8--2019年硚口区八年级3月考数学答案(2)
- 格式:doc
- 大小:263.50 KB
- 文档页数:8
学校班级姓名硚口区2017---2018学年度八年级3月考数学试卷(测试范围:二次根式及勾股定理) 姓名 分数一、选择题(每小题3分,共30分)1.下列二次根式中,x 的取值范围是x ≥3的是( ) A .x -3 B .x 26+ C .3-x D .3+x2.下列各组三条线段组成的三角形是直角三角形的是( )A .2,3,4B .1,1,2C .6,8,11D .2,2,3 3.下列式子是最简二次根式的是( )A .21B .2C .2aD .84.下列各式计算错误的是( )A .33334=-B .632=⨯C .(32)(32)5+-= D .3218=÷5.下列二次根式,不能与3合并的是( ) A .48B .27-C .34D .186、计算224)32(+的正确结果是( )A .8B .10C .14D .167.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A .0个B .1个C .2个D .3个8.如图,有一块Rt △ABC 的纸片,∠ABC=900,AB =6,BC =8,将△ABC 沿AD 折叠,使点B 落在AC 上的E 处,则BD 的长为( )A .3B .4C .5D .69.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),下列结论:①x 2+y 2=49;②x -y =2;③2xy +4=49.其中正确的结论是( )A .①②B .②C .①②③D .①③1o .如图,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=450,若AD=4,CD=2,则BD 的长为( )A . 6 B. 27 C. 5 D. 25题号1 2 3 4 5 6 7 8 9 10 答案11.比较大小:10_______3;32_______23.12.若n 12是正整数,则整数n 的最小值为 . 13.在实数范围因式分解:52-a =________.14.观察下列各式:15441544;833833;322322=⨯=⨯=⨯,……依此规律,则第4个式子是 .15.已知一个直角三角形的两边长分别为3和4,则斜边长为 .16.如图,∠AOB=40°,M 、N 分别在OA 、OB 上,且OM=2,OB 、OA 上,则MP+PQ+QN 的最小值是 __________.三、解答题(共8小题,共72分) 17.(本题8分)计算: (1)27-1318-12 (2) 2543122÷⨯18.(本题8分)先化简,再求值:)223(+--x xx x ÷422-x x ,其中x =3-4.19.(本题8分)(1)若433+-+-=x x y ,求xy 的平方根;(2)实数y x ,使04432=+++-y y x 成立,求y x 的值.20.(本题8分)如图,正方形网格中的每个小正方形边长都是1.(1)如图1,在4x4的方格中,画一个三角形,使它的三边长都是有理数,且顶点都在格点上; (2)如图2 , 直接写出:①△ABC 的周长为 ②△ABC 的面积为 ; ③AB 边上的高为 .图221.(本题8分)如图,在△ABC 中,AB =AC ,BC =10,D 为AB 上一点,CD =8,BD =6.(1)求证:∠CDB=900;(2)求AC 的长.22.(本题10分)如图,在等边△ABC 中,D 为BC 上一点,∠BAD =3∠C AD, BC=2. (1)求△ABC 的面积; (2)求CD 的值.23.(本题10分)已知,在等腰Rt △O AB 中,∠OAB=900,OA=AB ,点A,B 在第四象限. (1)如图1,若A (1,-3),则①OA= ;②求点B 的坐标; (2)如图2,AD ⊥y 轴于点D,M 为OB 的中点,求证:DM DA DO 2=+.24.(本题12分)已知△ABC 是等边三角形.(1)如图1,△BDE 也是等边三角形,求证AD=CE ;(2)如图2,点D 是△ABC 外一点,且∠BDC=30°,请探究线段DA 、DB 、DC 之间的数量关系,并证明你的结论;(3)如图3,点D 是等边三角形△ABC 外一点,若DA=13, DB=,DC=7,试求∠BDC 的度数.硚口区2017---2018学年度八年级3月考数学参考答案一、选择题:1、C2、B3、B4、C5、D6、D7、B8、A9、C 10、A二、填空题:11、 > , < 12、 3 13、 )5)(5(-+a a 14、24552455=⨯15、 4或5 16、 27三、解答题17、(1)解:原式=33-1323⨯-23 --------------3分=3-2 --------------4分(2)解:原式=()112123245⨯⨯⨯⨯÷ ----------6分=11810⨯ --------------7分=3210 --------------8分18、解:原式=)223(+--x xx x 242x x-⨯=23422x x x x -⨯-—2422x x x x -⨯+ =3(2)2x +—22x -=4x + -------------- 6分当x=3-4时,原式=3 -----------8分19、解:(1)依题意,x-3≥0且3-x ≥0,∴x ≥3且x ≤3,∴x=3 -------------1分当x=3时,y=0+4=4 -----------------------2分 ∴xy=3×4=12∴xy 的平方根为12±=3± ------4分(2)∵3x -+y 2+4y=-4 ∴3x -+y 2+4y+4=0即3x -+(y+2)2=0 ---------5分 由非负性可知,x-3=0, y+2=0 ∴x=3,y=-2 -----6分∴211393y x -===------------8分20、(1)画三角形 --------------------------------------2分(2)①△ABC的周长225----------4分②△ABC的面积32-------------6分③AB边上的高355-----------8分21、(1)、在△ABC中,BD2+CD2=62+82=100 , BC2=102=100∴BD2+CD2 BC2 -------------------------2分∴△BCD是直角三角形且∠CDB=90°-----------------3分(2)、设AD=X,则AC=AB=6+X ,由(1)可知,∠CDB=90°∴∠CDA=90°在Rt△CDA中,AD2+CD2=AC2∴x2+82=(6+x)2 -------------------------------------6分∴x=73-------------------------------------7分∴AC=6+X=253. --------------------------------------8分22(1) 过点A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=CM=1/2BC=1, ∠BAM=∠CAM=30°--------------------1分在Rt△CAM中,AM2+CM2=AC2∴AM 2+12=22 ∴AM=3 ---------------------3分∴S△ABC=12BC·AM =12×2×3=3 --------------4分(2)∵∠BAD=3∠C AD∴∠CAD=14∠BAC=15°∠MAD=∠MAC-∠DAC=15°∴AD平分∠MAC ---------------------5分过点D作DN⊥AC于N,则△ADM≌△AND∴DM=DN, AN=AM=3∴CN=AC-AB=2-3 ------6分设DM=DN=x, 则CD=CM-DM=1-x在Rt△CDN中,DN2+CN2=CD2x2+(2-3)2=(1-x)2 解得:x=23-3 ----------9分∴CD=1-x=4-23 -----------------10分法2) 过点D作DE⊥AB于E,设BE=x,则DE=AE=3xBD=2x,∴x+3x=2,则x=3+1,CD=BC-BD=4-2323.(1)①OA=10 --------------------2分②过点A作AD⊥y轴于D,过点B作BE⊥AD于E则∠ODA=∠AEB=900,∠DOA=∠BAE,OA=AB∴△ADO ≌△BEA (AAS ) ------------------4分 ∴BE=AD=1,AE=OD=3 ∴DE=4∴B (4,-2) -------------------5分(2)法1):连接AM ,过M 作ME ⊥DM 交DA 的延长线于点E则AM ⊥OB ,OM=AM--------------------------7分 再证△DOM ≌△EAM (AAS )∴MD=ME------------------------------------------9分 ∴DA+DO=DA+AE=DE=2DM-----------------10分法2)过B 作BE ⊥DA 交DM 的延长线于点F有前可知:△ADO ≌△BEA (AAS )∴BE=AD ,AE=OD再证△MDO ≌△MFB (AAS ) ∴BF=OD=AE,DM=FM ∴DE=FE∴DA+DO=DA+AE=DE=22DF=2DM24(1)∵△ABC 和△BDE 均为等边三角形∴BC=BA ,BD=BE ,∠ABC=∠EBD=600-----------1分 ∴∠ABD=∠EBC∴△ABD ≌△CBE (AAS )-----------------------------------2分∴AD=CE --------------------------------3分(2)结论: DB 2+DC 2=DA 2-----------------------4分以BD 为边作等边△BDE ,连CE ---------------------5分则BD=DE ,∠BDE=600由(1)可知△ABD ≌△CBE (AAS ) ∴AD=CE又∠CDB=300,∴∠CDE=900-----------------6分∴CD 2+DE 2=CE 2∴DB 2+DC 2=DA 2----------------------------7分(3) 以BD 为边作等边△BDE ,连CE ,过E 作EH ⊥CD 交CD 的延长线于点H 可知△ABD ≌△CBE (AAS )∴AD=CE=13-------------------------------------------8分 设DH=x在Rt △DEH 中:DE 2—DH 2=EH 2即()22252EH =—x -------------------------9分在Rt △CEH 中:CE 2—CH 2=EH 2()222137x EH -+=∴()2252—x =()22137x -+ -------------10分∴x=5 即DH=5 -------------------------11分DCAB∴EH=5=DH 则∠EDH=450∴∠CDB=1800—450—600=750 --------12分【本文档由书林工作坊整理发布,谢谢你的下载和关注!】中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
3月八年级下月考数学试卷含答案解析八年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共30分)1.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.2.代数式﹣,,x+y,,,中是分式的有()A.1个B.2个C.3个D.4个3.下列各式从左到右的变形正确的是()A.=B.C.D.4.把分式中的x、y都扩大到原来的4倍,则分式的值()A.扩大到原来的8倍B.扩大到原来的4倍C.缩小到原来的 D.不变5.能判定四边形ABCD为平行四边形的条件是()A.AB=AD,CB=CD B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB∥CD,AD=BC 6.顺次连结矩形四边的中点所得的四边形是()A.矩形B.正方形C.菱形D.以上都不对7.关于x的方程可能产生的增根是()A.x=1 B.x=2 C.x=1或x=2 D.x=一1或=28.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变12.下列4个分式:①;②;③;④,中最简分式有个.13.如果一个矩形较短的边长为5cm.两条对角线所夹的角为60°,则这个矩形的面积是cm2.14.若分式方程=5+有增根,则a的值为.15.若﹣=2,则的值是.16.已知关于x的方程的解是负数,则n的取值范围为.17.如图,在矩形ABCD中,对角线AC、BD 相交于点O,若DF⊥AC,∠ADF:∠FDC=3:2,则∠BDF=.18.如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD 的周长为20,则平行四边形ABCD的面积为.19.如图,矩形ABCD中,AB=6,BC=8,点E 是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.20.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.三、解答题(本大题共70分,解答时应写出文字说明、证明过程或演算步骤)21.计算:(1)(2)(3)(4).22.解下列方程.(1)=﹣1(2)+=.23.化简代数式,再从﹣2,2,0,1四个数中选一个恰当的数作为a的值代入求值.24.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为.25.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.26.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.(1)问四边形DEBF是什么特殊四边形?说明理由.(2)若AB=12cm,BC=18cm,求重叠部分的面积.27.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形,菱形都是和谐四边形.结合阅读材料,完成下列问题:如图,等腰Rt△ABD中,∠BAD=90°.若点C 为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请画出图形并求出∠ABC的度数.28.如图,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式.2015-2016学年江苏省无锡市东湖塘中学八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的定义解答.【解答】解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,不是轴对称图形;D、是中心对称图形,也是轴对称图形.故选D.2.代数式﹣,,x+y,,,中是分式的有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解;代数式是分式,故选;A.3.下列各式从左到右的变形正确的是()A.=B.C.D.【考点】分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.4.把分式中的x、y都扩大到原来的4倍,则分式的值()A.扩大到原来的8倍B.扩大到原来的4倍C.缩小到原来的 D.不变【考点】分式的基本性质.【分析】根据题意得出算式,再根据分式的基本性质化简,即可得出答案.【解答】解:根据题意得:==,即和原式的值相等,故选D.5.能判定四边形ABCD为平行四边形的条件是()A.AB=AD,CB=CD B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB∥CD,AD=BC 【考点】平行四边形的判定.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法,采用排除法,逐项分析判断.【解答】解:A、若AB=AD,CB=CD,无法判定,四边形ABCD为平行四边形,故此选项错误;B、∠A=∠B,∠C=∠D,无法判定,四边形ABCD 为平行四边形,故此选项错误;C、AB=CD,AD=BC,可判定是平行四边形的条件,故此选项正确;D、此条件下无法判定四边形的形状,还可能是等腰梯形,故此选项错误.故选:C.6.顺次连结矩形四边的中点所得的四边形是()A.矩形B.正方形C.菱形D.以上都不对【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.7.关于x的方程可能产生的增根是()A.x=1 B.x=2 C.x=1或x=2 D.x=一1或=2【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)(x﹣2)=0,根据解方程,可得答案.【解答】解:由关于x的方程可能产生的增根,得(x﹣1)(x﹣2)=0.解得x=1或x=2,故选:C.8.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【考点】三角形中位线定理.【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选C.9.已知小明上学时,走上坡路,速度为m千米/时;放学回家时,沿原路返回,速度为n千米/时,则小明上学和放学时的平均速度为()A.千米/时 B.千米/时C.千米/时 D.千米/时【考点】列代数式(分式).【分析】设从家到学校的单程为1,那么总路程为2,根据平均速度=,列分式并化简即可得出答案.【解答】解:设上学路程为1,则往返总路程为2,上坡时间为,下坡时间为,则平均速度==(千米/时).故选C10.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C 点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有()次平行于AB.A.1 B.2 C.3 D.4【考点】一元一次方程的应用.【分析】易得两点运动的时间为12s,PQ∥AB,那么四边形ABQP是平行四边形,则AP=BQ,列式可求得一次平行,算出Q在BC上往返运动的次数可得平行的次数.【解答】解:∵矩形ABCD,AD=12cm,∴AD=BC=12cm,∵PQ∥AB,AP∥BQ,∴四边形ABQP是平行四边形,∴AP=BQ,∴Q走完BC一次就可以得到一次平行,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,∴线段PQ有4次平行于AB,故选D.二、填空题(本大题共有10个空格,每个空格2分,共20分.把答案直接写在横线上)11.当x=1时,分式的值为0.当x≠3时,分式有意义.【考点】分式的值为零的条件;分式有意义的条件.【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x的值,再根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式的值为0,∴,解得x=﹣1;∵分式有意义,∴x﹣3≠0,即x≠3.故答案为:=﹣1,≠3.12.下列4个分式:①;②;③;④,中最简分式有2个.【考点】最简分式.【分析】将题目中的式子能化简的先化简,不能化简的式子是最简分式.【解答】解:∵,,,,∴最简分式是①④,故答案为:2.13.如果一个矩形较短的边长为5cm.两条对角线所夹的角为60°,则这个矩形的面积是25 cm2.【考点】矩形的性质.【分析】根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.【解答】解:如图:AB=5cm,∠AOB=60°,∵四边形是矩形,AC,BD是对角线,∴OA=OB=OD=OC=BD=AC,在△AOB中,OA=OB,∠AOB=60°,∴OA=OB=AB=5cm,BD=2OB=2×5=10cm,∴BC=cm,∴矩形的面积=25cm 2.故答案为:.14.若分式方程=5+有增根,则a的值为4.【考点】分式方程的增根.【分析】分式方程去分母转化为整式方程,根据分式方程有增根,得到最简公分母为0,求出x 的值,代入整式方程即可求出a的值.【解答】解:去分母得:x=5x﹣20+a,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:4=20﹣20+a,解得:a=4,故答案为:4.15.若﹣=2,则的值是﹣.【考点】分式的化简求值.【分析】先根据题意得出a﹣b=﹣2ab,再代入原式进行计算即可.【解答】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为:﹣.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.17.如图,在矩形ABCD中,对角线AC、BD 相交于点O,若DF⊥AC,∠ADF:∠FDC=3:2,则∠BDF=18°.【考点】矩形的性质.【分析】根据∠ADC=90°,求出∠CDF和∠ADF,根据矩形性质求出OD=OC,推出∠BDC=∠DCO,求出∠BDC,即可求出答案.【解答】解:设∠ADF=3x°,∠FDC=2x°,∵四边形ABCD是矩形,∴∠ADC=90°,∴2x+3x=90,x=18°,即∠FDC=2x°=36°,∵DF⊥AC,∴∠DMC=90°,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴AC=2OC,BD=2OD,AC=BD,∴OD=OC,∴∠BDC=∠DCO=54°,∴∠BDF=∠BDC﹣∠CDF=54°﹣36°=18°,故答案为:18°.18.如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD 的周长为20,则平行四边形ABCD的面积为12.【考点】平行四边形的性质.【分析】根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【解答】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=12.故答案为:12.19.如图,矩形ABCD中,AB=6,BC=8,点E 是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【考点】翻折变换(折叠问题).【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.20.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质.【分析】在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.【解答】解:如图,在BE上截取BG=CF,连接OG,∵RT△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在△OBG与△OCF中∴△OBG≌△OCF(SAS)∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE===2,∵BC2=BF•BE,则62=BF,解得:BF=,∴EF=BE﹣BF=,∵CF2=BF•EF,∴CF=,∴GF=BF﹣BG=BF﹣CF=,在等腰直角△OGF中OF2=GF2,∴OF=.故答案为:.三、解答题(本大题共70分,解答时应写出文字说明、证明过程或演算步骤)21.计算:(1)(2)(3)(4).【考点】分式的混合运算.【分析】(1)在第二个分式的分母中提取符号,放在分式的前面,再根据同分母的分式的加减直接计算即可;(2)根据分式的除法法则,直接计算即可;(3)根据异分母分式加减的法则,先通分,再相加,即可解答;(4)根据分式的混合运算的法则,先计算括号里面的,再根据分式的除法法则计算即可.【解答】解:(1)原式====m+2;(2)原式==;(3)原式===;(4)原式==.22.解下列方程.(1)=﹣1(2)+=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x﹣3+2x+2=4,解得:x=1,经检验x=1是增根,分式方程无解.23.化简代数式,再从﹣2,2,0,1四个数中选一个恰当的数作为a的值代入求值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=0代入计算即可求出值.【解答】解:原式=•=•=,当a=0时,原式=2.24.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为(a+1,﹣b).(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为(0,2).【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于x轴对称并向右平移1个单位后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据轴对称和平移的性质的性质写出点P的对应点的坐标;(2)根据网格结构找出点A、B、C关于原点O 成中心对称的点A2、B2、C2的位置,然后顺次连接即可;(3)根据网格结构找出点A3、B3、C3的位置,再根据旋转的性质找出旋转中心并写出坐标.【解答】解:(1)△A1B1C1如图所示;P(a+1,﹣b);(2)△A2B2C2如图所示;(3)旋转中心(0,2).故答案为:(a+1,﹣b);(0,2).25.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.【分析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴△AFE≌△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.26.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.(1)问四边形DEBF是什么特殊四边形?说明理由.(2)若AB=12cm,BC=18cm,求重叠部分的面积.【考点】翻折变换(折叠问题).【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE是菱形;(2)根据折叠的性质知:AE=A′E,AB=A′D;可设AE为x,用x表示出A′E和DE的长,进而在Rt△A′DE中求出x的值,即可得到A′E的长,即可得到AE和DE长,再利用三角形的面积公式可得答案.【解答】解:(1)四边形DEBF是菱形,连接BE,由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(2)设AE=A′E=xcm,则DE=18﹣x;在Rt△A′ED中,A′E=xcm,A′D=AB=12cm,ED=AD﹣AE=(18﹣x)cm;由勾股定理得:x2+144=(18﹣x)2,解得x=5;∴S△DEF=×DE×DC=(18﹣5)×12=78(cm2).27.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形,菱形都是和谐四边形.结合阅读材料,完成下列问题:如图,等腰Rt△ABD中,∠BAD=90°.若点C 为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请画出图形并求出∠ABC的度数.【考点】等腰三角形的判定与性质.【分析】首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.【解答】解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形,在等腰Rt△ABD中,∵AB=AD,∴AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=∠BCF=15°,∴∠ABC=150°,综上:∠ABC的度数可能是:60°90°150°.28.如图,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=1时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式.【考点】四边形综合题.【分析】(1)△PQR的边QR经过点B时,△ABQ 构成等腰直角三角形,则有AB=AQ,由此列方程求出t的值;(2)在图形运动的过程中,有三种情形,当1<t≤2时,当1<t≤2时,当2<t≤4时,进行分类讨论求出答案.【解答】解:(1)△PQR的边QR经过点B时,△ABQ构成等腰直角三角形,∴AB=AQ,即3=4﹣t,∴t=1.即当t=1秒时,△PQR的边QR经过点B.故答案为:1;(2)①当0≤t≤1时,如答图1﹣1所示.设PR交BC于点G,过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.S=S矩形OABC﹣S梯形OPGC=8×3﹣(2t+2t+3)×3=﹣6t;②当1<t≤2时,如答图1﹣2所示.设PR交BC于点G,RQ交BC、AB于点S、T.过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.QD=t,则AQ=AT=4﹣t,∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.S=S矩形OABC﹣S梯形OPGC﹣S△BST=8×3﹣(2t+2t+3)×3﹣(t﹣1)2=﹣t2﹣5t+19;③当2<t≤4时,如答图1﹣3所示.设RQ与AB交于点T,则AT=AQ=4﹣t.PQ=12﹣3t,∴PR=RQ=(12﹣3t).S=S△PQR﹣S△AQT=PR2﹣AQ2=(12﹣3t)2﹣(4﹣t)2=t2﹣14t+28.综上所述,S关于t的函数关系式为:S=.。
八年级(下)学期3月份月考检测数学试卷含解析一、选择题 1.若a 是最简二次根式,则a 的值可能是( ) A .2- B .2 C .32 D .82.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .63.下列等式正确的是( ) A .497-=- B .2(3)3-= C .2(5)5--=D .822-= 4.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=5.下列各式是二次根式的是( )A .3B .1-C .35D .4π- 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x 7.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .101 8.下列各式计算正确的是( ) A .2+3=5B .43-33=1C .2333=63⨯D .123=2÷ 9.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .610.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .911.若a b >3a b - )A .ab --B .-abC .a abD .-ab12.下列计算正确的是( )A=B.2-= C.22= D3=二、填空题13.若mm 3﹣m 2﹣2017m +2015=_____. 14.==________.15.甲容器中装有浓度为a,乙容器中装有浓度为b,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.若6x ,小数部分为y,则(2x y 的值是___.17.化简二次根式_____. 18.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________ 19.已知:可用含x=_____. 20.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.23.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)=31-2==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.24.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b aa ab a b-+⨯+-=()()()2·a b aa ab a b-+-=a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.计算(1))(121123-⎛⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==, 1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-, 17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.29.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.30.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2.故选:B .此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.B解析:B【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【详解】由题意得:20,40m n -=-=,解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形,4a n ∴==,则ABC 的周长为24410++=,故选:B .【点睛】 本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.3.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意;故选:B .【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项.A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x-≥,解得:2x,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 7.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n -+, ∴=1111111+11122399100-++-+++- =199+1100- =100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】 1111n n =+-+是解答本题的基础.8.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知4333-=3,故不正确;根据二次根式的性质,可知2333⨯=18,故不正确; 根据二次根式除法的性质,可知2733333÷=÷=,故正确.故选D.9.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D10.A解析:A【解析】根据题意得:|x 2–4x 23x y --,所以|x 2–4x +4|=023x y --,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .11.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3a b -∴-a 3b≥0∵a >b ,∴a >0,b <023=a b ab a a ab --=-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.14.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键. 16.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 17.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为18.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 19.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 20.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
硚口区2019-2020学年度八年级3月考数学试卷(测试范围:二次根式及勾股定理) 姓名分数一、选择题(每小题3分,共30分)1.下列二次根式中,x 的取值范围是x ≥3的是( ) A .x -3 B .x 26+ C .3-x D .3+x2.下列各组三条线段组成的三角形是直角三角形的是( )A .2,3,4B .1,1C .6,8,11D .2,2,3 3.下列式子是最简二次根式的是( )A .21B .2C .2aD .84.下列各式计算错误的是( )A .33334=-B .632=⨯C .5=D .3218=÷5.下列二次根式,不能与3合并的是( )A .48B .27-C .34D 6、计算224)32(+的正确结果是( )A .8B .10C .14D .167.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A .0个B .1个C .2个D .3个8.如图,有一块Rt △ABC 的纸片,∠ABC=900,AB =6,BC =8,将△ABC 沿AD 折叠,使点B 落在AC 上的E 处,则BD 的长为( )A .3B .4C .5D .69.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),下列结论:①x 2+y 2=49;②x -y =2;③2xy +4=49.其中正确的结论是( )A .①②B .②C .①②③D .①③1o .如图,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=450,若AD=4,CD=2,则BD 的长为( )A . 6 B.11121314.观察下列各式:15441544;833833;322322=⨯=⨯=⨯,……依此规律,则第4个式子是. 15.已知一个直角三角形的两边长分别为3和4,则斜边长为.16.如图,∠AOB=40°,M 、N 分别在OA 、OB 上,且OM=2,ON=4,点P 、Q 分别在OB 、OA 上,则MP+PQ+QN 的最小值是 __________.三、解答题(共8小题,共72分)17.(本题8分)计算:(1)27-1318-12(2)2543122÷⨯18.(本题8分)先化简,再求值:)223(+--x xx x ÷422-x x ,其中x =3-4.19.(本题8分)(1)若433+-+-=x x y ,求xy 的平方根;(2)实数y x ,使04432=+++-y y x 的值.20.(本题8分)如图,正方形网格中的每个小正方形边长都是1.(1)如图1,在4x4的方格中,画一个三角形,使它的三边长都是有理数,且顶点都在格点上; (2)如图2 , 直接写出:①△ABC 的周长为②△ABC 的面积为;③AB 边上的高为.图2 21.(本题8分)如图,在△ABC 中,AB =AC ,BC =10,D 为AB 上一点,CD =8,BD =6.(1)求证:∠CDB=900;(2)求AC 的长.22.(本题10分)如图,在等边△ABC中,D为BC上一点,∠BAD=3∠C AD, BC=2.(1)求△ABC的面积;(2)求CD的值.23.(本题10分)已知,在等腰Rt△O AB中,∠OAB=900,OA=AB,点A,B在第四象限.(1)如图1,若A(1,-3),则①OA=;②求点B的坐标;(2)如图2,AD⊥y轴于点D,M为OB的中点,求证:DMDADO2=+.24.(本题12分)已知△ABC是等边三角形.(1)如图1,△BDE也是等边三角形,求证AD=CE;(2)如图2,点D 是△ABC 外一点,且∠BDC=30°,请探究线段DA 、DB 、DC 之间的数量关系,并证明你的结论;(3)如图3,点D 是等边三角形△ABC 外一点,若DA=13, DB=DC=7,试求∠BDC 的度数.硚口区2019-2020学年度八年级3月考数学参考答案一、选择题:1、C2、B3、B4、C5、D6、D7、B8、A9、C 10、A二、填空题:11、>,< 12、 3 13、)5)(5(-+a a14、24552455=⨯15、 4或5 16、三、解答题17、(1)解:原式=1⨯-分分(2)解:原式=11245⨯⨯⨯ ----------6分=110分--------------8分18、解:原式=)223(+--x xx x 242x x-⨯=23422x x x x -⨯-—2422x x x x -⨯+ =3(2)2x +—22x -=4x + -------------- 6分当x=3-4时,原式=3 -----------8分19、解:(1)依题意,x-3≥0且3-x ≥0,∴x ≥3且x ≤3,∴x=3 -------------1分当x=3时,y=0+4=4 -----------------------2分 ∴xy=3×4=12∴xy 的平方根为=分(2+y 2+4y=-4 +y 2+4y+4=0+(y+2)2=0 ---------5分 由非负性可知,x-3=0, y+2=0 ∴x=3,y=-2 -----6分13===------------8分20、(1)画三角形 --------------------------------------2分(2)①△ABC 分②△ABC 的面积32-------------6分③AB -----------8分21、(1)、在△ABC 中,BD 2+CD 2=62+82=100 , BC 2=102=100∴BD 2+CD 2 BC 2-------------------------2分∴△BCD 是直角三角形且∠CDB=90°-----------------3分(2)、设AD=X ,则AC=AB=6+X ,由(1)可知,∠CDB=90°∴∠CDA=90°在Rt △CDA 中,AD 2+CD 2=AC 2∴x 2+82=(6+x)2 -------------------------------------6分∴x=73 -------------------------------------7分 ∴AC=6+X=253. --------------------------------------8分22(1) 过点A 作AM ⊥BC 于M ,∵△ABC 是等边三角形,∴BM=CM=1/2BC=1, ∠BAM=∠CAM=30°--------------------1分在Rt △CAM 中,AM 2+CM 2=AC 2∴AM 2+12=22∴分∴S △ABC =12BC ·AM =12×2分(2)∵∠BAD =3∠C AD∴∠CAD=14∠BAC=15° ∠MAD=∠MAC-∠DAC=15°∴AD 平分∠MAC ---------------------5分 过点D 作DN ⊥AC 于N,则△ADM ≌△AND∴分 设DM=DN=x, 则CD=CM-DM=1-x在Rt △CDN 中,DN 2+CN 2=CD 2x 2)2=(1-x)2 解得:-3 ----------9分∴ -----------------10分法2) 过点D 作DE ⊥AB 于E ,设BE=x ,则BD=2x,∴则23.(1)①分②过点A 作AD ⊥y 轴于D ,过点B 作BE ⊥AD 于E则∠ODA=∠AEB=900,∠DOA=∠BAE,OA=AB∴△ADO ≌△BEA (AAS ) ------------------4分 ∴BE=AD=1,AE=OD=3 ∴DE=4∴B (4,-2) -------------------5分(2)法1):连接AM ,过M 作ME ⊥DM 交DA 的延长线于点E则AM ⊥OB ,OM=AM--------------------------7分再证△DOM ≌△EAM (AAS )∴MD=ME------------------------------------------9分 ∴分法2)过B 作BE ⊥DA 交DM 的延长线于点F有前可知:△ADO ≌△BEA (AAS )∴BE=AD ,AE=OD再证△MDO ≌△MFB (AAS ) ∴BF=OD=AE,DM=FM ∴DE=FE∴DA+DO=DA+AE=DE=2DM24(1)∵△ABC 和△BDE 均为等边三角形∴BC=BA ,BD=BE ,∠ABC=∠EBD=600-----------1分 ∴∠ABD=∠EBC∴△ABD ≌△CBE (AAS )-----------------------------------2分∴AD=CE --------------------------------3分(2)结论: DB 2+DC 2=DA 2-----------------------4分以BD 为边作等边△BDE ,连CE ---------------------5分则BD=DE ,∠BDE=60由(1)可知△ABD ≌△CBE (AAS ) ∴AD=CE又∠CDB=300,∴∠CDE=900-----------------6分∴CD 2+DE 2=CE 2∴DB 2+DC 2=DA 2----------------------------7分(3)以BD 为边作等边△BDE ,连CE ,过E 作EH ⊥CD 交CD 的延长线于点H 可知△ABD ≌△CBE (AAS )∴AD=CE=13-------------------------------------------8分 设DH=x在Rt △DEH 中:DE 2—DH 2=EH 2即(222EH =—x -------------------------9分在Rt △CEH 中:CE 2—CH 2=EH 2()222137x EH -+=∴(22—x =()22137x -+ -------------10分∴x=5 即DH=5 -------------------------11分∴EH=5=DH 则∠EDH=45∴∠CDB=1800—450—600=750 --------12分。
人教版八年级上学期3月份月考数学试卷含解析一、选择题1.下列各式成立的是( )A 3=B 3=C .22(3=- D .2-=2.下列运算正确的是( )A =B . 3C =﹣2D =3.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-34.已知x 1x 2,则x₁²+x₂²等于( ) A .8B .9C .10D .115.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-26.1在3和4中x 的取值范围是1x ≥-;③3;④5=-58>.其中正确的个数为( ) A .1个B .2个C .3个D .4个7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤48.设1199++S 的最大整数[S]等于( ) A .98B .99C .100D .1019.下列各式计算正确的是( )A B .C .D10.下列计算正确的是( )A 6=±B .=C .6=D =(a≥0,b≥0) 11.下列运算中错误的是( )A =B =C 2÷=D .2 (3=12.有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C .m ≥﹣2D .m ≥﹣2且m ≠1二、填空题13.将2(3)(0)3a a a a-<-化简的结果是___________________.14.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=22]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 16.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 17.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.18.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 19.x y 53xy 153,则x+y=_______. 20.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中21x =. 2. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭. 将21x =22= 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.23.x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析:原式==== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-25.先化简再求值:4y x⎛-⎝,其中3x-=.【答案】(2x-【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x,y的值,继而将x、y的值代入计算可得答案.【详解】解:4y x⎛-⎝((=-(2x=-∵30x-∴3,4x y==当3,4x y==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b aa ab a b-+⨯+-=()()()2·a b aa ab a b-+-=a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;n n≥的式子写出你发现的规律;(2)请用含(1)(3)证明(2)中的结论.=+3)见解析【答案】(1=2(n【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1==+(2(n(3=(n==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.28.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积. 试题解析:剩余部分的面积为:(2﹣() =()﹣(﹣) =(cm 2). 考点:二次根式的应用29.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】解:A 3=,故A 正确;B -不能合并,故B 错误;C 、22(3=,故C 错误;D 、=D 错误;故选:A . 【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.2.D解析:D 【分析】直接利用二次根式的混合运算法则分别判断得出答案. 【详解】解:AB 、=,故此选项错误; C2,故此选项错误; D,正确; 故选:D . 【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.3.C解析:C 【解析】分析:根据被开方数大于等于0列式进行计算即可得解. 详解:根据题意得,x+3≥0, 解得x≥-3. 故选C.点睛:本题考查的知识点为:二次根式的被开方数是非负数,这也是解答本题的关键.4.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.5.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得:20x+>,解得:2x>-.故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.A解析:A【分析】答.【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;⑤∵159288-=,(229<,∴1528-<,即1528<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x ≥0,x-4≥0时,可得x 无解,不符合题意;当1-x ≥0,x-4≤0时,可得x ≤1时,原式=1-x-4+x=-3;当1-x ≤0,x-4≥0时,可得x ≥4时,原式=x-1-x+4=3;当1-x ≤0,x-4≤0时,可得1≤x ≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x ≤4时,多项式等于2x-5,故选B .【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n -+, ∴=1111111+11122399100-++-+++- =199+1100-=100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】1111n n =+-+是解答本题的基础. 9.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;3==,故正确.故选D.10.D 解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确;根据同类二次根式的性质,可知C 不正确;=(a≥0,b≥0)可知D 正确.故选:D 11.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.D解析:D【分析】根据二次根式有意义的条件即可求出答案.【详解】由题意可知:2010mm+≥⎧⎨-≠⎩,∴m≥﹣2且m≠1,故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.二、填空题13..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.14.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(2﹣1)=12﹣2=10.故答案为10.15.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a、b的值.17.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.18.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.19.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知+=+-)2x+y=2222整体代入可得原式=2-2)故答案为:20.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
一、选择题1.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DG QM 的值为( )A .32B .53C .45D .31-2.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或33 3.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .94.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A.12B.34C.56D.15.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是( )A.2n﹣2B.2n﹣1C.2n D.2n+16.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5327.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A.(-2,23)B.(-2,-23)C.(-2,-2)D.(-2,2)8.一个直角三角形两边长分别是12和5,则第三边的长是()A.13B.13或15C.13或119D.159.下列说法不能得到直角三角形的()A.三个角度之比为 1:2:3 的三角形B.三个边长之比为 3:4:5 的三角形C.三个边长之比为 8:16:17 的三角形D.三个角度之比为 1:1:2 的三角形10.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A .332cmB .4cmC .32cmD .6cm二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).13.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.14.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知2,则另一直角边AB 的长为__________.15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___17.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.18.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.19.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.23.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).24.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.25.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.26.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)27.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).28.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.29.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 .(2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.30.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,PQ =,所以QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DG QM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM =,1PB =,PQ =,∴3133222QMQP PM -+=+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴3DG AB ==;∴33133DG GM==-+. 故选D .【点睛】 本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.2.C解析:C【分析】存在2种情况,△ABC 是锐角三角形和钝角三角形时,高AD 分别在△ABC 的内部和外部【详解】情况一:如下图,△ABC 是锐角三角形∵AD 是高,∴AD ⊥BC∵AB=15,AD=12∴在Rt△ABD 中,BD=9∵AC=13,AD=12∴在Rt△ACD 中,DC=5∴△ABC 的周长为:15+12+9+5=42情况二:如下图,△ABC 是钝角三角形在Rt△ADC 中,AD=12,AC=13,∴DC=5在Rt△ABD 中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC 的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.3.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 4.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.5.A解析:A【分析】连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答.【详解】解:∵△ABC 是边长为1的等腰直角三角形121111222ABC S -∆∴=⨯⨯== , ∴2222AC 112,AD (2)(2)2=+==+=223212212:2122122AACD ADE S S --∆∴=⨯⨯===⨯⨯== ∴第n 个等腰直角三角形的面积是22n - ,故答案为A.【点睛】本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.6.B解析:B【分析】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b 的值,得出x 2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据题意得 :2(ax+x 2+bx )=(a+x )(b+x ),化简得 :ax+x 2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x 2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.7.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.8.C解析:C【分析】记第三边为c ,然后分c 为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c ,若c 为直角三角形的斜边,则13c ==;若c 为直角三角形的直角边,则c =故选:C .【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.9.C解析:C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理. 10.A解析:A【分析】先根据角平分线的性质可证CD=DE ,从而根据“HL”证明Rt △ACD ≌Rt △AED ,由DE 为AB 中线且DE ⊥AB ,可求AD=BD=3cm ,然后在Rt △BDE 中,根据直角三角形的性质即可求出BE 的长.【详解】∵AD 平分∠BAC 且∠C=90°,DE ⊥AB ,∴CD=DE ,由AD =AD ,所以,Rt △ACD ≌Rt △AED ,所以,AC=AE.∵E 为AB 中点,∴AC=AE=12AB ,所以,∠B=30° .∵DE为AB中线且DE⊥AB,∴AD=BD=3cm ,∴DE=12BD=32,∴=故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,∴矩形的长是圆柱的底面周长的一半,即AB=39π=厘米,矩形的宽BC=12厘米.∴蚂蚁需要爬行最短路程15AC=厘米.故答案为:15厘米【点睛】求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.13.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222BD BE DE=++=,64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.14.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180° 所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 1510【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴22123417EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴1634217FG EC == ∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.16.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P =4.B=S Q =9,C=S K ,根据勾股定理,可得A+B=C ,∴C=13.若A=S P =4.C=S Q =9,B=S K ,根据勾股定理,可得A+B=C ,∴B=9-4=5.∴S K 为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.17.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.18.485【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 19.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.20.3315【分析】根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4, 由勾股定理得,22228443AC BC -=-=43333AD ∴==当点P 在AC 上时,∠A=30°,AP=2PD ,∴∠ADP=90°,则AD 2+PD 2=AP 2,即(32=(2PD )2-PD 2,解得,PD=3,当点P 在AB 上时,AP=2PD ,3∴3当点P 在BC 上时,AP=2PD ,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(222233x x ∴-=-解得,15 故答案为:3315【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答;(3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:PQ=22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为213;(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83 ∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC 时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ 时(如图3),过B 点作BE ⊥AC 于点E ,∴BE=6824105AB BC AC ⋅⨯==,所以CE=22BC BE=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD,按照邻和四边形的定义即可得出结论.(2)以点A为圆心,AB长为半径画圆,与网格的交点,以及△ABC外侧与点B和点C组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC的长,再分类计算即可:①当DA=DC=AC时;②当CD=CB=BD时;③当DA=DC=DB或AB=AD=BD时.【详解】(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,∴∠ACB=∠ABC,∴AB=AC.∵∠ACD=∠ADC,∴AC=AD,∴AB=AC=AD.∴四边形ABCD是邻和四边形;(2)如图,格点D、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD ==, ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯⨯=, 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=12BD=3, S △ADB =12332⨯⨯=, ∴S 四边形ABCD =S △BDC +S △ADB =43;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是63或43.【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.23.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°, 综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.24.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E ,F 的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案; (3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t ,∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴4=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE 的解析式为:y=kx+b ,把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,∴直线直线MN 的解析式为:34y x b =-+, 令y=3,代入34y x b =-+,解得:x=443b -, ∴M(443b -,3). ①当点M 在线段DB 上时,BM=6-(443b -)=4103b -+, ∴1143(10)223S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103b -, ∴1143(10)223S BM AB b =⋅=⨯⨯-=215b -, 综上所述:1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.25.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =,∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.26.(1)∠CBD=20°;(2)AD=164;(3) △BCD的周长为m+2【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC •BC=2m+2,∵在Rt △CAB 中,CA 2+CB 2=BA 2,∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,∴(CA+BC )2=m 2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB ,∴CD+DB+BC=m+2.即△BCD 的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.27.(1)见解析;(2)26;(3)3a+ 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE。
2018-2019学年湖北省武汉市硚口区八年级(下)月考数学试卷(3月份)一、选择题(本大题共10小题,共30.0分)1.下列各式中,是二次根式的是()A. B. C. D.2.在数轴上标注了四段范围,如图,则表示的点落在()A. 段B. 段C. 段D. 段3.计算(-3)2的正确结果为()A. B. 6 C. 18 D.4.下列二次根式中,x的取值范围是x≥3的是()A. B. C. D.5.下列各组三条线段组成的三角形是直角三角形的是()A. 2,3,4B. 1,1,C. 6,8,11D. 2,2,36.下列各式计算错误的是()A. B.C. D.7.在平面直角坐标系中,已知点A(1,1)和B(4,5),则线段AB的长是()A. 3B. 5C. 4D.8.在△ABC中,∠A、∠B、∠C的对边分别为a,b,c,下列说法中错误的是()A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么9.直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,下列结论: a2+b2=c2; ab=ch;.其中正确的是()A. B. C. D. 10.如图,在四边形ABCD中,∠DAB=30°,点E为AB的中点,DE⊥AB,交AB于点E,DE=,BC=1,CD=,则CE的长是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.比较大小:2______3;若是正整数,则整数n的最小值为______;已知是整数,则满足条件的最小正整数a的值是______.12.观察下列有规律的等式: ; ; ;…….则第6个等式为______.13.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为______.14.如图,在矩形ABCD中,AB=8,AD=10,按如图所示的折叠使点D落在BC上的点E处,则EF的长为______.15.-1的最小值是______.16.Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为______.三、计算题(本大题共2小题,共16.0分)17.计算:(1)(2)(3)(2(4)()-()18.运用乘法公式计算:(1)(2)2(2)()()四、解答题(本大题共6小题,共56.0分)19.若b=+-a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.20.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=12,AD=13.求:(1)AC的长;(2)∠ACD的度数.21.如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?22.如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=CD.(1)求证:AC平分∠BAD;(2)若AB=8,AD=6,求BC和AC的长.23.点E是正方形ABCD内一点,连接BE、CE、DE,且AB=CE.(1)如图1,求∠BED的度数;(2)如图2,过点E作EF⊥BE,且BE=EF,连接DF,H为DF的中点.求的值.24.如图 ,在平面直角坐标系中,已知A(6,6)、B(12,0)、M(3,0),∠MAN=45°.(1)判断△AOB的形状为______;(2)求线段AN的长;(3)如图 ,若C(-3,O),在y轴的负半轴上是否存在一点P,使∠NPO=2∠CPO?若存在,求点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A、是二次根式,故此选项正确;B、,根号下不能是负数,故不是二次根式;C 、是立方根,故不是二次根式;D 、,根号下不能是负数,故不是二次根式;故选:A.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式的定义,正确把握定义是解题关键.2.【答案】C【解析】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴2.8<<2.9,∴表示的点落在段③,故选:C.分别求出2.6、2.7、2.8、2.9的平方,然后根据算术平方根的定义作出判断即可.本题考查了实数与数轴,算术平方根的定义,准确计算是解题的关键.3.【答案】C【解析】解:原式=9×2=18.故选:C.直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的性质,正确掌握二次根式的性质是解题关键.4.【答案】C【解析】解:A、根据二次根式有意义的条件可得:3-x≥0,解得x≤3,故此选项错误;B、根据二次根式有意义的条件可得:6+2x≥0,解得x≥-3,故此选项错误;C、根据二次根式有意义的条件可得:x-3≥0,解得x≥3,故此选项正确;D、根据二次根式有意义的条件可得:x+3≥0,解得x≥-3,故此选项错误;故选:C.根据二次根式有意义的条件:被开方数是非负数分别进行分析.此题主要考查了二次根式有意义的条件,关进是掌握二次根式中的被开方数是非负数.5.【答案】B【解析】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、12+12=()2,能构成直角三角形,故选项正确;C、62+82≠112,不能构成直角三角形,故选项错误;D、22+22≠32,不能构成直角三角形,故选项错误.故选:B.欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.【答案】C【解析】解:A、4-=3,此选项计算正确;B、×=,此选项计算正确;C 、=()2-()2=3-2=1,此选项计算错误;D、÷==3,此选项计算正确;故选:C.根据合并同类二次根式的法则、二次根式的乘法、平方差公式及二次根式的除法分别计算可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.7.【答案】B【解析】解:∵点A(1,1)和B(4,5),则线段AB的长==5;故选:B.由两点间的距离公式和勾股定理即可得出结果.本题考查了勾股定理、两点间的距离公式;熟练掌握勾股定理,熟记两点间的距离公式是解题的关键.8.【答案】D【解析】解:A、∵∠C-∠B=∠A,∠A+∠B+∠C=180°,∴∠C=90°,故本选项正确,不符合题意.B、∵∠C=90°,∴c2=a2+b2,∴c2-a2=b2,故本选项正确,不符合题意.C、∵(a+b)(a-b)=c2,∴a2-b2=c2,∴a2=b2+c2,∴∠A=90°,故本选项正确,不符合题意.D、∠A=30°,不能推出AC2=3BC2,故本选项错误,符合题意.故选:D.根据直角三角形的定义以及勾股定理的逆定理一一判断即可.本题考查勾股定理以及逆定理,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】B【解析】解:∵直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,∴由勾股定理可知:a2+b2=c2,①正确;这个直角三角形的面积=ab=ch,∴ab=ch,②正确;∴a2b2=c2h2,∴====,③正确.故选:B.利用直角三角形的面积及勾股定理求证每一个选项,即可得出结论.本题考查了直角三角形的面积及勾股定理的综合应用,解题的关键是正确运用勾股定理和三角形面积进行变形.10.【答案】D【解析】解:连接BD,作CF⊥AB于F,如图所示:则∠BFC=90°,∵点E为AB的中点,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=2,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=BC=,CF=BF=,∴EF=BE+BF=,在Rt△CEF中,由勾股定理得:CE==;故选:D .连接BD ,作CF ⊥AB 于F ,由线段垂直平分线的性质得出BD=AD ,AE=BE ,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD 是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt △CEF 中,由勾股定理即可得出结果.本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键. 11.【答案】< 3 5【解析】解:∵2=,3=,∵<, ∴2<3;=2. ∵n 是一个正整数,是整数, ∴n 的最小值是3.解:∵20a=22×5a . ∴整数a 的最小值为5. 故答案是:<,3,5.先化简二次根式,然后依据化简结果为整数可确定出n 的值,是正整数,则20a 一定是一个完全平方数,首先把20a 分解因数,确定20a 是完全平方数时,a 的最小值即可. 本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.12.【答案】【解析】解:因为:①;②;③; 所以第6个等式为,故答案为:,根据题意得出规律解答即可.考查数字的规律性变化;得到所给式子得出规律是解决本题的关键. 13.【答案】32或42【解析】解:在Rt △ABD 中,BD==9; 在Rt △ACD 中,CD==5,∴BC=BD+CD=14或BC=BD-CD=4, ∴C △ABC =AB+BC+AC=15+14+13=42或C △ABC =AB+BC+AC=15+4+13=32. 故答案为:32或42.在Rt △ABD 中,利用勾股定理可求出BD 的长度,在Rt △ACD 中,利用勾股定理可求出CD 的长度,由BC=BD+CD 或BC=BD-CD 可求出BC 的长度,再将三角形三边长度相加即可得出△ABC 的周长.本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC 边的长度是解题的关键.14.【答案】5【解析】解:设DF=x ,则FC=(CD-x ), ∵矩形ABCD 中,AB=8,AD=10,∴BC=AD=10,CD=AB=8, ∵AF 为折痕,∴AE=AD=10,DF=EF=x ,Rt △ABE 中,BE==6,∴EC=10-6=4,Rt △EFC 中,EF 2=FC 2+EC 2,即x 2=42+(8-x )2,解得x=5. ∴EF=5故答案为5由折叠的性质可得AE=AD,DF=EF,在直角三角形ABE中,由勾股定理求出BE的长度,得到EC,设出DF=x,表示出EF、FC的长度,通过勾股定理可求得答案.本题考查了翻折变换问题;由翻折得到相等的线段,两次利用勾股定理是正确解答本题的关键.15.【答案】0【解析】解:-1=-1∵最小值为:1,∴-1的最小值是0.故答案为:0.直接利用非负数的性质进而变形得出答案.此题主要考查了非负数的性质,正确掌握二次根式的性质是解题关键.16.【答案】16【解析】解:作点C关于AB的对称点C',过点C'作C'E⊥AC,交AB于点D',则CD+DE的最小值为C'E的长;∵∠ACB=90°,AC=20,BC=10,∴AB=10,∴CC'=8,∵∠A=∠C',∴,∴C'E=16;故答案为16;作点C关于AB的对称点C',过点C'作C'E⊥AC,交AB于点D,则CD+DE的最小值为C'E的长;在Rt△ABC中,求出AB=10,进而求得CC'=8,由∠A=∠C',可得,即可求解;本题考查直角三角形的性质,轴对称求最短距离;利用轴对称和垂线段最短将线段和的最小转化为线段是解题的关键.17.【答案】解:(1)=5-2+=4;(2)=2+12;(3)(2=2-5=-2;(4)()-()=3---2=-.【解析】(1)先化为最简二次根式,再合并同类二次根式即可;(2)利用乘法分配律计算即可;(3)先将除法转化为乘法,利用乘法分配律计算,再化为最简二次根式即可;(4)首先去括号,化为最简二次根式,再合并同类二次根式即可.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)(2)2=20-4+2=22-4;(2)()()=[(+)-1][(+)+1]=(+)2-12=2+2+3-1=4+2.【解析】(1)利用完全平方公式计算即可;(2)先将原式变形为[(+)-1][(+)+1],利用平方差公式计算,再利用完全平方公式计算即可.本题考查了二次根式的混合运算,熟记乘法公式是解题的关键.19.【答案】解:(1)∵b=+-a+10,∴ab=10,b=-a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.【解析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.此题主要考查了二次根式有意义的条件,正确得出ab,a+b的值是解题关键.20.【答案】解:(1)在Rt△ABC中,∵∠A=90°,AB=3,BC=4,∴AC==5,(2)∵AC2+CD2=52+122=169,AD2=132=169,∴AC2+CD2=AD2,∴∠ACD=90°.【解析】(1)利用勾股定理求出AC.(2)利用勾股定理的逆定理证明∠ACD=90°即可解决问题.本题考查勾股定理以及逆定理,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】解:(1)∵一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米,∴BC==4(m),答:BC的长为4m;(2)当BD=AE,则设AE=x,故(4-x)2+(3+x)2=25解得:x1=1,x2=0(舍去),故AE=1m.【解析】(1)直接利用勾股定理得出BC的长;(2)得出AE=BD,进而利用勾股定理得出答案.此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.22.【答案】解:(1)将△ABC绕点C顺时针旋转90°,得到△CDE,∵∠BAD=∠BCD=90°,∠BAD+∠BCD+∠B+∠ADC=360°∴∠B+∠ADC=180°∵将△ABC绕点C顺时针旋转90°,得到△CDE,∴△ABC≌△EDC∴∠B=∠CDE,AC=EC,∠ACE=90°∴∠CDE+∠ADC=180°∴点A,点D,点E三点共线,∵AC=CE,∠ACE=90°∴∠CAE=∠E=45°∵∠BAD=90°∴∠BAC=∠CAE=45°∴AC平分∠BAD;(2)∵将△ABC绕点C顺时针旋转90°,得到△CDE,∴AB=DE=8,且AD=6∴AE=14,∵AC=CE,∠ACE=90°∴AC=7连接BD∵AB=8,AD=6,∠BAD=90°∴BD==10∵BC=BD,∠BCD=90°∴BC=5【解析】(1)将△ABC绕点C顺时针旋转90°,得到△CDE,可得∠B=∠CDE,AC=EC,∠ACE=90°,通过证明点A,点D,点E三点共线,可得∠CAE=∠E=45°,即可得结论;(2)由勾股定理可求BD,BC,AC的长.本题考查了旋转的性质,全等三角形的性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.23.【答案】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=CB=CD,∠BCD=90°,∵CE=AB,∴CB=CE=CD,∴∠CBE=∠CEB,∠CDE=∠CED,∴∠BED=∠CEB+∠CED=(180°-∠ECB)+(180°-∠ECD)=180°-(∠BCE+∠ECD)=135°,(2)如图2中,连接DE、CK,延长EF交CD于M,延长EH到K,使得HK=EH,连接DK、KC.∵EH=HK,∠EHF=∠DHK,HF=DH,∴△EHF≌△KHD(SAS),∴DK=EF=EB,∠HEF=∠HKD,∴DK∥EM,∴∠KDC=∠EMD,∵∠BEM+∠BCM=180°,∴∠CBE+∠EMC=180°,∵∠EMC+∠EMD=180°,∴∠CBE=∠EMD=∠KDC,∵CB=CE,∴∠CBE=∠CEB,∴∠KDC=∠CEB,∵BE=DK,CE=CD,∴△CBE≌△CDK(SAS),∴CE=CK,∠BCE=∠DCK,∴∠ECK=∠BCD=90°,∴△ECK是等腰直角三角形,∵EH=HK,∴CH=EH=HK,CH⊥EK,∴△ECH是等腰直角三角形,∴=cos45°=【解析】(1)由题意可得∠BED=∠CEB+∠CED=(180°-∠ECB)+(180°-∠ECD)=180°-(∠BCE+∠ECD),由此即可解决问题.(2)如图2中,连接DE、CK,延长EF交CD于M,延长EH到K,使得HK=EH,连接DK、KC.只要证明△CBE≌△CDK,即可推出CE=CK,∠BCE=∠DCK,推出∠ECK=∠BCD=90°,推出△ECK 是等腰直角三角形,再证明△ECH是等腰直角三角形,即可解决问题.题考查正方形的性质、等腰直角三角形的性质、30度的直角三角形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24.【答案】等腰直角三角形【解析】解:(1)过点A作AH⊥OB,垂足为H,∵A(6,6),∴OH=6,∵B(12,O),∴HB=6,∴AO=AB,∵∠MAN=45°,∴∠ABO=45°,∴∠OAB=90°,∴△AOB的形状为等腰直角三角形;故答案为:等腰直角三角形;(2)作∠NAE=∠NAM=45°,使点E与M在AN两侧,连接BE,NE,使AE=AM,∵∠MAE=∠OAB=90°,∴∠BAE=∠OAM,∵AB=AO,∴△BAE≌△OAM,∴BE=OM=3,NE=MN,∠ABE=∠AOM=45°,∴∠NBE=90°,∴BN2+BE2=NE2,设BN=x,则NE=MN=OB-OM-NB=12-x-3=9-x,∴x2+32=(9-x)2,∴x=4,∴ON=8,∴HN=ON-OH=8-6=2,∴AN===2;(3)连接PM,作MK垂直PN于K,∵OM=OC=3,∴PO垂直平分CM,∴PC=PM,∠MPO=∠CPO,∵∠NPO=2∠CPO,∴∠NPO=2∠MPO,∴∠NPM=∠MPO,∴MK=MO=3,∵S△NPM:S△MPO=PN:PO,S△NPM:S△MPO=NM:OM=5:3,∴PN:PO=NM:OM=5:3,设PN=5t,则PO=3t,则82+(3t)2=(5t)2,解得:t=2,则OP=6,则点P为(0,-6).(1)过点A作AH⊥OB,垂足为H,求出OH=6,HB=6,AO=AB,再根据∠MAN=45°,∠ABO=45°,得出∠OAB=90°,即可判断出△AOB的形状为等腰直角三角形;(2)作∠NAE=∠NAM=45°,使点E与M在AN两侧,连接BE,NE,使AE=AM,先证出△BAE≌△OAM,得出BE=OM=3,NE=MN,∠ABE=∠AOM=45°,∠NBE=90°,BN2+BE2=NE2,再设BN=x,则NE=9-x,从而得出x2+32=(9-x)2,最后根据AN=代入计算即可;(3)连接PM,作MK垂直PN于K,则PO垂直平分CM,得出PC=PM,∠MPO=∠CPO,再证出∠NPM=∠MPO,则MK=MO=3,再根据S△NPM:S△MPO=PN:PO=NM:OM=5:3,设PN=5t,则PO=3t,得出82+(3t)2=(5t)2,求出t的值即可得出点P的坐标.此题考查了等腰直角三角形、勾股定理,用到的知识点是等腰直角三角形的判定与性质,勾股定理,角平分线的性质,关键是运用有关性质和定理,求出线段的长度,得出点的坐标.。
2018---2019学年度八年级3月考数学试卷一、选择题(每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1. 下列各式中,是二次根式的是A B CD2.A .段①B .段②C .段③D .段④ 3. 计算(-32)2的正确结果为 A .9 2 B .6 C .18D .±184. 下列二次根式中,x 的取值范围是x ≥3的是 A .x -3B .x 26+C .3-xD .3+x5. 下列各组三条线段组成的三角形是直角三角形的是A .2,3,4B .1,1.6,8,11 D .2,2,36.下列各式计算错误的是A .33334=-B .632=⨯C .5=D .3218=÷7. 在平面直角坐标系中,已知点A(1,1)和B(4,5),则线段AB 的长是A .3B .5C .4D .8. 在△ABC 中,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,下列说法中错误的是A .如果∠C ﹣∠B=∠A ,那么∠C=90°B .如果∠C=90°,那么c ²﹣a ²=b ²C .如果(a +b)(a ﹣b)=c ²,那么∠A=90°D .如果∠A=30°,那么AC ²=3BC ²9. 直角三角形的两条直角边为a 、b ,斜边为c ,斜边上的高为h ,下列结论:①a ²+b²=c²;②a b=ch ;③222111+a b h =.其中正确的是 A .① B .①②③ C .①② D .①③10. 如图,在四边形ABCD 中,∠DAB=30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE=3,BC=1,CE 的长是A B C D二、填空题(每小题3分,共18分)11.比较大小:a的值是________.12.观察下列有规律的等式:;…….则第6个等式为__________.13.在△ABC中,AB=15,AC=13,BC边上的高AD=12,则△ABC的周长为__________.14.如图,在矩形ABCD中,AB=8,AD=10,按如图所示的折叠使点D落在BC上的点E处,则EF的长为__________.1的最小值是________.16.Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为__________.三、解答题(共8小题,共72分)17.(8分)⑵(3)((4)-18.(8分)运用乘法公式计算:⑴(2⑵1119.(8分)若b a+10.⑴求ab及a b+的值;⑵若a、b满足2b ax0--=,试求x的值.a b20.(8分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=12,AD=13.求:⑴AC的长;⑵∠ACD的度数.21.(8分)如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.⑴求BC的长;⑵梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?22.(10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=CD.⑴求证:AC平分∠BAD;⑵若AB=8,AD=6,求BC和AC的长.。
一、选择题1.下列计算结果正确的是( )A B .3=C =D=2.下列各式中,运算正确的是( )A .=-=.2=D 2=-3.x 的取值范围是( ) A .13x ≥B .13x >C .13x ≤D .13x <4.m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2 D .m = 35.x 的取值范围是( )A .0x <B .0xC .2xD .2x6. )A .30 B .C D .7.已知a ( )A .0B .3C .D .98.下列计算正确的是( )A =B =C 4=D 3=-9.下列运算正确的是( )A =B .(28-= C 12=D 1=10.已知,5x y +=-,3xy =则的结果是( )A .B .-C .D .-二、填空题11.已知实数,x y 满足(2008x y =,则22-+--的值为______.32332007x y x y12.观察下列等式:=,第1个等式:a11=,第2个等式:a2第3个等式:a3,=,第4个等式:a42…按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________.(2)a1+a2+a3+…+a n=_________13.下面是一个按某种规律排列的数阵:≥且n是整根据数阵排列的规律,第5行从左向右数第3个数是,第n(n3-个数是(用含n的代数式表示).数)行从左向右数第n214.,则x+y=_______.15.将1按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(9,4)表示的两数之积是______.16.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.17.已知x ,y 为实数,y =229913x x x ---求5x +6y 的值________.18.计算:200820092+323⋅-=_________.19.36,3,2315,,则第100个数是_______.20.已知23x =243x x --的值为_______.三、解答题21.小明在解决问题:已知a 23+2a 2-8a +1的值,他是这样分析与解答的:因为a 23+()()232323-+-=23,所以a -23所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算:2+1= - . (2)2+13+24+3…100+99(3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:S ==(2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.23.阅读下列材料,然后回答问题:其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.24.观察下列一组等式,然后解答后面的问题21)(21)1=,(32)(32)1=,(43)(43)1=,(54)(54)1=⋯⋯(1)观察以上规律,请写出第n个等式:(n为正整数).(221324310099++++(318171918【答案】(1)(1)(1)1n n n n++=;(2)9;(318171918【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.25.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.26.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用28.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A不能合并,故A选项错误;B.-=B选项错误;C===,故D选项错误,D故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.2.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A、-=A正确;B=B错误;C、2不能合并,故C错误;D 2=,故D 错误;故选:A . 【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.3.C解析:C 【分析】根据二次根式的性质:被开方数大于或等于0,列不等式求解. 【详解】 解:依题意有当130x -≥时,原二次根式有意义;解得:13x ≤; 故选:C . 【点睛】本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.4.B解析:B 【分析】根据被开方数大于等于0列式计算即可得解. 【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1. 故选:B . 【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.D解析:D 【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案; 【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 6.C解析:C【解析】故选C.点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.7.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C124==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x 2﹣2y 2+3x ﹣3y ﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x ,y 及a ,b 的关系.12.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a42=,……∴第n==(2)123(21)(32)(23)(1) na a a a n n+++=-+-+-+++-=121n+++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知+=+-)2x+y=2222整体代入可得原式=2-2)故答案为:15.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为16.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.17.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16. 故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 18.【解析】原式==19.【分析】原来的一列数即为,,,,,,于是可得第n 个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n 进而可得答案.,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键. 20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题22.无23.无24.无25.无26.无27.无28.无。
2019学年湖北省八年级3月联考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在实数-2、-、-、-3中,最大的实数是().A、-2B、-C、-D、-32. 已知=,则的取值范围是().A、≤2B、<2C、>2D、≥23. 下列根式中属于最简二次根式的是().A、 B、 C、 D、4. △ABC中,下列条件一定不能判断△ABC为直角三角形的是().A、B、,,C、∠A:∠B:∠C=3:4:5D、三边长分别为,,>1)5. 将根号外的部分移到根号内,正确的是().A、 B、 C、 D、6. 已知、分别是6+和6-的小数部分,则式子的值是().A、4B、3C、2D、17. 如图,已知Rt△ABC中,∠BAC=90°,AD⊥BC,BD=9,CD=16,下列选项结论中,此题数据不能验证的结论选项是().A、 B、C、 D、8. 如图,在Rt△ACD中,∠C=90°,AC=DC,以AD为直径的半圆面积为,那么DC 的长是().A、 B、 C、 D、无法确定9. 式子化简的结果是().A、 B、 C、 D、10. 如图,已知△ABC中,点D在AB上,且CD=AD=BD,点F在BC上,过D作DE⊥DF交AC于E,过F作FG⊥AB于G,以下结论:①△ABC为直角三角形,②,③,④,其中结论正确的序号是().A、①②B、①④C、①②③D、①②③④二、填空题11. 若式子有意义,则的取值范围是 .12. 在平面直角坐标系中,点P(-2,4)到轴的距离是,到轴的距离是,到原点的距离是 .13. 命题“如果两个实数相等,那么它们的立方值相等”的逆命题是,它是(真或假)命题.14. 观察勾股数:3、4、5;8、6、10;15、8、17……则顺次第6组勾股数是 .15. 已知等边三角形的面积为,其边长是 .16. 在平面直角坐标系中,A(-1,0),B(1,0),点P是坐标轴上的一点,要使△ABP是直角三角形,则P点的坐标是 .三、解答题17. (本题6分)在实数范围内分解因式:(1);(2).四、计算题18. (本题16分)计算:(1);(2)-;(3);(4).五、解答题19. (本题7分)如图,长方形纸片ABCD中,AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,EF=3,求AB的长.20. 本题6分)如图,平面直角坐标系中,(1)取点A(2,1)、点B(-3,4),则线段AB的长为;(2)若点A的坐标为A(,),点B的坐标为A(,),则线段AB的长为(用含、、、的式子表示);(3)△ABC中,已知点A(2,-2)、点B(-3,-1)、点C(-1、-4),请运用(2)中的结论,不画图,用代数方法判断并证明△ABC的形状.21. (本题7分)化简求值.已知:,求式子的值.22. (本题8分)如图,四边形ABCD中,∠ABC=90°,CD⊥AD,,(1)求证:AB=BC;(2)过点B作BE⊥AD于E,若四边形ABCD的面积为,求BE的长.23. (本题10分)如图,已知四边形ABCD中,AD=4,CD=3,AB=AC,(1)如图1,若∠CAB=60°,∠ADC=30°,求BD的长;(2)如图2,若∠CAB=90°,∠ADC=45°,求BD的长.24. (本题12分)已知直线AB分别交、轴于A(4,0)、B两点,C(-4,)为直线AB上且在第二象限内一点,若△COA的面积为8,(1)如图1,求C点坐标;(2)如图2,点M为第二象限内一点,CM⊥OM于M,CN⊥轴于N,连MN,求证:的值;(3)如图3,过C作CN⊥轴于N,G为第一象限内一点,且∠NGO=45°,试探究GC2、GN2与GO2之间的数量关系并说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2019学年度八年级3月考数学答案
一、选择题(每小题3分,共30分)
1.A
2.C
3.C
4.C
5.B
6.C
7.B
8.D
9.B 10.D
二、填空题(每小题3分,共18分)
11 5 . 13. 42或32
14. 5 15. 0 16. 16
三、解答题(共8小题,共72分)
⑵
17.(8分)
⑵原式。
1分
=
12。
2分。
1分
解:⑴原式=
=
(4)
(3)(
-
解:⑴原式=。
1分。
2分
⑵原式。
1分 =。
2分
18.(8分)运用乘法公式计算: ⑴
(2
⑵ 11
解:⑴原式=(
2
2
2-⨯。
2分
=
202-。
3分
=
22-。
4
分
⑵原式=2
21-。
2
分 =
231-+。
3
分
=
4+。
4分
19.(8分)若
b a +10.
⑴求ab 及a b + 的值;
⑵若a 、b 满足2
b a
x 0a b
-
-= ,试求x 的值.
解:⑴ ∵
b a =+10,∴ab 100
10ab 0-≥⎧⎨-≥⎩
,∴ab 10=,。
2
分
∴b a =-+10,即a b 10+=.。
4分
⑵∵2
b a x 0a b
--=,∴()2
2222
a b ab b a b a 1010x 8a b ab ab 10+-2+-2⨯=+====,。
6分∴
x =±8分
20.(8分)
如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=12,AD=13.求:
⑴AC的长;
⑵∠ACD的度数.
解:⑴∵∠ABC=90°,AB=3,BC=4,∴
5.。
4分
⑵∵AC=5,CD=12,AD=13,∴AC²+CD²=5²+12²=169,AD²=169,。
6分
∴AC²+CD²=AD²,∴∠ACD=90°.。
8分
21.(8分)如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A 到墙的距离AC=3米.
⑴求BC的长;
⑵梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?
解:⑴在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴
=,∴BC的长为4米.。
4分
4
⑵设AE=x米,则BD=AE=x,∴EC=x+3,DC=4﹣x,DE=AB=5,在Rt △CDE中,∠C=90°,∴EC²+DC²=DE²,∴(x+3)²+(4﹣x)²=5²,。
6分
解得:x=1,∴梯子滑动后停在DE的位置,当AE为1米时,AE与BD 相等.。
8分
22.(10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=CD.
⑴求证:AC平分∠BAD;
⑵若AB=8,AD=6,求BC和AC的长.
⑴明:作CE⊥AB于E,CF⊥AD于F,∴∠CEB=∠F=90°,∵∠BAD=
∠BCD=90°,∴∠ADC +∠B=180°,∵∠ADC +∠CDF=180°,∴∠B=∠CDF ,。
2分 在△CBE 和△CDF 中,∵
==CEB F
B CDF B
C DC ∠∠⎧⎪
∠∠⎨⎪=⎩
,∴△CBE ≌△CDF(AAS),∴
CE=CF ,。
4分
∴AC 平分∠BAD .。
5分
⑵∵△CBE ≌△CDF ,∴BE=DF ,在Rt △ACE 和Rt △ACF 中,∵CE CF
AC AC
=⎧⎨
=⎩,
∴Rt △ACE ≌Rt △ACF(HL),∴AE=AF ,∵AE +AF=AB ﹣BE +AD +DF=AB +AD=14,∴AE=7,。
7分
∵AC 平分∠BAD ,∠BAD=90°,∴∠EAC=45°,∵CE ⊥AB ,∴∠ECA=45°=∠CAE ,∴CE=AE=7,∴。
8
分
∵BE=AB ﹣AE=1,∴。
10分
23.(10分)点E 是正方形ABCD 内一点,连接BE 、CE 、DE ,且AB=CE . (1)如图1,求
的度数;
(2)如图2,过点E 作EF BE ,若BE=EF ,连接DF ,H 为DF 的
中点. 求的值.
23.(1)135°(通过等边对等角,及三角形内角和或四边形内角和得到)。
4分
(2)解:延长EH 至M 使 EH HM =,延长EF 交CD 于N 易证)(SAS MDH EFH ∆≅∆
∴,DM EF BE ==可得EF ∥DM 。
6分 设
x END x ENC x EBC x ECB 2
1
90,2190,21-90,-=∠+=∠︒=∠=∠ ∴MDC END EBC ∠=∠=∠
∴)(SAS CDM CBE ∆≅∆。
8分
∴ ECM ECM ∆︒=∠,90为等腰直角三角形
∴2
2
=
EC EH 。
10分
24.(12分)如图1,在平面直角坐标系中,已知A(6,6)、B(12,0)、M(3,0),∠MAN=45°.
⑴判断△AOB的形状为_____________;
⑵求线段AN的长;
⑶如图2,若点C(﹣3,0),在y轴的负半轴上是否存在一点P,
使∠NPO=2∠CPO,若存在,求点P的坐标.若不存在,请说明理由.
解:⑴等腰直角三角形.。
2分
⑵AE⊥x轴于E,∵A(6,6),B(12,0),∴AE=EO=EB=6,∴∠AOE=
∠OAE=∠BAE=∠ABE=45°,∴OA=AB,∠OAB=45°,即△AOB为等腰直角三角形,在y轴正半轴上取一点F,使OF=BN,连接BF,∵OF=NB,∠FOA=45°=∠ABO,AO=AB,∴△AFO≌△ANB,∴AF=AN,∠FAO=∠NAB,∴∠FAN=∠OAB=90°,∵∠MAN=45°,∴∠FAM=45°=∠NAM,∵OA公共,∴△AFM≌△ANM,。
4分∴可设FM=MN=x,则BN=12-x-3=9-x=FO,在Rt△OFM中,3²+(9-x)²=x²,∴x=5,。
5分
∴ON=3+5=8,EN=8-6=2,。
6分
在Rt△AEN中,AN=。
7分
⑶在,理由如下:取点C关于y轴对称点D(3,0),连接PD,∴∠
DPO=∠CPO,∵∠NPO=2∠CPO,∴∠NP D=∠DPO,。
8分
作DH⊥PN于H,∴DH=DO=3,DN=8-3=5,。
9分
=4,∵DP=DP,∴△DOP≌△DHP,。
10分
∴
∴可设OP=PH=y,在Rt△PON中,y²+8²=(y+4)²,解得:y=6,。
11分
∴点P(0,﹣6).。
12分。