驱动桥-(1)
- 格式:doc
- 大小:91.00 KB
- 文档页数:10
MCY13系列车桥简介主讲:王传法桥箱公司鸟瞰图MCY13(盘式)驱动桥MCY13Q(鼓式)驱动桥MCY13Q(鼓式)驱动桥目录第一章MCY13系列车桥的开发过程第二章MCY13系列车桥的概况第三章MCY13系列车桥的特点第一章MCY13系列车桥的开发过程1、2010.7—2010.9 图纸的陆续发放2、2010.8—2010.11 样桥的试制开发3、2010.12—2011.3 样桥的试验Ø1)桥壳疲劳试验:Ø43.7万次,91.2、114.3板簧座内侧焊缝处断裂、92.6、81.2、89.2板簧座外侧焊缝处断裂;Ø2)桥总成台架试验:Ø中桥主试:最高27.2万次,最低12.3万次,轴差啮合套打齿Ø后桥主试:最高117.1万次,最低30.3万次主减打齿4、2010.4—2011.8 整车的可靠性试验Ø共装配10辆份3.08速比MCY13桥用于可靠性试验,该批车桥已行驶超过3万公里5、2011.9—至今小批量试装6、2011.9—2011.10Ø开发空气悬架用桥和板簧悬架单后桥7、2011.10—2011.11Ø开发MCY13鼓式制动器车桥和MCY13Q轻量化车桥Ø8、2011.12 销售10辆份装MCY13桥整车第二章MCY13系列车桥的概况第一节MCY13系列车桥的分类1、MCY13双联驱动桥Ø1)按制动器形式:盘式、鼓式Ø2)按悬架形式:板簧悬架2、MCY13Q轻量化桥Ø1)按制动器形式:盘式、鼓式Ø2)按悬架形式:板簧悬架3、MCY13单后桥(板簧悬架、空气悬架)第二节MCY13系列车桥与整车的匹配1、标载双桥牵引车用MCY13Q,综合工况的车用MCY13双桥,所有单桥车只用MCY13单桥;2、鼓式制动器:标配于HOWO、金王子、豪卡等中端平台;3、盘式制动器:标配于高端平台(即装曼发动机的7、5平台)。
驱动桥原理驱动桥是现代电子设备中常见的一种电路结构,它在控制电机、执行器等设备时发挥着重要的作用。
驱动桥的原理涉及到电路的工作方式、信号的传递以及功率的控制,下面我们就来详细了解一下驱动桥的原理。
首先,我们需要了解驱动桥的基本结构。
驱动桥通常由四个开关管组成,分别为高侧MOS管、低侧MOS管、高侧二极管和低侧二极管。
这四个开关管通过控制信号来实现对电机的正转、反转和制动等操作。
在正常工作状态下,高侧MOS 管和低侧二极管导通,低侧MOS管和高侧二极管截止,电机可以正常工作;而在反转或制动时,控制信号改变,导通和截止的管脚也会相应改变,从而实现电机的反转或制动。
其次,驱动桥的原理涉及到PWM(脉宽调制)技术。
PWM技术是通过改变信号的占空比来控制电路的平均功率的一种技术。
在驱动桥中,通过调整PWM信号的占空比,可以控制电机的转速和输出功率。
当PWM信号的占空比增大时,电机的平均功率也随之增大;反之,占空比减小时,电机的平均功率也会减小。
这种方式可以实现对电机的精准控制,从而满足不同工况下的需求。
此外,驱动桥的原理还涉及到电流和电压的变化。
在电机工作时,会产生反电动势,这会影响电机的工作效果。
而驱动桥通过控制开关管的导通和截止,可以实现对电机电流和电压的精确控制,从而抑制反电动势的产生,提高电机的效率和性能。
总的来说,驱动桥的原理是基于开关管的控制和PWM技术的应用,通过精确控制电流和电压,实现对电机的精准控制。
这种电路结构在现代电子设备中得到了广泛应用,为电机控制和执行器控制提供了重要的支持。
通过对驱动桥原理的深入了解,我们可以更好地应用它,提高电路的效率和性能,满足不同工况下的需求。
1-1-2 底盘1.发动机——将燃料燃烧的热能转化为机械能,是汽车行驶的动力源。
2.底盘——接受发动机的动力,使汽车正常行驶。
由传动系、行驶系、转向系和制动系组成。
(1)传动系——将发动机的动力传到驱动轮。
由离合器、变速器、万向传动装置、驱动桥等组成。
(2)行驶系——安装部件、支承全车并保证行驶。
由车架、车桥、车轮和悬架等组成。
(3)转向系——保证汽车按驾驶员选定的方向行驶。
由转向器和转向传动机构组成。
(4)制动系——使汽车能减速以至于停车,并保证驾驶员离去后汽车能可靠停驻。
3.车身——用以安置驾驶员、乘客或货物。
客车和轿车是整体车身;普通货车车身由驾驶室和货箱组成。
4.电气设备——-由电源和用电设备组成,包括发电机、蓄电池、起动系、点火系以及汽车的照明、信号装置和仪表等。
此外,在现代汽车上愈来愈多地装用各种电子设备:微处理机、中央计算机系统及各种人工智能装置(自诊、防盗、巡航、防抱死、车身高度自调等),显著地提高了汽车的使用性能。
按照传统划分,汽车通常由:发动机、底盘、车身、电气设备四个部分组成。
一、发动机――是把某一种形式的能量转变成机械能的机器。
现代汽车所使用的发动机多为内燃机,内燃机是把燃料燃烧的化学能转变成热能,然后又把热能转变成机械能的机器,并且这种能量转换过程是在发动机气缸内部进行的。
即:内燃机:燃料化学能→热能→机械能汽车上使用的内燃机主要有汽油机和柴油机(按燃料分)。
现今汽车广泛采用往复活塞式内燃机。
发动机总体构造(两大机构+五大系统)两大机构――曲柄连杆机构和配气机构五大系统――供给系、点火系、冷却系、润滑系、起动系柴油机是压燃的,不需要点火系。
二、汽车底盘汽车底盘组成包括传动系、行驶系、制动系和转向系四部分。
1、传动系---将发动机的动力传到驱动轮。
包括:(1)离合器---实现传动的结合与分离,起步、换档;过载保护。
(2)变速器---改变系统传动比,适应行驶需要;空档;倒档。
驱动桥原理
驱动桥原理是一种电子电路,用于控制电机的运转。
它通常由四个开关管组成,分别称为H桥。
这四个开关管按一定顺序开关,可以改变电源电压的极性和大小来实现电机的正反转、调速以及制动等功能。
驱动桥原理的核心是利用开关管的导通和断开来实现对电机的控制。
当其中两个开关管导通,另外两个开关管断开时,电机将以一定方向旋转;当导通和断开的开关管交替切换时,电机则会实现快速转动。
通过改变开关管的导通和断开时间,可以实现调速效果。
驱动桥原理中的开关管通常由晶体管、场效应管或集成电路等器件组成。
这些器件的导通和断开由控制信号来控制,控制信号可以来自于微控制器、模拟电路或其他外部设备。
在驱动桥原理中,为了保护电源和电机,通常还会加入电流检测、过压保护、过温保护等保护电路。
这些保护电路可以及时检测到异常情况,并通过控制信号来切断电源,从而避免电机和驱动桥的损坏。
总之,驱动桥原理是一种通过调整开关管的导通和断开来实现对电机控制的电路。
它广泛应用于各种电机驱动系统中,如机器人、汽车、船舶等。
通过合理设计和控制,驱动桥可以实现电机的正反转、调速等功能,从而满足各种应用需求。
驱动桥原理图驱动桥是一种用于控制电机或其他电动设备的电路,它可以实现电机的正转、反转以及制动等功能。
在电动车、工业机械等领域广泛应用,是现代电气控制领域的重要组成部分。
本文将介绍驱动桥的原理图及其工作原理。
驱动桥原理图主要由功率电路和控制电路两部分组成。
功率电路包括电源模块、MOS管和电机,控制电路包括驱动芯片、电流传感器、电压传感器等。
下面我们将对这两部分进行详细介绍。
首先是功率电路部分。
电源模块为整个电路提供电源,MOS管是功率开关管,可以控制电机的正转和反转。
电机是驱动桥的输出部分,根据MOS管的导通与截止状态,实现电机的正转、反转和制动。
功率电路的设计需要考虑电机的功率、电压、电流等参数,以确保电路能够正常工作。
其次是控制电路部分。
驱动芯片是控制电路的核心部分,它接收外部控制信号,并通过内部逻辑电路控制MOS管的导通与截止。
电流传感器和电压传感器用于监测电机的电流和电压,以实现对电机的闭环控制。
控制电路的设计需要考虑信号的精确度、抗干扰能力以及系统的稳定性。
驱动桥的工作原理是通过控制MOS管的导通与截止状态,实现对电机的控制。
在正转状态下,控制芯片输出相应的信号,使得MOS管导通,电机正转;在反转状态下,控制芯片输出相应的信号,使得MOS管导通,电机反转;在制动状态下,通过控制MOS管的导通与截止,实现对电机的制动。
同时,通过电流传感器和电压传感器监测电机的电流和电压,实现对电机的闭环控制,提高系统的稳定性和精度。
总之,驱动桥是一种重要的电机控制电路,它通过功率电路和控制电路实现对电机的控制。
在实际应用中,需要根据具体的要求设计合适的驱动桥原理图,并考虑功率、电压、电流、稳定性等因素,以确保电路能够正常、稳定地工作。
希望本文对驱动桥的原理图及工作原理有所帮助,谢谢阅读!。
驱动桥工作原理
驱动桥是一种用于控制直流电机的电子设备,它能够控制电机的转速和方向,是许多电动设备中不可或缺的部分。
那么,驱动桥是如何工作的呢?接下来,我们将深入探讨驱动桥的工作原理。
驱动桥的核心部分是H桥电路,它由四个开关管组成,可以分为高侧开关管和低侧开关管。
在正常情况下,高侧开关管和低侧开关管是互相导通的,这样就可以控制电流的方向,从而控制电机的转向。
当高侧开关管导通时,电流从电源正极经过电机再返回电源负极;当低侧开关管导通时,电流从电源负极经过电机再返回电源正极。
通过不同的开关组合,可以实现控制电机的正转、反转和刹车等功能。
驱动桥的工作原理可以通过以下步骤来解释,首先,根据控制信号的输入,控制高侧和低侧开关管的导通与否;其次,根据开关管的导通情况,控制电流的流向,从而控制电机的转向;最后,不断地调整开关管的导通状态,可以实现对电机转速和方向的精确控制。
在实际应用中,驱动桥通常会配合微控制器或者其他控制器来
实现对电机的精确控制。
通过控制器发送不同的控制信号,可以实现对电机转速的调节、正反转的切换以及刹车功能的实现。
这种精确的控制方式,使得驱动桥在工业自动化、机器人、电动车等领域得到了广泛的应用。
总的来说,驱动桥通过控制电流的流向来实现对电机的精确控制,其核心是H桥电路。
通过不断地调整开关管的导通状态,可以实现对电机转速和方向的精确控制。
在实际应用中,驱动桥通常会与控制器配合使用,通过发送不同的控制信号来实现对电机的精确控制。
希望通过本文的介绍,能够让大家对驱动桥的工作原理有一个更加深入的了解。
驱动桥的结构及组成一、驱动桥是什么呢?驱动桥呀,就像是汽车或者其他车辆的一个超级重要的小世界。
它在整个车辆的传动系统里可是扮演着超级厉害的角色呢。
你想啊,如果把车辆比作一个人,那驱动桥就像是人的腿关节部分,负责把动力传递到车轮,让车跑起来或者干活呢。
它就默默地在那儿,不怎么起眼,但是少了它,车就只能原地发呆啦。
二、驱动桥的结构1. 主减速器这个主减速器可是驱动桥里的一个大佬呢。
它的任务就是把从传动轴传来的动力进行减速增扭。
怎么理解呢?就好比你要搬一个很重的东西,直接用力可能很难搬动,但是你用一个杠杆,就能比较轻松地撬动了。
主减速器就是这样一个类似杠杆原理的存在。
它把高转速小扭矩的动力转化成低转速大扭矩的动力,这样就能让车辆的车轮更有力地转动啦。
而且主减速器的结构也有不同的类型呢,像单级主减速器,结构比较简单,就像一个简单的小机器,但是效率很高。
还有双级主减速器,就更复杂一些,不过能适应更多不同的工况。
2. 差速器差速器这个东西可太有趣啦。
你有没有想过,当车辆转弯的时候,内侧车轮和外侧车轮走过的距离是不一样的。
如果没有差速器,那车轮就会互相较劲,就像两个人拔河一样,这样车肯定就走不好啦。
差速器就能让内侧和外侧车轮以不同的速度转动,保证车辆顺利转弯。
它就像是一个超级聪明的小管家,协调着左右车轮的速度关系。
差速器里面有很多小零件,像行星齿轮这些,它们相互配合,共同完成这个神奇的任务。
3. 半轴半轴就像是连接差速器和车轮的小桥梁。
它把差速器输出的动力传递到车轮上。
半轴得很结实才行,因为它要承受很大的扭矩。
如果半轴不结实,就像一个脆弱的小树枝,那在车辆行驶过程中,动力就不能很好地传递到车轮,车就会出现问题。
半轴的设计也有很多讲究呢,要考虑它的长度、粗细、材料等因素,这样才能保证它能稳定地完成自己的使命。
三、驱动桥的组成部分1. 桥壳桥壳就像是驱动桥的房子,它把驱动桥的其他部分都包裹在里面,起到保护的作用。
驱动桥的基本功能
驱动桥是一种电子设备,用于控制和驱动电动机或其他负载。
其基本功能包括:
1. 电流放大功能:驱动桥可以放大输入信号的电流,以控制输出负载的电流。
通过调节驱动桥的输入信号,可以控制输出负载的电流大小。
2. 方向控制功能:驱动桥可以控制电动机或其他负载的运动方向。
通过调节驱动桥的输入信号,可以切换输出负载的正向或反向运动。
3. 速度控制功能:驱动桥可以控制电动机或其他负载的运动速度。
通过调节驱动桥的输入信号,可以控制输出负载的转速。
4. 保护功能:驱动桥通常具有过电流保护、过温保护、短路保护等功能,以保护电动机或其他负载免受损坏。
5. 信号转换功能:驱动桥可以将输入信号从一个形式转换为另一个形式。
例如,从数字信号转换为模拟信号,或从低电平转换为高电平。
6. 接口功能:驱动桥通常具有与其他系统或设备进行通信的接口功能,以便于系统集成和控制。
驱动桥的基本功能是控制和驱动电动机或其他负载的运动,包括电流放大、方向控制、速度控制、保护、信号转换和接口功能。
第四章驱动轴和前桥第一节概述一、驱动轴技术规格(表4-1-1)驱动轴技术规格二、拧紧力矩(表4-1-2)拧紧力矩表4-1-2注意:自锁螺母经过拆卸后必须更换。
三、常见故障诊断(表4-1-3)常见故障诊断表4-1-3一、前驱动轴总成的检修(图4-2-1)图4-2-1(1)松开车轮螺母。
(2)把安全支架放在恰当的位置,将车辆前部举升。
(3)拆下车轮螺母和前车轮。
(4)从前轮毂上拆下开口销、开槽螺母及垫片。
(5)将驱动轴从变速器上拆卸下来。
(6)用塑胶锤,将驱动轴从前轮毂上拆下。
(7)将轮毂往外推,将驱动轴从轮毂上拆卸下来。
(8)在变速器壳体和驱动轴T.J.端壳体间插入一杠杆,从变速器上将驱动轴撬离,见图4-2-2。
注意:①要确保将杠杆放入桥壳体的肋上。
②杠杆不能插入太深(最大7mm),否则会损坏油封。
③拆卸自动变速器驱动轴时,要使杠杆插人到变速器与驱动轴间的凹槽中,将驱动轴拆下。
④不可拉驱动轴,这样球叉能会脱落。
(9)从变速器壳体上将驱动轴拆下。
注意:①用塞子塞好变速器壳体的驱动轴孔,以防杂质进入。
②采用适当的方式将驱动轴支撑好。
③每次拆卸驱动轴后,均要更换卡簧。
2.检查(1)检查驱动轴上的防尘罩有无裂纹、损坏、漏袖、防尘罩卡箍松动等,如果发现有损坏,更换防尘罩和防尘罩卡箍,见图4-2-3。
图4-2-2图4-2-3(2)检查球笼有无磨损和运动情况。
(3)用手扭转驱动轴,轴和球笼间不应松旷。
(4)检查轴花键有无磨损或损坏。
(5)保证驱动轴无扭曲或裂纹,如有必须更换。
3.安装(1)在驱动轴花键和变速器壳体表面涂抹齿轮油。
(2)在安装驱动轴前,要保证卡簧开口向下。
(3)将防尘罩、轮毂、制动盘和前轮轴承安装到转向节上。
(4)将B.J.安装到转向节上。
(5)实际上,应该在转向节B.J.端安装到转向节的同时,将下摆臂也安装到转向节上,且不能损坏防尘罩。
(6)用75-90N·m的拧紧力矩将转向节安装到减振器总成上。
第三节驱动桥3.1 驱动桥概述驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。
当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。
因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。
独立悬架驱动桥结构叫复杂,但可以大大提高汽车在不平路面上的行驶平顺性。
3.2 主减速器设计3.2.1 主减速器的结构型式主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。
(1)主减速器齿轮的类型在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。
在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。
在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。
在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。
螺旋锥齿轮其主、从动齿轮轴线相交于一点。
交角可以是任意的,但在绝大多数的汽车驱动桥上,主减速齿轮副都是采用90º交角的布置。
由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,因此,螺旋锥齿轮能承受大的负荷。
加之其轮齿不是在齿的全长上同时啮合,面是逐渐地由齿的一端连续而平稳地转向另—端,使得其工作平稳,即使在高速运转时,噪声和振动也是很小的。
双曲面齿轮如图其主、从动齿轮轴线不相交而呈空间交叉。
其空间交叉角也都是采用90º。
主动齿轮轴相对于从动齿轮轴有向上或向下的偏移,称为上偏置或下偏置。
这个偏移量称为双曲面齿轮的偏移距。
当偏移距大到一定程度时,可使一个齿轮轴从另一个齿轮轴旁通过。
这样就能在每个齿轮的两边布置尺寸紧凄的支承。
这对于增强支承刚度、保证轮齿正确啮合从而提高齿轮寿命大有好处。
双曲面齿轮的偏移距使得其主动齿轮的螺旋角大于从动齿轮的螺旋角。
因此,双曲面传动齿轮副的法向模数或法向周节虽相等,但端面模数或端面周节是不等的。
主动齿轮的端面模数或端面周节大于从动齿轮的。
这一情况就使得双曲面齿轮传动的主动齿轮比相应的螺旋锥齿轮传动的主动齿轮有更大的直径和更好的强度和刚度。
其增大的程度与偏移距的大小有关。
另外,由于双曲面传动的主动齿轮的直径及螺旋角都较大,所以相啮合齿轮的当量曲率半径较相应的螺旋锥齿轮当量曲率半径为大,从而使齿面间的接触应力降低。
随偏移距的不同,双曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高至175%。
双曲面主动齿轮的螺旋角较大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有利于大传动比传动。
当要求传动比大而轮廓尺寸又有限时,采用双曲面齿轮更为合理。
因为如果保持两种传动的主动齿轮直径一样,则双曲面从动齿轮的直径比螺旋锥齿轮的要小,这对于主减速比i0≥4.5的传动有其优越性。
当传动比小于2时,双曲面主动齿轮相对于螺旋锥齿轮主动齿轮就显得过大,这时选用螺旋锥齿轮更合理,因为后者具有较大的差速器可利用空间。
由于双曲面主动齿轮螺旋角的增大,还导致其进入啮合的平均齿数要比螺旋锥齿轮相应的齿数多,因而双曲面齿轮传动比螺旋锥齿轮传动工作得更加平稳、无噪声,强度也高。
双曲面齿轮的偏移距还给汽车的总布置带来方便。
例如,当主减速器采用下偏置(这时主动齿轮为左旋)的双曲面齿轮时,可降低轿车传动轴的高度,从而降低了车厢地板高度或减小了因设置传动轴通道而引起的地板凸起高度,进而可使轿车的外形高度减小。
像圆柱齿轮传动只在节点处一对齿廓表面为纯滚动接触而在其他啮合点还伴随着沿齿廓的滑动一样,螺旋锥齿轮与双曲面齿轮传动都有这种沿齿廓方向的滑动。
此外,双曲面齿轮传动还具有沿齿长方向的纵向滑动。
这种滑动有利于唐合,促使齿轮副沿整个齿面都能较好地啮合,因而更促使其工作平稳和无噪声。
但双曲面齿轮的纵向滑动产生较多的热量,使接触点的温度升高,因而需要用专门的双曲面齿乾油来润滑,且其传动效率比螺旋锥齿轮略低,达96%。
其传动效率与倔移距有关,特别是与所传递的负荷大小及传动比有关。
负荷大时效率高。
螺旋锥齿轮也是一样,其效率可达99%。
两种齿轮在载荷作用下对安装误差的敏感性本质上是相同的。
如果螺旋锥齿轮的螺旋角与相应的双曲面主、从动齿轮螺旋角的平均值相同,则双曲面主动齿轮的螺旋角比螺旋锥齿轮的大,而其从动齿轮的螺旋角则比螺旋锥齿轮的小,因而双曲面主动齿轮的轴向力比螺旋锥齿轮的大,而从动齿轮的轴向力比螺旋锥齿轮的小。
两种齿轮都在同样的机床上加工,加工成本基本相同。
然而双曲面传动的小齿轮较大,所以刀盘刀顶距较大,因而刀刃寿命较长。
蜗杆-蜗轮传动简称蜗轮传动,在汽车驱动桥上也得到了一定应用。
在超重型汽车上,当高速发动机与相对较低车速和较大轮胎之间的配合要求有大的主减速比(通常8~14)时,主减速器采用一级蜗轮传动最为方便,而采用其他齿轮时就需要结构较复杂、轮廓尺寸及质量均较大、效率较低的双级减速。
与其他齿轮传动相比,它具有体积及质量小、传动比大、运转非常平稳、最为静寂无噪声、便于汽车的总体布置及贯通式多桥驱动的布置、能传递大载荷、使用寿命长、传动效率高、结构简单、拆装方便、调整容易等一系列的优点。
其惟一的缺点是耍用昂贵的有色金属的合金(青铜)制造,材料成本高,因此未能在大批量生产的汽车上推广。
(2)主减速器主动锥齿轮的支承型式及安置方法在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。
现在汽车主减速器主动锥齿轮的支承型式有以下两种:悬臂式齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。
为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。
当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。
骑马式齿轮前、后两端的轴颈均以轴承支承,故又称两端支承式。
骑马式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式支承的1/30以下.而主动锥齿轮后轴承的径向负荷比悬臂式的要减小至1/5~1/7。
齿轮承载能力较悬臂式可提高10%左右。
装载质量为2t以上的汽车主减速器主动齿轮都是采用骑马式支承。
但是骑马式支承增加了导向轴承支座,是主减速器结构复杂,成本提高。
轿车和装载质量小于2t的货车,常采用结构简单、质量较小、成本较低的悬臂式结构。
(3)主减速器从动锥齿轮的支承型式及安置方法主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在支承之间的分布而定。
为了增加支承刚度,支承间的距离应尽可能缩小。
两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。
为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。
由于从动锥齿轮轴承是装在差速器壳上,尺寸较大,足以保证刚度。
球面圆锥滚子轴承具有自动调位的性能,对轴的歪斜的敏感性较小,这一点当主减速器从动齿轮轴承的尺寸大时极为重要。
向心推力轴承不需要调整,但仅见于某些小排量轿车的主减速器中。
只有当采用直齿或人字齿圆柱齿轮时,由于无轴向力,双级主减速器的从动齿轮才可以安装在向心球轴承上。
轿车和轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差建界壳的突缘上。
这种方法对增强刚性效果较好,中型和重型汽车主减速从动锥齿轮多采用有幅式结构并有螺栓或铆钉与差速器壳突缘连结。
(4)主减速器的轴承预紧及齿轮啮合调整支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。
预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。
主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴肩之间的调整垫片等方法进行。
近年来采用波形套筒调整轴承预紧度极为方便,波形套筒安装在两轴承内圈间或轴承与轴肩间。
(5)主减速器的减速型式主减速器的减速型式分为单级减速、双续减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。
单级主减速器由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广泛用在主减速比i0<7.6的各种中、小型汽车上。
单级主减速器都是采用一对螺旋锥齿轮或双曲面齿轮,也有采用蜗轮传动的。
双级主减速器由两级齿轮减速器组成,结构复杂、质量加大,制造成本也显著增加,因此仅用于主减速比较大(7.6<i0≤12)且采用单级减速不能满足既定的主减速比和离地间隙要求的重型汽车上。
以往在某些中型载货汽车上虽有采用,但在新设计的现代中型载货汽车上已很少见。
这是由于随着发动机功率的提高、车辆整备质量的减小以及路面状况的改善,中等以下吨位的载货汽车往具有更高车速的方向发展,因而需采用较小主减速比的缘故。
双速主减速器对于载荷及道路状况变化大、使用条件非常复杂的重型载货汽车来说,要想选择一种主减速比来使汽车在满载甚至牵引井爬陡坡或通过坏路面时具有足够的动力性,而在平直而良好的硬路面上单车空载行驶时又有较高的车速和满意的娥料经济性,是非常困难的。
为了解决这一矛盾,提高汽车对各种使用条件的适应性,有的重型汽车采用具有两种减速比并可根据行驶条件来选择档位的双速主减速器。
它与变速器各档相配合,就可得到两倍于变速器的档位。
显然,它比仅仅在变速器中设置超速档,即仅仅改变传动比而不增加档位数,更为有利。
当然,用双速主减速器代替半衰期的超速档,会加大驱动桥的质量,提高制造成本,并要增设较复杂的操纵装置,因此它有时被多档变速器所代替。
单级贯通式主减速器单级贯通式主减速器用于多桥驱动汽车的贯通桥上,其优点是结构简单、主减速器的质量较小、尺寸紧凑,并可使中,后桥的大部分零件,尤其是使桥壳、半轴等主要零件具有互换性。
它又分为双曲面齿轮式和蜗轮式两种结构型式。
双曲面齿轮式单级贯通式主减速器,是利用了双曲面齿轮传动主动齿轮轴线相对于从动齿轮轴线的偏移,将一根贯通轴穿过中桥井通向后桥。
但这种结构受主动齿轮最少齿数和偏移距大小的限制,而且主动齿轮的工艺性差,通常主动齿轮的最小齿数是8,因此主减速比的最大值只能在5左右,故多用于轻型汽车的贯通式驱动桥。
当用于大型汽车时刷需增设轮边减速器或加大分动器传动比。
蜗轮传动为布置贯通桥带来极大方便,且其工作平滑无声,在结构质量较小的情况下也可得到大的传动比,适于各种吨位贯通桥的布置和汽车的总体布置。
但由于需用青铜等有色金属为材料而未得到推广。
双级贯通式主减速器用于主减速比i 0>5的中、重型汽车的贯通桥。
它又有锥齿轮—圆柱齿轮式和圆柱齿轮锥齿轮式两种结构型式。