1.设全集U R =,}1,2{<==x y y A x ,})1ln({-==x y x B ,则)(B C A U 是( )A 、(0,1)B 、 (0,1]C 、)2,(-∞D 、]1,(-∞2.函数f (x) A .0 B.1 C.2 D.33,则()f x 的定义域为( )D.(,)0+∞ 4.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m ,β⊥n ,且n m ⊥,则βα⊥; ③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//.其中正确命题的序号是( )A .①④B .②④C .②③D .①③5.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的体积为( )A .8 B6.设,则 ( )A 、B 、C 、D 、7.若直线(1)3ax a y +-=与(1)(23)2a x a y -++=互相垂直,则a 等于( )A. 3B. 1C. 0或-3 8.(2014•杨浦区三模)一个水平放置的三角形的斜二测直观图是有一条边水平的等边三角形,则这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能9.[2014·深圳调研]如图,在四面体D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是( )A.平面ABC ⊥平面ABDB.平面ABD ⊥平面BDCC.平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED.平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE10.给出四个函数,分别满足①)()()(y f x f y x f +=+;②)()()(y g x g y x g ⋅=+;③)()()(y x y x ϕϕϕ+=⋅;④)()()(y x y x ωωω⋅=⋅,又给出四个函数的图象如下:则正确的配匹方案是( )A .①—M ②—N ③—P ④—QB .①—N ②—P ③—M ④—QC .①—P ②—M ③—N ④—QD .①—Q ②—M ③—N ④—P二、填空题(本大题共4小题,每小题5分,共20分)11.满足28244x x ->-的x 的取值集合是 .12.已知函数()22x x f x a -=+⋅,且对于任意的x ,有()()0f x f x -+=,则实数a 的值为 .13.一个几何体的三视图如图1,则该几何体的体积为___________.14.定义在R 上的函数()f x ,如果存在函数()g x ax b =+(,a b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数.给出如下命题: ①函数()2g x =-是函数ln , 0,()1, 0x x f x x >⎧=⎨⎩≤的一个承托函数; ②函数()1g x x =-是函数()sin f x x x =+的一个承托函数; ③若函数()g x ax =是函数()e x f x =的一个承托函数,则a 的取值范围是[0,e]; ④值域是R 的函数()f x 不存在承托函数;其中,所有正确命题的序号是 .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(本题17分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围.16.如图,矩形OABC 的顶点O 为原点,AB 边所在直线的方程为34250x y +-=,顶点B 的纵坐标为10.(1)求OA OC ,边所在直线的方程;(2)求矩形OABC 的面积.17.(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100,其中x 是仪器的月产量,(1)将利润)(x f 表示为月产量x 的函数;(2)当月产量x 为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).18.如图,在正方体1111D C B A ABCD -中,12AA =,E 为1AA 的中点,O 为1BD 的中点.(1)求证:平面11A BD ⊥平面11ABB A ;(2)求证://EO 平面ABCD ;(3)设P 为正方体1111D C B A ABCD -的点P 的个数,并说明理由.19.已知函数.(1)若,求实数x 的取值范围;(2)求的最大值.20.设函数2(),f x ax bx c =++满足且322a c b >>. (1)求证0a >,并求 (2)证明函数()f x 在()0,2内至少有一个零点;(3)设12,x x 是函数()f x 的两个零点,求()()21,65f x x g x x x =-=-+-()()g x f x ≥()()g x f x -。
上海市2015-2016学年高一下学期期中考试数学试题(考试时间:90分钟 满分:100分 )一、填空题(本大题共12小题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分. 1. 若2016α=︒,则α在第__________象限.2. 已知扇形所在圆的半径为8,弧长为16,则其圆心角的弧度数为________.3. 已知tan 2α=,则sin cos sin 2cos αααα-=+____________.4. 已知54cos ),,2(-=∈θππθ,则=2sin θ___________.5. 在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是_____________三角形.6. 已知函数()sin()(00)2f x A x x A ωϕωϕπ=+∈>><R ,,,的图像(部分)如图所示,则()f x 的解析式是_____________. 7.已知函数()2sin()(0)3f x x πϖϖ=+>的最小正周期为π,则方程()1f x =在(0,]π上的解集为___________.8. 设锐角βα、满足sin ,cos 510αβ==,则αβ+=__________.9. 函数cos2sin ,[0,]y x x x π=+∈的最大值是___________. 10. 设cos x α=,且3[,]44ππα∈-,则arcsin x 的取值范围是____________. 11. 某班设计了一个“水滴状”班徽(如图),徽章由等腰三角形ABC ,及以弦BC 和劣弧BC所围成的弓形所组成,劣弧BC 所在的圆为三角形的外接圆,若,(0,)2A παα∠=∈,外接圆半径为1,则该图形的面积为____________.12.对于函数)(x f ,在使M x f ≥)(成立的所有常数M 中,我们把M 的最大值称为函数)(x f 的“下确界”,则函数x x x x x f csc csc sin sin )(22-+-=的“下确界”为第11题___________.二、选择题(本大题共有4小题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号上将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.已知函数22()cos sin f x x x =-,下列结论错误的是………………………… ( )A .()cos 2f x x =B .函数()f x 的图像关于直线0x =对称C .()f x 的最小正周期为πD .的对称中心为(,0),k k Z π∈14.在ABC ∆中,3,2,3a c B π===,则=b …………………………………… ( )15.已知m x =-)6cos(π,则=-+)3c o s (c o s πx x……………………………… ( )A.m 2B .m 2±C .m 3D .m 3±16.将函数x x f 2sin )(=的图像向右平移(0)2πφφ<<个单位后得到函数()g x 的图像.若对满足12|()()|2f x g x -=的12x x 、,有12min ||3x x π-=,则φ= ………………( ) A.512π B. 3π C. 4π D. 6π 三、解答题(本大题共5题,满分52分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分8分)已知2)2tan(=+απ,求)2cos(απ+的值.18.(本题满分10分)本题有2个小题,第一小题满分5分,第二小题满分5分.已知函数x x x x f 2cos 3cos sin 2)(-=.(1)求)(x f 的最小正周期和单调递增区间; (2)当]2,0[π∈x 时,求函数)(x f 的最大值和最小值.19.(本题满分10分)本题有2个小题,第一小题满分4分,第二小题满分6分.如图,A B 、是单位圆O 上的动点,C 是圆与x 轴正半轴的交点,设COA α∠=. (1)当点A 的坐标为)54,53(时,求αα2cos 12sin +的值;(2)若30πα≤≤且当点A B 、在圆上沿逆时针方向移动时,总有3AOB π∠=,试求BC 的取值范围.20.(本题满分12分)本题有2个小题,第一小题满分6分,第二小题满分6分.如图,在ABC ∆中,点D 在BC 边上,7,42CAD AC π∠==,cos 10ADB ∠=-.C第19题(1)求sin C 的值;(2)若5BD =,求ABD ∆的面积.21.(本题满分12分)本题有2个小题,第一小题满分6分,第二小题满分6分.如图,某污水处理厂要在一个矩形污水处理池()ABCD 的池底水平铺设污水净化管道(,Rt FHE H ∆是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H 是AB 的中点,E F 、分别落在线段BC AD 、上.已知20AB =米,AD =BHE θ∠=.(1)试将污水净化管道的长度L 表示为θ的函数,并写出定义域; (2)当θ取何值时,污水净化效果最好?并求出此时管道的长度.第21题金山中学2015学年度第二学期高一年级数学学科期中考试卷(考试时间:90分钟 满分:100分 命题人:刘雪孝 审核人:龚伟杰)一、填空题(本大题共12小题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分. 1. 若2016α=︒,则α在第_____三_____象限.2. 已知扇形所在圆的半径为8,弧长为16,则其圆心角的弧度数为____2_____. 3. 已知tan 2α=,则sin cos sin 2cos αααα-=+______41______.4. 已知54cos ),,2(-=∈θππθ,则=2sin θ____10103_______. 5. 在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是_____等腰_____三角形.6.已知函数()sin()(00)2f x A x x A ωϕωϕπ=+∈>><R ,,,的图像(部分)如图所示,则()f x 的解析式是___()2sin()6f x x π=π+_________.7.已知函数()2sin()(0)3f x x πϖϖ=+>的最小正周期为π,则方程()1f x =在(0,]π上的解集为___11{,}412ππ_____.8.设锐角βα、满足sin ,cos 510αβ==,则αβ+=_____4π_____. 9. 函数cos2sin ,[0,]y x x x π=+∈的最大值是___89_____.10.设cos x α=,且3[,]44ππα∈-,则arcsin x 的取值范围是_____]2,4[ππ-_______.11.某班设计了一个“水滴状”班徽(如图),徽章由等腰三角形ABC ,及以弦BC 和劣弧BC所围成的弓形所组成,劣弧BC 所在的圆为三角形的外接圆,若,(0,)2A παα∠=∈,外接圆半径为1,则该图形的面积为______sin αα+______.12.对于函数)(x f ,在使M x f ≥)(成立的所有常数M 中,我们把M 的最大值称为函数)(x f 的“下确界”,则函数x x x x x f csc csc sin sin )(22-+-=的“下确界”为____0____.第11题二、选择题(本大题共有4小题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号上将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.已知函数22()cos sin f x x x =-,下列结论错误的是………………………… ( D )A .()cos 2f x x =B .函数()f x 的图像关于直线0x =对称C .()f x 的最小正周期为πD .的对称中心为(,0),k k Z π∈14.在ABC ∆中,3,2,3a c B π===,则=b …………………………………… ( D )15.已知m x =-)6cos(π,则=-+)3c o s (c o s πx x ……………………………… ( C )A.m 2B .m 2±C .m 3D .m 3±16.将函数x x f 2sin )(=的图像向右平移(0)2πφφ<<个单位后得到函数()g x 的图像.若对满足12|()()|2f x g x -=的12x x 、,有12min ||3x x π-=,则φ=………………( D ) A.512π B. 3π C. 4π D. 6π 三、解答题(本大题共5题,满分52分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分8分)已知2)2tan(=+απ,求)2cos(απ+的值.解:54)2cos(-=+απ18.(本题满分10分)本题有2个小题,第一小题满分5分,第二小题满分5分.已知函数x x x x f 2cos 3cos sin 2)(-=. (1)求)(x f 的最小正周期和单调递增区间; (2)当]2,0[π∈x 时,求函数)(x f 的最大值和最小值.解:)32sin(2)(π-=x x f(1)π=T ,单调递增区间Z k k k ∈+-],125,12[ππππ ………………5分 (2)当125π=x 时,2)(max =x f ;当0=x 时,3)(min -=x f ………………5分 19.(本题满分10分)本题有2个小题,第一小题满分4分,第二小题满分6分.如图,A B 、是单位圆O 上的动点,C 是圆与x 轴正半轴的交点,设COA α∠=. (1)当点A 的坐标为)54,53(时,求αα2cos 12sin +的值;(2)若30πα≤≤且当点A B 、在圆上沿逆时针方向移动时,总有3AOB π∠=,试求BC 的取值范围.解:(1)34tan 2cos 12sin ==+ααα ………………4分 (2)∵B (cos (α+),sin (α+)),C (1,0),∴|BC|2=[cos (α+)﹣1]2+sin 2(α+)=2﹣2cos (α+),∵0≤α≤,∴≤α+≤,∴﹣≤cos(α+)≤, ∴1≤2﹣2cos (α+)≤3,∴1≤|BC|≤. ………………10分20.(本题满分12分)本题有2个小题,第一小题满分6分,第二小题满分6分.如图,在ABC ∆中,点D 在BC 边上,7,42CAD AC π∠==,cos 10ADB ∠=-. (1)求sin C 的值;(2)若5BD =,求ABD ∆的面积.解:(1)因为c o s ADB ∠=,所以sin ADB ∠=第20题C第19题又因为4CAD π∠=,所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45==. ………………………6分 (2)在ACD ∆中,由ADCACC AD ∠=∠sin sin,得74sin sin AC C AD ADC ⋅⋅∠===∠.所以11sin 572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………………12分 21.(本题满分12分)本题有2个小题,第一小题满分6分,第二小题满分6分.如图,某污水处理厂要在一个矩形污水处理池()ABCD 的池底水平铺设污水净化管道(,Rt FHE H ∆是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H 是AB 的中点,E F 、分别落在线段BC AD 、上.已知20AB =米,AD =BHE θ∠=.(1)试将污水净化管道的长度L 表示为θ的函数,并写出定义域; (2)当θ取何值时,污水净化效果最好?并求出此时管道的长度. 解:(1)由题意可得EH=,FH=,EF=,由于 BE=10tan θ≤10,AF=≤10,而且≤tan θ≤,θ∈[,],∴L=++,θ∈[,]. 即L=10×,θ∈[,]. ………………………6分(2)设sin θ+cos θ=t ,则 sin θcos θ=,由于θ∈[,],∴sin θ+cos θ=t=sin (θ+)∈[,].由于L=在[,]上是单调减函数,∴当t=时,即 θ=或θ=时,L取得最大值为 20(+1)米. ………………………6分第21题。
2015年春季湖北省普通高中联考协作体期中考试高一数学参考答案11. 1{2}3x x -<<- 13 . 4 14 .1492415. ①②④ 三.解答题16解:设公比为q ,由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 即⎪⎩⎪⎨⎧=+=+ 45)1(①10)1(23121 q q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 21,813==q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分 将21=q代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)21(83314=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分17解:(1)由 cos 2A -3cos(B +C)=1,得2cos 2A +3cos A -2=0, ┄┄┄┄┄┄┄┄┄┄2分 即(2cos A -1)(cos A +2)=0. ┄┄┄┄┄┄┄┄┄┄4分解得cos A =12或cos A =-2(舍去).┄┄┄┄┄┄┄┄┄┄5分 因为0<A<π,所以A =3π. ┄┄┄┄┄┄┄┄┄┄6分(2)由S =12bcsin A =12bc·2=4bc =bc =20. ┄┄┄┄8分又b =5,所以c =4. ┄┄┄┄┄┄┄┄┄┄9分 由余弦定理,得a 2=b 2+c 2-2bccos A =25+16-20=21 ┄┄┄┄┄10分②解得a ┄┄┄┄┄┄┄┄┄┄12分18解:(1) f(x)=4sinx(cosxcos π3-sinxsin π3)+3=2sinxcosx -23sin2x + 3=sin2x +3cos2x =2sin ⎝⎛⎭⎫2x +π3. ┄┄┄┄┄┄┄┄┄┄4分所以T =2π2=π. ┄┄┄┄┄┄┄┄┄┄6分(2) 因为-π4≤x ≤π6,所以-π6≤2x +π3≤2π3, ┄┄┄┄┄┄┄┄┄┄8分所以-12≤sin ⎝⎛⎭⎫2x +π3≤1,所以-1≤f(x)≤2, ┄┄┄┄┄┄┄┄┄┄12分当2x +π3=-π6,即x =-π4时,f(x)min =-1,当2x +π3=π2,即x =π12时,f(x)max =2.19. 解:(1)要使得01)(2<--=mx mx x f 恒成立,若0=m ,成立...............................2分 若0≠m ,则040402<<-⇒⎩⎨⎧<+=∆<m m m m ,................................4分综上得:04≤<-m ;......................6分(2)5)(],3,1[+-<∈m x f x 恒成立,即51)(2+-<--=m mx mx x f ,166)1(6222+-<⇒<+-⇒<+-x x m x x m m mx mx ,.....................9分设函数]3,1[,16)(2∈+-=x x x x g , 其最小值为76,....................................11分 则76<m .........................................13分20.解:(1)由题意知,每年的费用是以2为首项,2为公差的等差数列,求得:12(1)2n a a n n =+-= ┄┄┄┄┄┄┄┄┄┄2分(2)设纯收入与年数n 的关系为f(n),则:2(1)()21[22]2520252n n f n n n n n -=-+⋅-=-- ┄┄┄┄┄┄┄┄┄┄4分由f(n)>0得n 2-20n+25<0 解得10n 10-<<+ ┄┄┄┄┄┄┄┄┄6分 又因为n N ∈,所以n=2,3,4,……18.即从第2年该公司开始获利 ┄┄┄┄┄┄┄8分 (3)年平均收入为n )n (f =20-25(n )202510n+≤-⨯= ┄┄┄┄┄┄┄┄┄10分 当且仅当n=5时,年平均收益最大.所以这种设备使用5年,该公司的年平均获利最大。
潮阳黄图盛中学2014-2015学年度第一学期期中考试高一数学(必修一模块)参考答案及评分标准一、选择题:本大题共10小题,每小题5分,合计50分;每小题有四个选择支,有且仅有一个选择支正题号 1 2 3 4 5 6 7 8 9 10 答案BDCAACCBBA二、填空题:本大题共4小题,每小题5分,合计20分;请将正确答案填写在指定的答题区域内。
11、1; 12、3; 13、6;14、()1,0(或{}10|<<k k ,或10<<k )。
三、解题题:本大题6小题,合计80分;解答须写出文字说明、证明过程和演算步骤.15、(本小题满分12分)解:化简{}{}1|134|≤∈=≤-∈=x R x x R x B .……………………2分 (1){}{}{}2|1|21|<=≤<<-=x x x x x x B A Y Y ; ……………………6分 (2)ΘB={}{}1|1|>=≤x x x x……………………8分IA ∴B ={}{}{}.21|1|21|<<=><<-x x x x x x I……………………12分16、(本小题满分12分)解:(1)原式()2123139257103⎪⎭⎫ ⎝⎛+--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=-……………………2分2123133549103⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⨯ ……………………4分3549310+-=……………………5分.44-=……………………6分(2)原式=23510lg 5100lg 5lg 2lg 325lg 2⎪⎭⎫⎝⎛+⋅++……………………8分()()25lg 15lg 100lg 5lg 2lg 25lg 2-+-++=……………………9分()()()25lg 5lg 215lg 25lg 2lg 5lg 2+-+-++=……………………11分()().35lg 5lg 215lg 5lg 2222=+-+-+=……………………12分17、(本小题满分14分)解:(1)()()()x x f x f f 411,10-=--+=且Θ, ()()402,1-=-=∴f f x 时当, ……………………2分()().341402-=-=-=∴f f……………………4分(2)依题意,设二次函数()12++=bx ax x f ,由()()x x f x f 411-=--+,当1-=x 时,得 ()()420=--f f ,……………………6分则()()3402-=-=-f f ,……………………7分从而有,⎩⎨⎧-=++-=+-31243124b a b a ,解得,0,1=-=b a ,……………………9分所以,()12+-=x x f .……………………10分 (3)()x f 是偶函数.……………………12分 ()()()x f x x x f =+-=+--=-1122Θ,……………………13分()x f ∴是偶函数.……………………14分18、(本小题满分14分) 解:(1)由()x x x f 1+=得,()252=f ,()3103=f ,且()()32f f <,判断函数()x f 在区间()+∞,1上是增函数.……………………2分这是因为:任取[)+∞∈,1,21x x ,且21x x <,则……………………3分()()()⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-12121122121111x x x x x x x x x f x f ……………………4分()212112x x x x x x -+-= ……………………5分()2121121x x x x x x --= ……………………6分211x x <≤Θ,1,02112>>-∴x x x x……………………7分()()012>-∴x f x f ,即()()12x f x f >()x f ∴在区间[)+∞,1上是增函数.……………………8分 (2)()()xxxe ee f x g 1+==……………………9分x e t =设,由于[]2ln ,0∈x ,则2ln 1e e x ≤≤,即21≤≤x e ,或21≤≤t ,………………10分所以,函数()xxee x g 1+=在区间[]2ln ,0上的最大值和最小值等价于函数()t t t f 1+=在区间[]2,1上的最大值和最小值,……………………11分由(1)知,函数()tt t f 1+=在区间[]2,1上单调递增,则()()252max ==f t f ,()()21min ==f t f , ……………………13分所以,函数()x xe e x g 1+=在区间[]2ln ,0上的最大值是25,最小值是2. ……………………14分19、(本小题满分14分)解 (1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2x , ……………………2分由图知f (1)=14,∴k 1=14,又g (4)=52,∴k 2=54. ……………………4分从而f (x )=14x (x ≥0),g (x )=54x (x ≥0). ……………………6分(2)设A 产品投入x 万元,则B 产品投入10-x 万元,设企业的利润为y 万元,……………………7分y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10), ……………………9分令10-x =t ,……………………10分 则y =10-t 24+54t =-14(t -52)2+6516(0≤t ≤10),……………………12分 当t =52,y max ≈4,此时x =10-254=3.75,10-x =6.25.……………………13分所以投入A 产品3.75万元,投入B 产品6.25万元时,能使企业获得最大利润,且最大利润约为4万元.……………………14分20、(本小题满分14分)解:(1)()()2232+-+-=x a x x f Θ的图象是一条开口向下、对称轴为223ax -=的抛物线, ……………………1分)(x f ∴在区间⎥⎦⎤ ⎝⎛-∞-223,a 上单调递减,在区间⎪⎭⎫⎢⎣⎡+∞-,223a 上单调递增。
宜宾县一中高2015级高一半期考试数学科参考答案(仅给参考)做题人:郑冬梅 郑国源 使用者:高一数学全体学生一、选择题:二、填空题:13、()+∞,5,14:3,15:300,16:(2),(3)。
三、解答题:我们提供的只是一种思路与解题步骤,学生如果有其它的解题方法与过程,只要符合答案要求时,请老师们给出相应的分数,或者满分。
四、17:解由题意得:(1)原式=1+21)49(41-⨯-21)41(=1+213241-⨯=1+2161-=32(2)原式=27lg 8lg 8lg 9lg 225lg 85lg 21lg⨯-+-=3lg 32lg 32lg 33lg 2)2258521lg(⨯-⨯÷=3210lg -=31321=-。
18:解由题意得:因为{}{}22|2==++=x b ax x x A ,故方程0)2(2=+-+b x a x 有两个相等的实数根2=x ,那么有:⎩⎨⎧=+-+=--=∆0)2(2204)2(22b a b a ⎩⎨⎧=+=+--⇒0204442b a b a a ⎩⎨⎧=-=⇒42b a 42)(2+-=∴x x x f(2)[]5,0∈x 时,3)1(42)(22+-=+-=x x x x f 如图,(3)它的对称轴为[]5,01∈=x ,由二次函数的图象可知: (4))(x f 有两个单调区间:]5,1(],1,0[, (5)其中在区间]1,0[上函数)(x f 是减函数, (6)而在区间]5,0(上)(x f 是增函数。
(3)由图象可知,3)1()(min ==f x f ,)5()(max ==f x f 19、解由题意得:(1)要使函数)3lg()3lg()(x x x f -++=有意义,那么满足:33330303<<-⇒⎩⎨⎧<->⇒⎩⎨⎧>->+x x x x x ,)(x f y =∴的定义域是:)3,3(-。
江苏省苏州市平江中学(三星路校区)高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知在区间上是增函数,则的范围是()A. B. C. D.参考答案:A略2. 正项等比数列{a n}满足:a3=a2+2a1,若存在a m,a n,使得a m?a n=16a12,则的最小值为()A.2 B.16 C.D.参考答案:C【考点】等差数列的性质;等比数列的通项公式.【分析】正项等比数列{a n}满足:a3=a2+2a1,知q=2,由存在两项a m,a n,使得a m a n=16a12,知m+n=6,由此问题得以解决.【解答】解:∵正项等比数列{a n}满足:a3=a2+2a1,∴a1q2=a1q+2a1,即:q2=q+2,解得q=﹣1(舍),或q=2,∵存在a m,a n,使得a m a n=16a12,∴a12?2m+n﹣2=16a12,∴m+n=6,∴=(m+n)()=(10++)≥(10+2)=∴的最小值为.故选:C.【点评】本题考查等比数列的通项公式的应用,解题时要认真审题,仔细解答.注意不等式也是高考的热点,尤其是均值不等式和一元二次不等式的考查,两者都兼顾到了.3. 下列各组函数中,表示同一函数的是()A.B.C.D.参考答案:A选项A中,函数与函数的定义域、对应法则相同,是同一函数;选项B中,函数的定义域为R,的定义域为,故不是同一函数;选项C中,函数的定义域为R,的定义域为,不是同一函数;选项D中,函数的定义域为,的定义域为,不是同一函数。
综上可得A正确,选A。
4. 1337与382的最大公约数是()A.3B.382C.191D.201参考答案:C5. 实数满足,则的取值范围是: ()(A)(B)(C)(D)参考答案:D略6. 在集合{x|3,…,10}中任取一个元素,所取元素恰好满足cos的概率是( )A. B. C. D.参考答案:A7. 函数的最大值与最小值之和为()A. B. C.0 D.参考答案:B8. 与正弦曲线关于直线对称的曲线是()A. B.C. D.参考答案:D略9. 设集合A={x|x=2k+1,k∈Z},a=5,则有( )A.a∈A B.﹣a?A C.{a}∈A D.{a}?A参考答案:A考点:元素与集合关系的判断.专题:计算题.分析:根据题意,分析可得集合A为奇数的集合,分析选项可得A中有a∈A,A正确,B中应有﹣a∈A,则B错误,C中集合之间的符号有误,D中子集关系有误,即可得答案.解答:解:根据题意,分析可得集合A为奇数的集合,据此分析选项:对于A,a=5是奇数,则a∈A,则A正确;对于B,﹣a=﹣5是奇数,则﹣a∈A,则B错误;对于C,集合之间的符号为?、?,则C错误;对于D,{a}={5},是集合A的子集,有{a}?A,则D错误;故选A.点评:本题考查集合之间的关系,关键是分析集合A中的元素特征10. 在△ABC中,∠A=60°, a=, b=4, 满足条件的△ABC ( )(A)无解 (B)只有一解 (C)有两解 (D)不能确定参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 函数的一个对称中心是参考答案:(答案不唯一)略12. 过点作直线l 与圆交于A,B 两点,若,则直线l的斜率为▲.参考答案:当直线斜率不存在时,此时,不合题意,所以直线斜率必定存在因为直线过定点,设直线方程为,交点联立圆,消y得所以,由,得即,因为代入,化简得代入韦达定理,化简解得 ,即13. 设数列,都是等差数列.若则______.参考答案:3714. 若函数f (x )=(a ﹣2)x 2+(a ﹣1)x+3是偶函数,则f (x )的增区间是 .参考答案:(﹣∞,0](也可以填(﹣∞,0)) 【考点】奇偶性与单调性的综合. 【专题】计算题.【分析】由已知中函数f (x )=(a ﹣2)x 2+(a ﹣1)x+3是偶函数,根据偶函数的性质,我们可以求出满足条件的a 的值,进而求出函数的解析式,根据二次函数的性质,即可得到答案. 【解答】解:∵函数f (x )=(a ﹣2)x 2+(a ﹣1)x+3是偶函数, ∴a﹣1=0∴f(x )=﹣x 2+3,其图象是开口方向朝下,以y 轴为对称轴的抛物线 故f (x )的增区间(﹣∞,0]故答案为:(﹣∞,0](也可以填(﹣∞,0))【点评】本题考查的知识点是奇偶性与单调性的综合,其中根据已知条件结合偶函数的性质,得到a 值,是解答本题的关键.15. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若,则B= .参考答案:30°【考点】HP :正弦定理.【分析】利用正弦定理解答即可求得角B 的正弦值,不难求得角B 的度数.【解答】解:∵,=,∴=,即=,解得sinB=.∵在△ABC 中,A=120°,∴0<B <90°, ∴B=30°.故答案是:30°.16. 已知函数f(x)=|log2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m +n =________.参考答案:略17. (5分)已知sinα+cosα=,且0<α<,则sinα﹣cosα的值为 .参考答案:﹣考点: 同角三角函数基本关系的运用.专题: 三角函数的求值.分析: 利用完全平方公式,先求出2sinαcosα,即可得到结论. 解答: 由sinα+cosα=,平方得1+2sinαcosα=,则2sinαcosα=,∵0<α<,∴sinα﹣<cosα,即sinα﹣cosα<0,则sinα﹣cosα=﹣==﹣,故答案为:﹣;点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.三、解答题:本大题共5小题,共72分。
2014-2015学年度第二学期期末调研考试
高一数学试题(B )
一、填空题:本大题共14小题,每小题5分,共计70分.
1.3 2.56 3.83 4.4 5 6.4π 13
8.4或1-
9.10 10.120 11.sin(2)12y x π=+ 12.[0,]3π 13.2
14.2-二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)因为),2(
ππ
α∈,53sin =
α,所以5
4
cos -=α. ………3分
于是25
24
)54(532cos sin 22sin -=-⨯⨯==ααα. ………7分
(2)3
sin
sin 3
cos
cos )3
cos(π
απ
απ
α+=-
………11分
10
4
33235321)54(-=
⨯+⨯-=. ………14分 16.解:从6件产品中任意抽检2件,基本事件共有5+4+3+2+1=15个. ………4分 (1)记“两件产品中至多有1件是二等品”为事件A , 则A 表示事件“两件产品全是二等品”,则1()15P A =,故14
()15
P A =.………6分 或:无二等品的抽检方法共有3+2+1=6种;
1件二等品另1件为一、三等品的抽检方法共有2×4=8种, 故事件A 含有14个基本事件,故14()15
P A =
. (2)记“两件产品的等级不同”为事件B .
1件一等品、1件二等品的抽检方法共有6种; ………8分 1件二等品、1件三等品的抽检方法共有2种; ………10分 1件一等品、1件三等品的抽检方法共有3种. ………12分 于是,事件B 包含的基本事件共有6+2+3=11个,故11
()15
P B =. ………13分 答:两件中至多有1件是三等品的概率为
15
14; 两件产品的等级不同的概率为
11
15
. ………14分 17.解:(1)取AB 中点E ,连结CE . 因AB ∥CD ,且2AB CD =,
故AE CD =,AE ∥CD , ………3分
四边形AECD 为平行四边形,EC AD ==
a . EB EC CB =+= a -
b ,AB =
2(a -b ). AC AB BC =+
=2(a -b )+b =2a -b . ………7分
(2)因AD = a ,AB =
2(a -b ),34AP = a λ+b ,
故DB AB AD =-
=2(a -b )-a =a -2b , ………10分 DP AP AD =- =(34a λ+b )-a =1
4
-a λ+b ,
由B ,D ,P 三点共线得λ=1
2
. ………14分
18.解:(1)过B ,C 分别作BF OA ⊥,CE OA ⊥,垂足为F ,E ,
则sin BF CE θ==,cos OF θ=,1cos AF DE θ∴==-.
在Rt COE ∆中,3
COE π
∠=
,tan
3
CE OE π
∴=
=
, cos BC EF θ∴== ………6()2
AD BC BF
S EA BF +⋅∴=
=⋅
(1sin θ=-
⋅2
sin θ=,(0,)3
π
θ∈.………10分
(2)存在面积为
6
等腰梯形ABCD . 由(1)得2sin 6θ=
………12分 22sin 10θθ∴-+=,sin θ∴=
………14分 sin θ<
,sin θ∴=. 答:(1)等腰梯形ABCD 的面积S 的函数关系式为2sin S θ=,(0,)3πθ∈.
(2)存在面积为
6ABCD ,此时梯形的高即为1
2
.………16分 (第18题图)
A
B
C
D E (第17题图)
19.解:(1)因为||||OA λ= ,||1OB =
, ………2分
OA OB = (sin cos cos sin )λαβαβ+=sin 32
πλλ=, ………4分
所以22||()AB OB OA =- 22
2OB OB OA OA =-⋅+
132+-=λλ21(24λ=-
+1
4
≥, ………8分
当λ=
时等号成立,所以||AB 的最小值为12. ………10分
(2)因为OA ,OB
的夹角θ,
所以cos ||||OA OB OA OB θ⋅==
. ………12分 当0λ>时,2
3
cos =
θ,πθ≤≤0,6πθ=; ………14分
当0λ<时,2
3
cos -
=θ,πθ≤≤0,65πθ=. ………16分
20.解:()sin()3
f x x π
ω=+(0)ω>的最小正周期为4π,故1
2
ω=
.………2分 (1)()sin(
)23
x f x θπ
θ++=+. 若()y f x θ=+(02θπ<<)为偶函数,
则sin()23x θπ++sin()23x θπ
-=+对x ∈R 都成立. ………4分 展开得sin cos()0223x θπ+=,于是cos()023
θπ
+=, ………6分
所以
2
3
2
k θ
π
π
π+
=+
(k ∈Z ),即23
k π
θπ=+
(k ∈Z ),
又02θπ<<,所以3
π
θ=. ………8分
(2)由4()5f α=
得4
sin()235απ+=. 因0απ<<,故53236
παππ
<+<. ………10分
注意到
14252
<<
,于是52236παππ<+<.
所以3
cos(
)235α
π
+
=-, ………12分 于是24324sin()2()35525πα+=⨯⨯-=-. ………14分 所以sin()3πα-224
sin()sin()3325
ππαπα=--+=-+=. ………16分。