高中数学知识点精讲精析 数的概念的扩展
- 格式:docx
- 大小:29.38 KB
- 文档页数:2
高中数学学习中的知识点拓展与延伸在高中数学学习中,我们通常会接触到各种知识点和概念,这些知识点虽然在课本中有详细的介绍,但往往只涉及到基本的内容。
为了更好地理解和应用数学知识,我们可以进行知识点的拓展与延伸。
本文将就高中数学学习中的知识点进行拓展与延伸,帮助读者更好地掌握这些知识。
一、数列与函数的拓展数列和函数是高中数学学习中的重要内容,我们可以从以下几个方面进行拓展和延伸。
1.1 数列的通项公式的推导通常情况下,在数列的学习中,我们只会给出数列的前几项,然后通过观察找出数列的规律,得到数列的通项公式。
但是,在实际问题中,我们有时候需要给定数列的通项公式,然后根据这个公式求解其他相关问题。
因此,我们可以探索数列通项公式的推导方法,从而更好地理解数列的性质和规律。
1.2 函数的图像与性质函数的图像是函数学习中的重要内容,我们可以通过利用计算机绘制函数的图像,观察函数在不同定义域上的变化趋势,进一步理解函数的性质。
同时,我们还可以研究函数的极值、最值等性质,从而深入探究函数的特点和规律。
二、几何图形的拓展几何学是数学中的一个重要分支,学习几何图形的性质和变换是高中数学中的基础内容,我们可以在此基础上进行以下拓展与延伸。
2.1 不规则图形的性质我们通常学习的几何图形大多是规则的,例如正方形、圆形等。
但是实际问题中,我们也会遇到不规则图形,如五角星、溜冰鞋形等。
对于这些不规则图形,我们可以研究它们的性质和特点,比如对称性、边长之间的关系等,从而深入理解几何图形的性质。
2.2 空间几何的应用除了平面几何,空间几何也是数学学习中的内容之一。
我们可以拓展学习空间几何的知识,例如研究三维几何图形的性质和变换,以及它们在现实生活中的应用。
例如,我们可以研究立方体在建筑设计中的应用,从而将数学的知识与实际问题相结合。
三、微积分的拓展微积分是高中数学的重点和难点之一,我们可以在学习微积分的基础上进行以下拓展与延伸。
3.1 曲线的长度与曲面的面积在微积分学习中,我们通常学习了曲线的弧长和曲面的面积的计算方法。
第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集∅【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:yxo(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q=②02x a->,则()M f p =xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q =②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
3.1 数系的扩充以自然数为源头,在我国古代数学与天文学的由于调整历法数据的要求,中国古代数学家发展了分数近似算法:“调日法”,使得我国古的宋元时期,现实世界中大量存在的具有相反意义的量,但这却并不意味着人们就一定能够产生生,因而,至少我们可以说负数在我国的产生是实践与数学两方面结合的产物后,数系的进一步推广,学的数学问题,从对数学的作用和影响来看,大体上可归纳为两类:一类是延伸性问题,即对已形成的数学理论起着扩展成果的作用;另一类问题往往导致数学在思想方法上发生质的总之,数学史的这些事例证明:并非数学向前发展的每一步,都需要生产实践的直接推数系扩充的历史过程中,我们一方面看到,数学从实践中吸取营养而发展,反过来又解决了学好数学,不仅要注意实践中的数学问题,而且要注意代数、言之,有的数类(如分数)的引入具有明显的客观背景,有的在当时则完全是出于数学研究纵观数学发展的进程,问题实际以及其他科学技术领域;另一部分来源于数学本身,也就是由数学问题衍生出新的数学数1.实数m分别取什么数时,复数z=(1+i)m2+(5-2i)m+6-15i是①实数;②虚数;③纯虚数;④对应的点在第三象限;⑤对应的点在直线x+y+4=0上;⑥共轭复数的虚部为12.分析:本题是一道考查复数概念的题目.解题的关键是把复数化成z=a+b i(a、b∈R)的形式,然后根据复数的分类标准对其实部与虚部进行讨论,由其满足的条件进行解题.【解析】z =(1+i)m 2+(5-2i)m +6-15i=(m 2+5m +6)+(m 2-2m -15)i.∵m ∈R ,∴z 的实部为m 2+5m +6,虚部为m 2-2m -15. ①要使z 为实数,必有⎩⎨⎧∈=--R,m m m ,01522∴m =5或m =-3. ②要使z 为虚数,必有m 2-2m -15≠0,∴m ≠5且m ≠-3.③要使z 为纯虚数,必有⎪⎩⎪⎨⎧≠--=++,0152,06522m m m m 即⎩⎨⎧≠-≠-=-=,53,23m m m m 且或∴m =-2.④要使z 对应的点在第三象限,必有⎪⎩⎪⎨⎧<--<++015206522m m m m ⇒⎩⎨⎧<<--<<-,53,23m m ∴-3<m <-2.⑤要使z 对应的点在直线x +y +4=0上,必有点(m 2+5m +6,m 2-2m -15)满足方程x +y +4=0, ∴(m 2+5m +6)+(m 2-2m -15)+4=0.解得m =-25或m =1. ⑥要使z 的共轭复数的虚部为12,则-(m 2-2m -15)=12,∴m =-1或m =3.评注: 复数问题实数化是解决复数问题的最基本也是最重要的思想方法,其依据是复数的有关概念和两个复数相等的充要条件.方法是按照题设条件把复数整理成z =a +b i(a 、b ∈R )的形式,明确复数的实部与虚部,由复数相等的充要条件或实部与虚部满足的条件,列出方程(组)或不等式(组),通过解方程(组)或不等式(组)达到解决问题之目的.2.已知复数z 1满足(z 1-2)i=1+i ,复数z 2的虚部为2,且z 1·z 2是实数,求复数z 2. 分析:本题考查复数的基本概念和基本运算,属“较易”的试题.解题的关键是根据复数相等的充要条件或实部与虚部满足的条件,求得复数的实部和虚部.【解析】由(z 1-2)i=1+i,得z 1=ii 1++2=(1+i)(-i)+2=3-i. ∵z 2的虚部为2,∴可设z 2=a +2i(a ∈R ),z 1·z 2=(3-i)(a +2i)=(3a +2)+(6-a )i 为实数,∴6-a =0,即a =6.因此z 2=6+2i.评注: 掌握复数代数形式的加、减、乘、除运算是本章的基础,也是重点,要牢记复数的四种运算法则.3.复平面内点A 对应的复数是1,过点A 作虚轴的平行线l ,设l 上的点对应的复数为z ,求z1所对应的点的轨迹. 分析:本题考查复平面上点的轨迹方程.因为在复平面内点A 的坐标为(1,0),l 过点A 且平行于虚轴,所以直线l 上的点对应的复数z 的实部为1,可设为z =1+b i(b ∈R ),然后再求z 1所对应的点的集合.【解析】如下图.因为点A 对应的复数为1,直线l 过点A 且平行于虚轴,所以可设直线l 上的点对应的复数为z =1+b i(b ∈R).因此i b z +=111i 1111i 1222b b b b b +-+=+-=. 设z1=x +y i(x 、y ∈R ),于是 x +y i=22111b b b +-+i. 根据复数相等的条件,有⎪⎪⎩⎪⎪⎨⎧+-=+=.1,1122b b y b x 消去b ,有x 2+y 2=2222)1()1(1bb b +-++ =2)1()1(1b b b +++=211)1(1bb b +=++=x .所以x 2+y 2=x (x ≠0), 即(x -21)2+y 2=41(x ≠0). 所以z 1所对应的点的集合是以(21,0)为圆心,21为半径的圆,但不包括原点O (0,0).。
数的观点的扩展教课过程:经过回首,学生能够对数的发展过程和其必定性有一个初步认识,但对扩展的新数集具有的一些性质和特色是如何结构和发现的,常常缺乏应有的思虑,研究和创新。
自然这与缺乏必需的数学思想和方法亲密有关,而这一点,恰好是现代社会对人的基本要求,也是当前倡导素质教育的中心。
因此本节课力争从发展的角度,由实数集拥有的一些性质和特色出发,借助于类比的思想对复数集的性质和特色做一些理性的研究和研究。
同时在学习应用过程中,对转变思想和方程思想进行理性认识。
1、创建情形【问题1】:在我们学习的解一元二次方程ax 2bx c0中,假如鉴别式b 24ac0 ,我们就说方程无解。
你能解说原由吗?思虑:联系从自然数系到实数系的扩大过程,你能假想一个方法,使这类形式的方程有解吗?创建问题情境的企图就是使学生明确这里要解决什么问题,联系旧知识,认识解决问题的大概方向。
把问题解决作为教课源动力,本节课经过类比的方法,提出了一些学生能够进行思虑但常常不够清楚的问题,使学生的注意,记忆,思想凝集在一同,达到学习活动的高潮。
师生共同回首实数系的扩大过程。
2、研究新知【问题2】:请类比引进 2 ,就能够解决方程 x2 2 0 在有理数集中无解的问题,怎么解决方程x2 1 0 在实数集中无解的问题?企图经过类比,使学生认识扩凑数系要从引入新数开始。
【问题 3】:如何合理地对实数系进行扩大?类比无理数的引入,希望引入的新数要知足本来数系中的加、乘运算律。
3、建立观点【问题 4】:引入的新数i 是个什么数呢?它有什么特色?引入虚数单位的观点及性质i2=- 1 ,重申 i 不一样于任何实数,它是一种新的数。
此时学生解决了方程无解问题,达到了第一个喜悦点。
【问题 5】:此刻我们引入了虚数单位i,那么当i 与实数进行了加乘运算后,获得了什么样的数?合理引入复数的代数形式。
引入复数集C a bi a, b R 。
定义实部、虚部的观点。
1.1 数的概念的扩展
1.我们为解决负数开方的问题引入虚数单位i ,把形如a+bi (a ,b ∈R )的数叫做复数,数系由实数集扩充到复数集,实现了数系的扩充
2.建立复数的概念之后,我们主要研究了复数的代数形式及其运算,复数的几何表示(复平面上的点、向量),复数运算的几何意义
1.i i -+15的值等于__________. 【解析】
分析:本题考查复数的除法运算.
2
)15()15()1)(1()1)(5(15i i i i i i i ++-=+-++=-+ =2+3i. 答案: 2+3i
2.设z =-1+(
i i -+11)2003,则z =__________. 【解析】
分析:本题考查i 的周期性及常见复数的化简.
如(1±i)2=±2i,i
-i 11+ =i 等. z =-1+(i
-i 11+)2003=-1+i 2003=-1+i 4×500+3=-1+i 3=-1-i. 答案: -1-i
3.8+6i 的平方根是__________.
【解析】
分析:本题考查复数的平方运算及复数相等的概念.
解法一: 设8+6i 的平方根是x +y i(x 、y ∈R ),则
(x +y i)2=8+6i ,即x 2-y 2
+2xy i=8+6i. 由复数相等,得⎩⎨⎧==-.
62,822xy y x ∴⎩⎨⎧==1,3y x 或⎩⎨⎧-=-=.1,3y x
解法二: ∵8+6i=9+6i+i 2=(3+i)2,∴8+6i 的平方根是±(3+i). 答案: ±(3+i)
4.复平面内,已知复数z =x -
31i 所对应的点都在单位圆内,则实数x 的取值范围是__________.
【解析】
分析:本题可根据复数的几何意义,构造不等式,求未知数的范围. ∵z 对应的点z (x ,-3
1)都在单位圆内, ∴|Oz |<1,即22)3
1(-+x <1. ∴x 2+91<1.∴x 2<9
8. ∴-3
22322<<x . 答案: -322322<<x。