微积分发展历程
- 格式:doc
- 大小:3.73 MB
- 文档页数:14
简述中国微积分的发展历程
中国微积分的发展历程可以追溯到古代,但真正开始发展起来要从19世纪末20世纪初开始。
当时,国内知识分子开始接触西方的数学思想,调查研究西方数学的发展历程,并开始翻译传播西方的数学经典。
20世纪20年代,中国开始产生自己的微积分学派,早期的代表人物有丁取忠、刘维惠等。
在这一时期,微积分学派主要是以解决实际问题为目标,着重研究微积分的应用。
20世纪30年代,中国的数学家开始系统地研究微积分的理论,逐渐形成了自己的微积分学体系。
1949年新中国成立后,中国的数学事业迎来了蓬勃发展的时期。
国内的微积分研究不断创新,涌现出一批杰出的数学家,如华罗庚、陈省身、王元等。
这一时期,中国的微积分学家开始与世界上的数学家开展交流合作,并在微积分的理论研究和应用创新方面取得了显著的成绩。
今天,中国的微积分研究已经成为国际数学领域的重要组成部分。
中国的微积分学家们在微积分的理论研究和应用创新上取得了很高
的成就,在微积分的教育和科研方面的贡献也日益显著。
- 1 -。
微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。
2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。
3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。
牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。
这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。
4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。
5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。
这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。
6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。
来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。
7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。
爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。
8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。
函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。
微积分的历程:从牛顿到勒贝格跟人类文明的发展史一样,数学史亦是铁宕起伏,充满曲折,本书带领我们欣赏了十三位数学家在创建微积分的历程中的功绩。
可以把他们按照建树分为三个独立的历史阶段,或者说,依据他们过于倾注同类问题所冒的风险分成三个独立的学派。
首先出现在我们眼前的是“早期学派”,这一派以其开拓者牛顿、莱布尼茨以及他们的直接继承者伯努利兄弟和欧拉的工作为特征。
然后我们来到可以称之为“经典学派”的殿堂,浏览了专为柯西提供的大厅,以及黎曼、刘维尔和魏尔斯特拉斯的展室,这些学者对微积分赋予了特别的数学严格性。
最后,我们造访了康托尔、沃尔泰拉、贝尔和勒贝格的“现代学派”,他们把经典学派的精确性同集合论的大胆思想融为一体。
显然,在参观结束时呈现在我们面前的微积分和它开初是不同的。
历经数学家们的努力,微积分中的曲线已经变成函数,几何方法已经提升为代数方法,直觉思维已经转化到冷静的逻辑思维。
最终发展成一门极端复杂和极具挑战性的学科,这远远超出它的创建者们的预料。
然而,开始时的那些中心思想,依然是结束时的中心思想。
在以往两个半世纪的岁月里,数学家们对微积分这门学科作了改进,当我们翻开本书时,就能目睹学者们之间持续不断的交流。
从一种非常实际的意义上说,这些创建者们是在解决一些相同的问题,只不过采用日益复杂的方法而已。
例如,我们曾见牛顿在1669年把二项式扩展为无穷级数,而柯西于1828年对这样的级数提供收敛判别准则。
我们曾见欧拉在1755年推算基本的导数,而贝尔于1899年确定导数的连续性性质。
同样,我们曾见莱布尼茨在1691年应用他的变换定理求面积,而勒贝格于1904年建立他的绝妙的积分理论。
数学家们的回应之声从一个时代响彻到另一个时代,而且即使事态有了改变,微积分的基本问题依然如故。
微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。
在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。
在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。
但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。
他的"割圆术"开创了圆周率研究的新纪元。
刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。
用他的话说,就是:"割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。
大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。
其次明确提出了下面的原理:"幂势既同,则积不容异。
"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。
并应用该原理成功地解决了刘徽未能解决的球体积问题。
欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。
较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
但他的方法并没有被数学家们所接受。
后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。
之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。
论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。
这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。
公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。
在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。
这些都是最早期人类对无穷、极限等概念的原始的描述。
二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。
最后一个阶段是由牛顿、莱布尼茨完成的。
前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。
中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。
中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。
在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。
而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。
这些想法都是积分法的前驱。
在微分方面,十七世纪人类也有很大的突破。
费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。
另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。
由此可见,人类在十七世纪已经掌握了微分的要领。
英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。
微积分的历史与发展微积分是数学中的一门重要学科,它研究的是变化和连续性的数学分支。
微积分的历史可以追溯到古希腊时期,而其发展经历了许多重要的里程碑。
本文将介绍微积分的历史与发展,从古代到现代逐步展开,帮助读者了解该学科的演进过程。
古代的微积分先驱们展示了对变化的基本理解。
在古希腊,数学家Zeno of Elea以悖论而闻名,他提出了无限可分割的运动悖论。
这种思想激发了人们对变化和连续性的思考,并为后来微积分的发展奠定了基础。
进入17世纪,微积分的概念正式开始形成。
众所周知的牛顿和莱布尼茨被公认为微积分的创始人。
牛顿以其经典力学和引力定律的发现而著名,而莱布尼茨则发明了微积分符号和符号推导法。
他们的贡献为微积分奠定了坚实的数学基础,并将其应用于物理学和其他学科的发展中。
随着时间的推移,微积分得到了持续的发展和改进。
18世纪和19世纪,欧洲的数学家们继续推动微积分领域的研究。
拉格朗日、欧拉、高斯等数学家们为微积分理论提供了许多重要的贡献。
他们的研究使微积分得以从几何学的观点转向更加抽象和符号化的方法,这为后来微积分的发展提供了重要的基础。
20世纪,微积分进入了现代阶段,特别是与数学分析的发展相结合。
数学家们进一步探索了微积分的基础,发展了更加严格和深入的理论和方法。
对于微分学和积分学的理论基础的巩固和完善,使得微积分在数学和应用领域中的地位更加牢固。
在现代应用中,微积分广泛应用于物理学、工程学、计算机科学、经济学等学科。
例如,在物理学中,微积分被用于描述物体的运动、力学和量子力学等领域。
在工程学中,微积分为电路、信号处理和结构设计等提供了数学工具。
在计算机科学中,微积分为算法和数据分析提供了基础。
在经济学中,微积分被用于经济模型的建立和分析。
总结起来,微积分的历史与发展经历了漫长的过程,从古代的思考和猜测,到牛顿和莱布尼茨的创立,再到现代的深入研究和应用拓展。
微积分不仅是数学领域中的重要学科,也是许多其他学科中的基础和工具。
微积分的发展历史微积分是数学中的一个重要分支,它的发展历史可以追溯到古希腊时期。
在这篇文章中,我们将探讨微积分的发展历史,从古希腊时期到现代,逐步了解微积分的发展过程。
古希腊时期,数学家欧多克斯提出了一种叫做“尽量大与尽量小”的方法,这种方法可以用来求解一些几何问题。
这种方法后来被称为“极限法”,它是微积分的基础之一。
在17世纪,牛顿和莱布尼茨分别独立地发明了微积分。
牛顿主要研究物理学问题,他发明了微积分中的“微分法”,用来研究物体的运动和力学问题。
莱布尼茨则主要研究数学问题,他发明了微积分中的“积分法”,用来求解曲线下面积和一些几何问题。
18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。
欧拉发明了欧拉公式,它将三角函数、指数函数和虚数单位i 联系在了一起。
拉格朗日则发明了拉格朗日乘数法,用来求解约束条件下的极值问题。
19世纪,高斯和柯西等数学家对微积分进行了更加深入的研究和发展。
高斯发明了高斯-黎曼方程,它是复变函数理论的基础。
柯西则发明了柯西积分定理和柯西-黎曼方程,它们是复变函数理论的重要组成部分。
20世纪,微积分在应用数学和物理学中得到了广泛的应用。
微积分被用来研究物理学中的力学、电磁学、热力学等问题,也被用来研究应用数学中的概率论、统计学、控制论等问题。
微积分的应用范围越来越广泛,成为现代科学和工程技术的基础。
微积分的发展历史可以追溯到古希腊时期,经过了欧多克斯、牛顿、莱布尼茨、欧拉、拉格朗日、高斯、柯西等数学家的不断研究和发展,逐步形成了现代微积分的体系。
微积分在应用数学和物理学中得到了广泛的应用,成为现代科学和工程技术的基础。
微积分的发展历史微积分是数学中的一个重要分支,它主要研究一些连续变化的函数之间的关系,以及这些函数的一些量的变化规律。
微积分的历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。
以下是微积分的发展历史。
1. 古希腊时期古希腊数学家阿基米德(287 BC - 212 BC)就是微积分的先驱之一。
他发明了一种称为“方法论”的技术,这种技术可以用来求解一些几何问题,例如圆的面积和球体的体积。
这种技术可以用来求解一些连续变化的函数的面积或体积问题。
2. 17世纪初期17世纪初期,数学家牛顿(1643-1727)和莱布尼茨(1646-1716)几乎同时发明了微积分。
他们的发现彻底改变了数学的面貌。
牛顿的微积分是基于几何直觉的发现,而莱布尼茨的微积分则是基于代数记号的发现。
3. 18世纪在18世纪,微积分的研究得到了进一步发展。
法国数学家欧拉(1707-1783)和拉格朗日(1736-1813)在微积分的研究中做出了重要的贡献。
欧拉在微积分中引入了复数,这对微积分的发展具有重要的意义。
拉格朗日发现了微积分中的一些基本定理,例如拉格朗日中值定理和柯西中值定理。
4. 19世纪19世纪是微积分的发展中最重要的一个世纪。
数学家高斯(1777-1855)和魏尔斯特拉斯(1815-1897)在微积分的研究中做出了重要的贡献。
高斯发现了极值问题的解法,魏尔斯特拉斯则首次使用了极限的概念来解决微积分中的一些问题。
5. 20世纪20世纪是微积分发展的最后一个世纪。
在这个世纪里,微积分的研究得到了深入的发展。
数学家费曼(1918-1988)提出了路径积分理论,这个理论对微积分的研究有着重要的意义。
同时,微积分还应用于物理学、工程学和经济学等领域,在这些领域中发挥着至关重要的作用。
微积分的发展历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。
在18世纪和19世纪,微积分得到了进一步的发展,20世纪中期,微积分已经成为了一个重要的数学分支,并被广泛应用于各个领域。
微积分的发展历程微积分的创立,被誉为“人类精神的最高胜利”,在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。
在数学史上,18世纪可以说是分析研究的时代,也是向现代数学过渡的重要时期。
1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。
不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor)、麦克劳林(C.Maclaurin)、棣莫弗(A.de Moivre)、斯特林(J.Stirling)等。
泰勒(1685_1731)做过英国皇家学会秘书。
他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理其中v为独立变量z的增量,和为流数。
泰勒假定z随时间均匀变化,故为常数,从而上述公式相当于现代形式的“泰勒公式”:。
泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。
但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。
泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。
麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。
《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。
麦克劳林之后,英国数学陷入了长期停滞的状态。
微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。
微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。
微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。
三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。
他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。
解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。
到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。
笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。
微积分发展历程立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为..微积分计算的鼻祖........。
他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。
面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。
微积分发展历程(二)微积分学的诞生随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。
不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。
这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。
这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。
1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。
不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。
泰勒(1685_1731)做过英国皇家学会秘书。
他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()23....22..112123vv v x z v x x x x z z z ∴+=++++L g g g g g g 其中v 为独立变量z 的增量,.x 和.z 为流数。
泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”:()()()()22!h f x h f x hf x f x '''+=+++L 。
泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。
但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。
泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。
麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。
《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。
麦克劳林之后,英国数学陷入了长期停滞的状态。
微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。
与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。
2)积分技术与椭圆积分18世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。
在这方面,积分技术的推进尤为明显。
当18世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。
例如雅各布•伯努利在求双纽线(在极坐标下方程为22cos2r αθ=)弧长时,得到弧长积分2440r s dr a r =-⎰。
在天文学中很重要的椭圆弧长计算则引导到积分()()22222111t k t dt s a dr t k t -=--⎰。
欧拉在1774年处理弹性问题时也得到积分()22042x x x dx a x x αβγαβγ++-++⎰。
所有这些积分都属于后来所说的“椭圆积分”的范畴,它们既不能用代数函数,也不能用通常的初等超越函数(如三角函数、对数函数等)表示出来。
椭圆积分的一般形式是()P x R x 。
勒让德后来将所有的椭圆积分归结为三种基本形式。
在18世纪,法尼亚诺、欧拉、拉格朗日和勒让德等还就特殊类型的椭圆积分积累了大量结果。
对椭圆积分的一般研究在19世纪20年代被阿贝尔和雅可比分别独立地从反演的角度发展为深刻的椭圆函数理论。
微积分发展历程(三)3)牛顿的“流数术”牛顿(Isaac Newton ,1642——1727)于伽利略去世那年——1642年(儒略历)的圣诞出生于英格兰肯郡伍尔索普村一个农民家庭,是遗腹子,且早产,生后勉强存活。
少年牛顿不是神童成绩并不突出,但酷爱读书与制作玩具。
17岁时,牛顿被母亲从他就读的格兰瑟姆中学召回田庄务农,但在牛顿的舅父 W .埃斯库和格兰瑟姆中学校长史托克思的竭力劝说下,牛顿的母亲在九个月后又允许牛顿返校学习。
史托克思校长的劝说辞中,有一句话可以说是科学史上最幸运的预言,他对牛顿的母亲说:“在繁杂的农务中埋没这样一位天才,对世界来说将是多么巨大的损失!”牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作。
三一学院至今还保存着牛顿的读书笔记,从这些笔记可以看出,就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。
1665年8月,剑桥大学因瘟疫流行而关闭,牛顿离校返乡,随后在家乡躲避瘟疫的两年,竟成为牛顿科学生涯中的黄金岁月。
制定微积分,发现万有引力和颜色理论,……,可以说牛顿一生大多数科学创造的蓝图,都是在这两年描绘的。
流数术的初建牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。
说在此时,牛顿首创了小o 记号表示x 的无限小且最终趋于零的增量。
1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展。
据他自述,1665年11月发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法)。
1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》(Tract on Fluxions )著称,当时虽未正式发表,但在同事中传阅。
《流数简论》(以下简称《简论》)是历史上第一篇系统的微积分文献。
《流数简论》反映了牛顿微积分的运动学背景。
该文事实上以速度形式引进了“流数”(即微商)概念,虽然没有使用“流数”这一术语。
牛顿在《简论》中提出微积分的基本问题如下:(a )设有两个或更多个物体A ,B ,C ,…在同一时刻内描画线段x ,y ,z ,…。
已知表示这些线段关系的方程,求它们的速度p ,q ,r ,…的关系。
(b )已知表示线段x 和运动速度p 、q 之比p q的关系方程式,求另一线段y 。
牛顿对多项式情形给出(a )的解法。
以下举例说明牛顿的解法。
已知方程330x abx a dyy -+-=,牛顿分别以x po +和y qo +代换方程中的x 和y ,然后利用二项式定理,展开得32223322233320x pox p o x p o dy dqoy dq o abx abpo a +++-----+=消去和为零的项()330x abx a dyy -+-=,得22233223320pox p o x p o dqoy dq o abpo ++---=,以o 除之,得223223320px p xo p o dqy dq o abp ++---=这时牛顿指出“其中含o 的那些项为无限小”,略去这些无限小,得2320px dqy abp --=即所求的速度p 与q 的关系。
牛顿对所有的多项式给出了标准的算法,即对多项式(),0i j ij f x y a x y ==∑,问题(a )的解为0i j ij ip jq a x y xy ⎛⎫+= ⎪⎝⎭∑ 对于问题(b ),牛顿的解法实际上是问题(a )的解的逆运算,并且也是逐步列出了标准算法。
特别重要的是,《简论》中讨论了如何借助于这种逆运算来求面积,从而建立了所谓“微积分基本定理”。
牛顿在《简论》中是这样推导微积分基本定理的:如上图,设ab=x,△abc=y 为已知曲线q=f (x )下的面积,作de ∥ab ⊥ad ∥be=p=1。
当线cbe 以单位速度向右移动时,eb 扫出面积 abed=x ,变化率1dx p dt ==;cb 扫出面积△abc=y ,变化率dy q dt =,dx p dt =。
由此得()/dy dx q q f x dt dt p===, 这就是说,面积y 在点x 处的变化率是曲线在该处的q 值。
这就是微积分基本定理。
利用问题(b )的解法可求出面积y 。
作为例子,牛顿算出纵坐标为ny x = 曲线下的面积是11n x n ++;反之,纵坐标为11n x n ++的曲线真切线斜率为n x 。
当然,《简论》中对微积分基本定理的论述并不能算是现代意义下的严格证明。
牛顿在后来的著作中对微积分基本定理又给出了不依赖于运动学的较为清楚的证明。
在牛顿以前,面积总是被看成是无限小不可分量之和,牛顿则从确定面积的e d a c q y x p=f g变化率入手通过反微分计算面积。
前面讲过,面积计算与求切线问题的互逆关系,以往虽然也曾被少数人在特殊场合模糊地指出,但牛顿却能以足够的敏锐与能力将这种互逆关系明确地作为一般规律揭示出来,并将其作为建立微积分普遍算法的基础。
正如牛顿本人在《流数简论》中所说:一旦反微分问题可解,许多问题都将迎刃而解。
这样,牛顿就将自古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法——正、反流数术亦即微分与积分,并证明了二者的互逆关系而将这两类运算进一步统一成整体。
这是他超越前人的功绩,正是在这样的意义下,我们说牛顿发明了微积分。
在《流数简论》的其余部分,牛顿将他建立的统一算法应用于求曲线切线、曲率、拐点、曲线求长、求积、求引力与引力中心等16类问题,展示了他的算法的极大的普遍性与系统性。
流数术的发展《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的。
牛顿于1667年春天回到剑桥,对自己的微积分发现未作宣扬。
他在这一年10月当选为三一学院成员,次年又获硕士学位,并不是因为他在微积分方面的工作,而是因为在望远镜制作方面的贡献。
但从那时起直到1693年大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后定成了三篇微积分论文,它们分别是:(1)《运用无限多项方程的分析》(De Analysi per Aequationes Numero Terminorum Infinitas ,简称《分析学》,完成于1669年);(2)《流数法与无穷级数》(Methodus Fluxionum et Serierum Infinitarum ,简称《流数法》,完成于1671年);(3)《曲线求积术》(Tractatus de Quadratura Curvarum ,简称《求积术》,完成于1691年)。