物理实验报告3
- 格式:docx
- 大小:156.60 KB
- 文档页数:6
第1篇一、实验目的1. 掌握力学实验的基本操作方法和实验技巧。
2. 学习使用力学实验仪器,如天平、弹簧测力计、刻度尺等。
3. 通过实验验证力学基本定律,如牛顿运动定律、胡克定律等。
4. 培养实验数据分析、处理和总结的能力。
二、实验原理1. 牛顿运动定律:物体受到的合外力等于物体的质量乘以加速度,即 F=ma。
2. 胡克定律:弹簧的弹力与弹簧的伸长量成正比,即 F=kx,其中 k 为弹簧的劲度系数,x 为弹簧的伸长量。
3. 阿基米德原理:浸在液体中的物体受到的浮力等于物体排开的液体的重力,即F浮 = G排= ρ液体gV排,其中ρ液体为液体的密度,g 为重力加速度,V 排为物体排开液体的体积。
三、实验仪器1. 天平:用于测量物体的质量。
2. 弹簧测力计:用于测量力的大小。
3. 刻度尺:用于测量物体的长度。
4. 金属小球:用于验证牛顿运动定律。
5. 弹簧:用于验证胡克定律。
6. 烧杯:用于验证阿基米德原理。
7. 水和盐:用于验证阿基米德原理。
四、实验步骤1. 验证牛顿运动定律(1)将金属小球放在水平面上,使用天平测量小球的质量。
(2)用弹簧测力计测量小球所受的重力。
(3)改变小球的质量,重复步骤(2),记录数据。
(4)根据 F=ma,计算小球的加速度。
2. 验证胡克定律(1)将弹簧一端固定在支架上,另一端连接弹簧测力计。
(2)逐渐增加弹簧的伸长量,记录弹簧测力计的示数。
(3)计算弹簧的劲度系数 k。
3. 验证阿基米德原理(1)在烧杯中装入适量的水,将金属小球浸入水中,使用天平和刻度尺测量小球的质量和体积。
(2)将金属小球浸入盐水中,重复步骤(1),记录数据。
(3)根据阿基米德原理,计算小球在水和盐水中所受的浮力。
五、实验数据及处理1. 验证牛顿运动定律物体质量:m = 0.2 kg重力:F = 1.96 N加速度:a = F/m = 9.8 m/s²2. 验证胡克定律弹簧伸长量:x = 0.1 m弹簧测力计示数:F = 0.98 N劲度系数:k = F/x = 9.8 N/m3. 验证阿基米德原理水中浮力:F水 = G排= ρ水gV排 = 0.98 N盐中浮力:F盐 = G排= ρ盐水gV排 = 1.02 N1. 实验验证了牛顿运动定律,物体受到的合外力与其质量成正比,与加速度成正比。
初二物理实验报告范文4篇实验一:探究物体的浮沉条件一、实验目的1. 了解物体的浮沉条件;2. 探究物体浮沉与密度的关系。
二、实验器材1. 量筒;2. 天平;3. 铁块;4. 铝块;5. 铜块;6. 水。
三、实验步骤1. 使用天平分别测量铁块、铝块和铜块的质量;2. 使用量筒测量一定体积的水,记录水的体积;3. 将铁块放入量筒中,观察铁块的浮沉情况,并记录铁块排开水的体积;4. 将铝块放入量筒中,观察铝块的浮沉情况,并记录铝块排开水的体积;5. 将铜块放入量筒中,观察铜块的浮沉情况,并记录铜块排开水的体积。
四、实验数据1. 铁块质量:50g;2. 铁块排开水的体积:40ml;3. 铝块质量:30g;4. 铝块排开水的体积:30ml;5. 铜块质量:20g;6. 铜块排开水的体积:20ml。
五、实验分析1. 铁块、铝块和铜块的质量分别为50g、30g和20g;2. 铁块、铝块和铜块排开水的体积分别为40ml、30ml和20ml;3. 通过计算可得,铁块、铝块和铜块的密度分别为2.5g/cm³、1g/cm³和1g/cm³;4. 实验结果表明,物体的浮沉与密度有关,密度大于水的物体下沉,密度小于水的物体上浮。
六、实验结论1. 物体的浮沉条件与密度有关;2. 密度大于水的物体下沉,密度小于水的物体上浮。
实验二:探究电流与电压的关系一、实验目的1. 了解电流与电压的关系;2. 探究欧姆定律。
二、实验器材1. 电压表;2. 电流表;3. 电阻箱;4. 电源;5. 导线。
三、实验步骤1. 将电阻箱接入电路中,调节电阻值;2. 使用电压表测量电阻两端的电压,记录电压值;3. 使用电流表测量通过电阻的电流,记录电流值;4. 改变电阻值,重复步骤2和3,记录多组数据。
四、实验数据1. 电阻值:10Ω;2. 电压值:2V;3. 电流值:0.2A;4. 电阻值:20Ω;5. 电压值:4V;6. 电流值:0.2A;7. 电阻值:30Ω;8. 电压值:6V;9. 电流值:0.2A。
大学物理课题演示实验报告5篇大学物理课题演示实验报告 (1)一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r 由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
第1篇一、实验背景与目的随着科学技术的不断发展,物理实验在培养大学生创新思维、实践能力和科学素养方面发挥着越来越重要的作用。
为了更好地锻炼学生的实验技能,激发学生的创新意识,我们开展了本次物理创新实验。
本次实验旨在通过设计、搭建和调试一个新型实验装置,探索物理原理在实际应用中的创新实践,培养学生的动手能力、团队协作精神和创新能力。
二、实验原理与装置1. 实验原理:本实验以电磁感应原理为基础,通过设计一个具有创新性的实验装置,验证法拉第电磁感应定律,并研究电磁感应现象与相关物理量的关系。
2. 实验装置:实验装置主要由以下部分组成:- 电源:提供稳定的交流电源;- 金属棒:作为导体,在磁场中运动;- 磁场发生器:产生均匀磁场;- 电流表:测量感应电流;- 数据采集系统:记录实验数据;- 电脑:处理实验数据,绘制曲线。
三、实验步骤与过程1. 搭建实验装置:按照实验原理图,将电源、金属棒、磁场发生器、电流表、数据采集系统和电脑连接起来,确保各部分连接正确、牢固。
2. 调节实验参数:- 调节电源输出电压,使其在安全范围内;- 调节磁场发生器的磁场强度,使其达到预定值;- 调节金属棒与磁场发生器的距离,确保实验过程中金属棒在磁场中运动。
3. 进行实验:- 在金属棒运动过程中,通过数据采集系统实时记录感应电流的变化;- 改变金属棒的运动速度、磁场强度等参数,观察感应电流的变化规律。
4. 数据处理与分析:- 对实验数据进行整理和分析,绘制感应电流与时间、速度、磁场强度等参数的关系曲线;- 根据实验结果,验证法拉第电磁感应定律,并研究电磁感应现象与相关物理量的关系。
四、实验结果与分析1. 实验结果:- 实验结果表明,感应电流与金属棒的运动速度、磁场强度等因素密切相关;- 当金属棒运动速度增加、磁场强度增大时,感应电流也随之增大。
2. 结果分析:- 通过实验,我们验证了法拉第电磁感应定律的正确性;- 同时,我们发现了电磁感应现象与相关物理量的关系,为电磁感应在实际应用中的创新实践提供了理论依据。
姓名实验课题实验器材次数123456次数123456M ′/g 8.110.312.214.116.218.3(M +m )/Kg 0.21000.22000.23000.24000.25000.2600a0.380.490.570.690.730.861/(M +m )4.8 4.6 4.4 4.2 4.0 3.9a0.750.720.670.660.620.60表一(小车质量一定 M =208.3g)表二(桶和砂的总质量一定 M ′=16.0g)由图3知,图线为一条过原点的直线,这就说明了研究对象所受作用力不变时其加速度与它的质量成反比。
实验日期实验步骤及结论5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。
将每次桶和砂的总质量填入表一中。
6.算出每条纸带对应的加速度的值并填入表一中。
结论:由图2知,图线为一条过原点的直线,这就说明了研究对象质量不变时其加速度与它所受作用力成正比。
2.按图1所示装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。
3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫木,反复移动垫木的位置,直至小车在斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。
4.在小车上加放砝码,小桶里放入适量的砂,用天平测出桶和砂的总质量M ′并记录下来。
把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。
批阅日期7.用纵坐标表示加速度a ,横坐标表示作用力,即桶和砂的总重力M ′g ,根据表一在坐标平面上描出相应的点,作图线,如图2。
8.保持砂和小桶的质量不变,在小车上加放砝码m ,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数1/(M +m ),根据表二在坐标平面上描出相应的点并作图线,如图3。
实验一:牛顿运动定律实验目的:通过本实验,学生能够了解牛顿三大运动定律的基本原理和应用方法,加深对运动学的理解。
实验器材:1. 小车2. 平滑水平轨道3. 弹簧测力计4. 重物(可选)实验原理:牛顿第一定律指出,物体如果受到合力为零的作用,就会保持静止或匀速直线运动。
牛顿第二定律指出,物体所受合外力等于物体的质量与其加速度的乘积。
牛顿第三定律指出,任何两个物体之间相互作用的力大小相等、方向相反。
实验步骤:1. 在平滑水平轨道上放置一个小车。
2. 给小车加上一个初始速度,记录下它在不同时间内经过的位置,并计算出它的速度和加速度。
3. 放置一个重物在小车上,再进行第二次试验,测量重物对小车的作用力和小车的加速度。
实验结果:通过实验,我们得到了如下数据:1. 小车初始速度为5m/s,经过10s后速度为5m/s,加速度为0。
2. 重物对小车的作用力为6N,小车的加速度为3m/s²。
结论:通过本实验,我们深入了解了牛顿运动定律的基本原理和应用方法,并成功地测量出了小车的速度、加速度和重物对小车的作用力。
这些知识和技能对于日常生活和工作都有很大的帮助。
实验二:电路基础实验目的:通过本实验,学生能够了解电路基础知识,包括电阻、电流、电压等概念,掌握串联电路和并联电路的基本原理。
实验器材:1. 电源2. 电阻器3. 电流表4. 电压表5. 连线6. 开关实验原理:电路是电流的通路,由电源、电器和导线组成。
电阻是导体阻碍电流流动的特性。
电流是电荷在导体内部移动的现象,单位为安培。
电压是电流在电路中流动时产生的电场效应,单位为伏特。
实验步骤:1. 制作串联电路和并联电路,分别连接电源、电阻器、电流表和电压表。
2. 测量电路中电压和电流的数值,并计算出电路的总电阻。
3. 比较串联电路和并联电路的电压和电流差异。
实验结果:通过实验,我们得到了如下数据:1. 串联电路中电压为5V,电流为0.5A,总电阻为10Ω。
物理实验报告6篇物理实验报告 (1) 【实验装置】FQJ-Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1-1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
因而热敏电阻的电阻值可以根据电阻定律写为(1-2)式中为两电极间距离,为热敏电阻的横截面,。
对某一特定电阻而言,与b均为常数,用实验方法可以测定。
为了便于数据处理,将上式两边取对数,则有(1-3)上式表明与呈线性关系,在实验中只要测得各个温度以及对应的电阻的值,以为横坐标,为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数下式给出(1-4)从上述方法求得的b值和室温代入式(1-4),就可以算出室温时的电阻温度系数。
热敏电阻在不同温度时的电阻值,可由非平衡直流电桥测得。
非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻,只要测出,就可以得到值。
当负载电阻→,即电桥输出处于开路状态时, =0,仅有电压输出,用表示,当时,电桥输出 =0,即电桥处于平衡状态。
为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:(1-5)在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥,,且,则(1-6)式中R和均为预调平衡后的电阻值,测得电压输出后,通过式(1-6)运算可得△R,从而求的 =R4+△R。
物理实验报告 (2) 实验目的:观察水沸腾时的现象实验器材:铁架台、酒精灯、火柴、石棉网、烧杯、中心有孔纸板、温度计、水、秒表实验装置图:实验步骤:1.按装置图安装实验仪器,向烧杯中加入温水,水位高为烧杯的1/2左右。
第1篇一、实验目的1. 理解磁光效应的原理及其在光学领域中的应用;2. 掌握磁光效应实验的基本操作;3. 通过实验,测定磁光效应中的一些关键参数,如磁光克尔效应和法拉第效应;4. 分析实验数据,得出磁光效应的相关规律。
二、实验原理磁光效应是指电磁波在磁场中传播时,其电磁场分布发生变化的现象。
主要包括磁光克尔效应和法拉第效应。
1. 磁光克尔效应:当线偏振光通过具有磁光性质的介质时,其偏振面会旋转一个角度,称为克尔角。
克尔效应的大小与磁场的强度和介质的磁光常数有关。
2. 法拉第效应:当线偏振光通过具有法拉第效应的介质时,其偏振面会旋转一个角度,称为法拉第角。
法拉第效应的大小与磁场的强度、介质的法拉第常数以及光在介质中的传播速度有关。
三、实验仪器与材料1. 磁光克尔效应实验装置:包括线偏振光源、磁光克尔效应样品、检偏器、光电池等;2. 法拉第效应实验装置:包括线偏振光源、法拉第效应样品、检偏器、光电池等;3. 直流稳压电源、磁铁、光具座、光电池读数仪等。
四、实验步骤1. 磁光克尔效应实验:(1)将线偏振光源发出的光通过检偏器,得到线偏振光;(2)将线偏振光照射到磁光克尔效应样品上,调节磁铁的位置,使样品处于磁场中;(3)通过检偏器观察光电池的输出信号,记录克尔角;(4)改变磁场强度,重复上述步骤,得到一系列克尔角数据。
2. 法拉第效应实验:(1)将线偏振光源发出的光通过检偏器,得到线偏振光;(2)将线偏振光照射到法拉第效应样品上,调节磁铁的位置,使样品处于磁场中;(3)通过检偏器观察光电池的输出信号,记录法拉第角;(4)改变磁场强度,重复上述步骤,得到一系列法拉第角数据。
五、实验数据整理与归纳1. 对磁光克尔效应实验数据进行处理,得到克尔角与磁场强度的关系曲线;2. 对法拉第效应实验数据进行处理,得到法拉第角与磁场强度的关系曲线;3. 根据实验数据,分析磁光克尔效应和法拉第效应的规律。
六、实验结果与分析1. 磁光克尔效应实验结果表明,克尔角与磁场强度呈线性关系,符合磁光克尔效应的规律;2. 法拉第效应实验结果表明,法拉第角与磁场强度呈线性关系,符合法拉第效应的规律;3. 通过实验,验证了磁光效应在光学领域中的应用,如光学隔离器、光开关等。
初中物理实验报告14篇初中物理实验报告1 一、提出问题:平面镜成的是实像还是虚像?是放大的还是缩小的像?所成的像的位置是在什么地方?二、猜测与假设:平面镜成的是虚像。
像的大小与物的大小相等。
像与物分别是在平面镜的两侧。
三、制定方案与设计方案:实验原理是光的反射规律。
所需器材:蜡烛〔两只〕,平面镜〔能透光的〕,刻度尺,白纸,火柴,实验步骤:1.在桌面上平铺一张16开的白纸,在白纸的中线上用铅笔画上一条直线,把平面镜垂直立在这条直线上。
2.在平面镜的一侧点燃蜡烛,从这一侧可以看到平面镜中所成的点燃蜡烛的像,用不透光的纸遮挡平面镜的反面,发现像仍然存在,说明光线并没有透过平面镜,因此证明平面镜背后所成的像并不是实际光线的会聚,是虚像。
3.拿下遮光纸,在平面镜的背后放上一只未点燃的蜡烛,当所放蜡烛大小高度与点燃蜡烛的高度相等时,可以看到背后未点燃蜡烛也好似被点燃了。
说明背后所成像的大小与物体的大小相等。
4.用铅笔分别记下点燃蜡烛与未点燃蜡烛的位置,移开平面镜和蜡烛,用刻度尺分别量出白纸上所作的记号,量出点燃蜡烛到平面镜的间隔和未点燃蜡烛〔即像〕到平面镜的间隔。
比拟两个间隔的大小。
发现是相等的。
四、自我评估:该实验过程是合理的,所得结论也是正确无误。
做该实验时最好是在暗室进展,现象更加明显。
误差方面应该是没有什么误差,关键在于实验者要认真仔细的操作,使用刻度尺时要认真测量。
五、交流与应用:通过该实验我们已经得到的结论是,物体在平面镜中所成的像是虚像,像的大小与物体的大小相等,像到平面镜的间隔与物体到平面镜的间隔相等。
像与物体的连线被平面镜垂直且平分。
例如,我们站在穿衣镜前时,我们看穿衣镜中自己的像是虚像,像到镜面的间隔与人到镜面的间隔是相等的,当我们人向平面镜走近时,会看到镜中的像也在向我们走近。
我们还可以解释为什么看到水中的物像是倒影。
平静的水面其实也是平面镜,等等。
>初中物理实验报告3光学中研究光的本性以及光在媒质中传播时各种性质的学科。
第1篇一、实验目的1. 了解水透镜的基本原理和特点;2. 掌握水透镜的制作方法;3. 通过实验验证水透镜的成像规律;4. 提高物理实验操作能力和观察分析能力。
二、实验原理水透镜是一种利用水的折射率差异而形成的透镜。
当光线从空气射入水中时,会发生折射,根据斯涅尔定律,入射角和折射角之间存在一定的关系。
通过改变水的形状,可以调节折射率,从而实现成像。
三、实验器材1. 实验桌;2. 透明塑料瓶;3. 玻璃棒;4. 水彩笔;5. 印刷物或高清图像;6. 数码相机;7. 刻度尺;8. 白纸。
四、实验步骤1. 将透明塑料瓶装满水,用玻璃棒搅拌使水均匀;2. 用水彩笔在塑料瓶的侧面画上两条平行线,表示透镜的主光轴;3. 将印刷物或高清图像放在水透镜的一侧,用数码相机拍摄透镜成像;4. 改变印刷物或高清图像与水透镜的距离,观察成像情况;5. 测量水滴的大小和形状,记录数据;6. 记录不同距离下的成像情况,分析成像规律。
五、实验数据与分析1. 水滴大小和形状:通过实验,发现水滴的大小和形状对成像效果有一定影响。
水滴越大,成像效果越明显;水滴形状越规则,成像效果越好。
2. 成像规律:根据实验数据,得出以下成像规律:(1)当印刷物或高清图像与水透镜的距离小于水透镜的焦距时,成像为正立、放大的虚像;(2)当印刷物或高清图像与水透镜的距离等于水透镜的焦距时,成像为正立、等大的虚像;(3)当印刷物或高清图像与水透镜的距离大于水透镜的焦距时,成像为倒立、缩小的实像。
六、实验结论1. 水透镜是一种利用水的折射率差异而形成的透镜,具有简单易制作、成像效果明显等特点;2. 水滴的大小和形状对成像效果有一定影响,水滴越大、形状越规则,成像效果越好;3. 通过实验验证了水透镜的成像规律,为光学实验提供了新的思路和方法。
七、实验反思1. 实验过程中,应注意水透镜的清洁,避免杂质影响成像效果;2. 在改变印刷物或高清图像与水透镜的距离时,要缓慢进行,以便观察成像规律;3. 本实验具有一定的局限性,如成像效果受环境光线、温度等因素影响,但仍然具有一定的参考价值。
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx
cvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxcv bnmqwertyuiopasdfghjklzxcvbnmqw
ertyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdfgh
jklzxcvbnmqwertyuiopasdfghjklzxcvb
nmqwertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwertyuiop
asdfghjklzxcvbnmqwertyuiopasdfghj klzxcvbnmrtyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
孔
惠东
精
81
物理实验报告
2009.11.13
2008010503
选修实验
物理实验报告(选修)
系班 精仪系81 姓名 孔惠东 编号 2 实验日期 2009-11-11
一. 实验名称
灵敏电流计(选修实验)
二. 实验目的
1) 了解检流计的工作原理及线圈的阻尼运动规律;
2) 测量检流计分度值及内阻,并分析误差的方法; 3) 学习正确使用和保护检流计。
三. 实验原理
注:灵敏电流计也称为直流检流计,是磁电式仪表,和其他磁电式仪表一样都是根
据载流线圈在磁场中受力矩而偏转的原理制成的。
检流计工作原理:
∙
检流计的基本结构如图所示,线圈处在水平径向的均匀磁场中,如果线圈通有电流g I ,在磁场的作用下它就会发生偏转。
设线圈的转动惯量为J ,它在受力时受到三个力矩的作用:
1. 通有电流的线圈在磁场中所受的力矩1M ,有
1g M BNSI =
2. 与扭转系数W 和偏转角α成正比的悬丝的反抗力矩2M
2M W α=-
3. 与线圈角速度/d dt α成正比的阻尼力矩3M
()
312d M dt
α
ρρ=-+ 式中1ρ为线圈的空气阻尼系数,2ρ为线圈的电磁阻尼系数,一般1ρ比2
ρ小的多。
线圈在三个力矩作用下的运动方程为
()2122g d d J W BNSI dt dt
ααρρα+++= 引入参量β和0ω,且定义为
22212g B N S R R βρ⎛⎫
==+⎪⎪+⎭
0ω=所以利用二阶常微分方程,可得三个不同的解: (1). 当1β<时,即外电阻2R 很大时,方程的解为
)
001t
s t βωααφ-⎡⎤
=+⎢⎥⎢⎥⎣
⎦
式中
)
arctan
φβ=
式表明,线圈在做振荡运动,其振幅随着时间的增大而衰减,叫欠阻尼运
动。
其运动曲线与○1类似,振幅衰减很慢的欠阻尼运动测量是不利的,因
为它达到平衡的时间太长。
(2). 当1β=时,解为
()0
011t
s e t ωααω-⎡⎤=-+⎣⎦
式表明线圈做单方向的偏转运动,刚好不振荡,可用○2曲线来描述它,叫
临界阻尼运动,此时外电路电阻2R 用c R 表示,c R 称为外临界电阻。
这种运动对测量较为有利,因为它达到平衡的时间较短。
(3). 当1β>时,即外电路的电阻很小,解为
)
001t
s t βωααθ-⎡⎤
=+⎢⎥⎢⎥⎣
⎦
其中
)
arctan h
θβ=
式表明线圈也做单方向偏转,曲线类似○3,叫过阻尼运动,这种运动对测
量也不利,因为它达到平衡的时间也很长,且不易判断平衡位置。
计算和经验证明,0.8~0.9β=时是电流计的理想工作状态。
测检流计的电流分度值:
∙
检流计平衡位置的偏转角s α总与电流g I 成正比,为了测量s α,用一套如图所示的光学读数装置,可得
g I I C d
=
I C 称作电流分度值,I C 的倒数叫电流灵敏度I S ,单位/A div ,测定电流分
度值的实验线路图如图所示,经计算可得
()()00
212210
/g g g g U U I R R R R R R R R R =
=
+++++ 其中U 为电压表的读数。
测检流计的内阻
∙
半偏法
线路还是上面的,保持电压表示数不变,先调节20R =,调节电阻1R 使电流计满偏,然后逐渐加大2R 直至电流计半偏,此时可以近似认为2g R R =。
∙ 全偏法
线路还是一样,实验中保持电压表的读数不变,先调节20R =,调1R 使电流计满偏。
再将2R 预设为一个较大值,减小1R 到原来的一半,再逐渐减小2R 使检流计再次满偏,这时2R 的值也可近似为电流计的内阻值g R 。
四. 实验装置
∙
检流计、电源、电阻。
单向开关、换向开关、伏特表、导线、光反射读数装置。
五. 实验步骤
观察检流计阻尼运动特性
∙
按图示电路接好实物图,
经老师检查后方可接通电源;
∙
通过改变2R ,观察三种
阻尼运动并记录现象,在逐步调节电阻2R 的过程中找到外临界电阻c R (方法自拟)。
用半偏法和全偏法测内阻
∙
用半偏法测内阻时,要求在相同的实验条件下,对2R 进行6次测量,分析和估计半偏法测量的g R ∆。
测定电流分度值I C
∙
取2c R R =,使电流计工作在临界阻尼状态,分别测出左右两侧光标指在20,40,60分度的电流分度值,并求平均电流分度值I C 及I
C ∆。
六. 实验数据处理(见附页)
七. 注意事项
∙ 注意保护检流计悬丝,剧烈振动或严重过载都会损坏悬丝; ∙ 当不用时,检流计输入端必须短路; ∙ 应及时调整检流计的零点,机械调零;
∙
选取适当的外电阻,使检流计工作在临界阻尼状态或稍欠阻尼状态。
八. 若干思考题
1. 在实验线路图中,如果断开2R 的连线,光标将作何运动?当光标正好通过零点
时和上检流计短路开关3S ,光标运动将有何变化?为什么?
答:向中间偏转;在阻尼的作用下偏转最终停在零点;因为3S 闭合之后,
被短路,指针在阻尼偏转几个来回后回到零点。
2. 试想出一种测检流计内阻的的其他方法?
答:惠斯通电桥平衡法。
3. 在线路图中用了两次分压,如果不用两次分压行不行?试说明理由。
答:不行,因为检流计流过的电流是A μ级别的,如果不用两次分压,电压直
接由变阻器调节,变阻器可调的范围很小,所以一旦滑线变阻器分压过大,
很容易造成检流计损坏。
4. 计算g R ∆时,分析式中哪一项对g R ∆的影响最大?哪些项可以忽略不计?试
找出方法二的优点。
答:2R s 对不确定度的影响最大,电阻箱的误差3∆对实验的误差可以忽略不计;
方法二的优点:因为1R 的阻值是上千欧姆,而2R 的阻值几十欧姆,一个几十欧姆与1欧姆并联对1欧姆电阻的影响和一个几千欧姆电阻与1欧姆串联对1欧姆电阻的影响,那肯定是前者大,所以用全偏法的电路精确度比半偏法高。
九. 心得体会
∙
做物理实验最重要的是要有耐心和一颗探求真理的心。
比如说这次的观察阻尼特性实验,要把检流计调节在临界阻尼状态,必须调节数十次才能达到相对比较合适的电阻,因为这个临界阻尼状态的外电阻对后面的实验都有影响,所以不能着急,我当时起初因为没有太明白实验的原理,等到差不多明白的时候,数据都已经记完了,那就晚了。
∙
再者,就是数据的真实有效性。
物理实验是建立在大量的重复性实验数据基础上的,所以数据必须要真正自己一遍又一遍测出来的,而不是建立在理论计算上或者是验证性的,理论计算只能用来反馈这个数据是不是在有效范围之内,而不是来决定这个数据的真实大小。