苏教版高中数学必修五课件6数列
- 格式:pptx
- 大小:899.10 KB
- 文档页数:34
常见递推数列通项公式的求法教学设计一、教学内容分析:数列是高中数学苏教版必修五第2章的内容,本章内容是数学知识与数学方法的汇合点,是初中所学的内容的进一步深化。
在函数之后有利于从函数观点认识数列本质,同时更加突出了一些重要的数学思想方法,例如:从特殊到一般、类比思想等归纳思想,数形结合的思想,转化与化归思想,方程思想等等。
同时充分体现了培养学生的观察问题、分析问题、解决问题的能力。
递推数列通项公式的求法是高三数列中的复习课,本节内容主要是复习和归纳递推数列求通项的方法和技巧,从而更清楚的认识递推数列的特征,能熟练解决递推数列相关问题。
二、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。
本节课作为一节专题探究课,将会根据递推公式求出数列的项,并能运用累加、累乘、构造等方法求数列的通项公式,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
三、教学目标:1知识与技能:会根据递推公式列式,并能运用累加、累乘、构造等方法求数列的通项公式;2过程与方法:①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题;②对比等差,等比数列的推导总结出累加、累乘法的特征。
③观察、分析总结构造等差等比数列的一般方法;3情感、态度与价值观:①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神;②通过对数列递推公式和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;③通过提问、观察、分析等课堂教学方式培养学生认真参与、积极交流的主体意识。
四、教学重难点:教学重点:根据数列的递推关系式求通项公式;教学难点:分析总结归纳相关方法并根据相关方法解决相关问题;五、教法分析:本节课采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。
高中数学学习材料(灿若寒星 精心整理制作)第一课时数列课内训练1.已知数列的第n项n a 为12-n ,则这个数列的首项.第2项和第3项分别是2.已知数列{}n a ,85,11n a kn a =-=且,则17a =3.数列1,3,6,10,……的一个通项公式是4.已知数列的通项公式为)1(-=n n a n ,则下述结论正确的是420是这个数列的第 项5.已知数列:⋅⋅⋅⋅⋅⋅,11,22,5,2,则52是这个数列的第_____项。
6.数列{}32922++-n n 中最大项的值是 7.在数列{}n a 中,66,2171==a a ,通项公式是项数n 的一次函数.(1)求数列{}n a(2)88是否是数列{}n a 中的项.课外训练1.已知数列2,4,8,…,则在下列所给的通项公式中,错误的序号是(1)n 2 (2)22+-n n (3)n 2 (4)165613++n n 2.下面三个结论:(1) 数列若用图象表示,从图像上看是一群孤立的点;(2) 数列的项数是无限的。
(3) 数列1,2,3与数列3,2,1是同一个数列 。
(4) 数列的表示式是唯一的,其中正确的个数是3.已知数列{}n a ,首项11=a ,且)2(121≥+=-n a a n n ,则5a 为_________4. 已知数列{}n a 的通项公式2412n a n n =--,则4a = 7a = 65是它的第项 ;从第 项起各项为正;{}n a 中第 项的值最小为5.{}n a 中29100n a n n =--,则值最小的项是6.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于 。
7.已知数列{}n a 满足nn n a a a a +==+1,111,(1)计算432,,a a a ;(2)猜测n a 的表达式。
第二课时等差数列课内训练1.在1-和8之间插入两个数a ,b ,使这四个数成等差数列,则=a ____,=b ___.2. 一个等差数列的第五项105=a ,且3321=++a a a ,那么=1a ,=d3.在等差数列40,37,34,…中第一个负数项是第 项4.等差数列{}n a 中,153,334515==a a ,则217是这个数列的第_______项。
等差(比)数列的基本运算【例1】n14(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n. [解] (1)设{a n}的公比为q,由已知得16=2q3,解得q=2,∴a n=2×2n—1=2n.(2)由(1)得a3=8,a5=32,则b3=8,b5=32.设{b n}的公差为d,则有错误!解得错误!所以b n=—16+12(n—1)=12n—28.所以数列{b n}的前n项和S n=错误!=6n2—22n.在等差数列和等比数列的通项公式a n与前n项和公式S n中,共涉及五个量:a1,a n,n,d或q,S n,其中a1和d或q为基本量,“知三求二”是指将已知条件转换成关于a1,d q,a n,S n,n 的方程组,利用方程的思想求出需要的量,当然在求解中若能运用等差比数列的性质会更好,这样可以化繁为简,减少运算量,同时还要注意整体代入思想方法的运用.1.已知等差数列{a n}的公差d=1,前n项和为S n.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.[解] (1)因为数列{a n}的公差d=1,且1,a1,a3成等比数列,所以a错误!=1×(a1+2),即a错误!—a1—2=0,解得a1=—1或a1=2.(2)因为数列{a n}的公差d=1,且S5>a1a9,所以5a1+10>a错误!+8a1,即a错误!+3a1—10<0,解得—5<a1<2.求数列的通项公式【例2】n n n n(2)数列{a n}的前n项和为S n且a1=1,a n+1=错误!S n,求a n.思路探究:(1)已知S n求a n时,应分n=1与n≥2讨论;(2)在已知式中既有S n又有a n时,应转化为S n或a n形式求解.[解] (1)当n≥2时,a n=S n—S n—1=3+2n—(3+2n—1)=2n—1,当n=1时,a1=S1=5不适合上式.∴a n=错误!(2)∵S n=3a n+1,1∴n≥2时,S n—1=3a n. 21—2得S n—S n—1=3a n+1—3a n,∴3a n+1=4a n,∴错误!=错误!,又a2=错误!S1=错误!a1=错误!.∴n≥2时,a n=错误!·错误!错误!,不适合n=1.∴a n=错误!数列通项公式的求法1定义法,即直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适用于已知数列类型的题目.2已知S n求a n.若已知数列的前n项和S n与a n的关系,求数列{a n}的通项a n可用公式,求解.3累加或累乘法,形如a n—a n—1=f n n≥2的递推式,可用累加法求通项公式;形如错误!=f n n≥2的递推式,可用累乘法求通项公式.2.设数列{a n}是首项为1的正项数列,且a n+1—a n+a n+1·a n=0(n∈N*),求{a n}的通项公式.[解] ∵a n+1—a n+a n+1·a n=0,∴错误!—错误!=1.又错误!=1,∴错误!是首项为1,公差为1的等差数列.故错误!=n.∴a n=错误!.等差(比)数列的判定【例3】数列{n n1n+1n*(1)设b n=a n+1—2a n,求证:{b n}是等比数列;(2)设c n=错误!,求证:{c n}是等差数列.思路探究:分别利用等比数列与等差数列的定义进行证明.[证明] (1)a n+2=S n+2—S n+1=4a n+1+2—4a n—2=4a n+1—4a n.错误!=错误!=错误!=错误!=2.因为S2=a1+a2=4a1+2,所以a2=5.所以b1=a2—2a1=3.所以数列{b n}是首项为3,公比为2的等比数列.(2)由(1)知b n=3·2n—1=a n+1—2a n,所以错误!—错误!=3.所以c n+1—c n=3,且c1=错误!=2,所以数列{c n}是等差数列,公差为3,首项为2.等差数列、等比数列的判定方法1定义法:a n+1—a n=d常数⇔{a n}是等差数列;错误!=q q为常数,q≠0⇔{a n}是等比数列.2中项公式法:2a n+1=a n+a n+2⇔{a n}是等差数列;a\o\al(2,n+1)=a n·a n+2a n≠0⇔{a n}是等比数列.3通项公式法:a n=kn+b k,b是常数⇔{a n}是等差数列;a n=c·q n c,q为非零常数⇔{a n}是等比数列.4前n项和公式法:S n=An2+Bn A,B为常数,n∈N*⇔{a n}是等差数列;S n=Aq n—A A,q为常数,且A≠0,q≠0,q≠1,n∈N*⇔{a n}是等比数列.提醒:1前两种方法是判定等差、等比数列的常用方法,而后两种方法常用于选择、填空题中的判定.2若要判定一个数列不是等差比数列,则只需判定其任意的连续三项不成等差比即可.3.数列{a n}的前n项和为S n,若a n+S n=n,c n=a n—1.求证:数列{c n}是等比数列.[证明] 当n=1时,a1=S1.由a n+S n=n,1得a1+S1=1,即2a1=1,解得a1=错误!.又a n+1+S n+1=n+1,22—1得a n+1—a n+(S n+1—S n)=1,即2a n+1—a n=1,3因为c n=a n—1,所以a n=c n+1,a n+1=c n+1+1,代入3式,得2(c n+1+1)—(c n+1)=1,整理得2c n+1=c n,故错误!=错误!(常数).所以数列{c n}是一个首项c1=a1—1=—错误!,公比为错误!的等比数列.数列求和[探究问题]1.若数列{c n}是公差为d的等差数列,数列{b n}是公比为q(q≠1)的等比数列,且a n=c n+b n,如何求数列{a n}的前n项和?[提示] 数列{a n}的前n项和等于数列{c n}和{b n}的前n项和的和.2.有些数列单独看求和困难,但相邻项结合后会变成熟悉的等差数列、等比数列求和.试用此种方法求和:12—22+32—42+…+992—1002.[提示] 12—22+32—42+…+992—1002=(12—22)+(32—42)+…+(992—1002)=(1—2)(1+2)+(3—4)(3+4)+…+(99—100)(99+100)=—(1+2+3+4+…+99+100)=—5050.3.我们知道错误!=错误!—错误!,试用此公式求和:错误!+错误!+…+错误!.[提示] 由错误!=错误!—错误!得错误!+错误!+…+错误!=1—错误!+错误!—错误!+…+错误!—错误!=1—错误!=错误!.【例4】已知数列{a n}的前n项和S n=kc n—k(其中c、k为常数),且a2=4,a6=8a3.(1)求a n;(2)求数列{na n}的前n项和T n.思路探究:(1)已知S n,据a n与S n的关系a n=错误!确定a n;(2)若{a n}为等比数列,则{na n}是由等差数列和等比数列的对应项的积构成的新数列,可用错位相减法求和.[解] (1)当n≥2时,a n=S n—S n—1=k(c n—c n—1),则a6=k(c6—c5),a3=k(c3—c2),错误!=错误!=c3=8,∴c=2.∵a2=4,即k(c2—c1)=4,解得k=2,∴a n=2n.当n=1时,a1=S1=2.综上所述,a n=2n(n∈N*).(2)na n=n·2n,则T n=2+2·22+3·23+…+n·2n,2T n=1·22+2·23+3·24+…+(n—1)·2n+n·2n+1,两式作差得—T n=2+22+23+…+2n—n·2n+1,T n=2+(n—1)·2n+1.1.(变结论)例题中的条件不变,(2)中“求数列{na n}的前n项和T n”变为“求数列{n+a n}的前n项和T n”.[解] 由题知T n=1+2+2+22+3+23+…+n+2n=(1+2+3+…+n)+(2+22+…+2n)=错误!+错误!=2n+1—2+错误!.2.(变结论)例题中的条件不变,将(2)中“求数列{na n}的前n项和T n”变为“求数列错误!的前n项和T n”.[解] 由题知T n=错误!+错误!+错误!+…+错误!,1错误!T n=错误!+错误!+…+错误!+错误!,21—2得:错误!T n=错误!+错误!+错误!+…+错误!—错误!=错误!—错误!=1—错误!n—错误!,∴T n=2—错误!—错误!=2—错误!=2—错误!.数列求和问题一般转化为等差数列或等比数列的前n项和问题或已知公式的数列求和,不能转化的再根据数列通项公式的特点选择恰当的方法求解.一般常见的求和方法有:(1)公式法:利用等差数列或等比数列前n项和公式.(2)分组求和法:把一个数列分成几个可以直接求和的数列.(3)裂项(相消)法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(4)错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(5)倒序相加法:例如,等差数列前n项和公式的推导.。