电渣重熔对改性AISI4330钢性能的影响_巢瑞珏
- 格式:pdf
- 大小:450.34 KB
- 文档页数:6
电渣熔铸ZG06Cr13Ni4Mo低碳马氏体不锈钢力学性能研究冯浩;刘福斌;李花兵;姜周华;董艳伍;陈瑞;宋照伟;耿鑫【摘要】对热处理后的电渣熔铸低碳马氏体不锈钢ZG06Cr13Ni4Mo分别进行拉伸试验、冲击试验和硬度试验,利用金相显微镜(OM)观察热处理后的显微组织,应用扫描电镜(SEM)观察拉伸断口和冲击断口,系统研究了电渣熔铸前后低碳马氏体不锈钢的力学性能.通过与电极的对比表明,电渣熔铸低碳马氏体不锈钢的晶粒更加细小,其力学性能优于自耗电极,并且各向异性程度低.【期刊名称】《材料与冶金学报》【年(卷),期】2013(012)001【总页数】5页(P45-49)【关键词】电渣熔铸;低碳马氏体不锈钢;力学性能【作者】冯浩;刘福斌;李花兵;姜周华;董艳伍;陈瑞;宋照伟;耿鑫【作者单位】东北大学材料与冶金学院,沈阳110819;东北大学材料与冶金学院,沈阳110819;东北大学材料与冶金学院,沈阳110819;东北大学材料与冶金学院,沈阳110819;东北大学材料与冶金学院,沈阳110819;沈阳铸造研究所,沈阳110021;沈阳铸造研究所,沈阳110021;东北大学材料与冶金学院,沈阳110819【正文语种】中文【中图分类】TG113ZG06Cr13Ni4Mo是一种低碳马氏体不锈钢,对应于ASTM标准中的CA6NM不锈钢,因其优异的铸造和焊接性能、良好的强韧性及耐腐蚀性被广泛应用于水轮机组件、阀体、核电站压力容器及海上的钻井平台中[1~3].该马氏体不锈钢的优异性能源于其特殊的微观组织.经过恰当的正火及回火处理后,其微观组织为回火马氏体和弥散分布在马氏体基体中的片层状逆变奥氏体的两相结构[4~6].塑性变形时逆变奥氏体能够吸收变形功转变成马氏体,显著改善材料韧性.本文用电渣重熔对钢锭进行二次精炼,获得了高金属纯净度、组织致密、晶粒细小的06Cr13Ni4M电渣铸锭,并对它的力学性能进行了系统研究.实验采用电渣熔铸工艺制备低碳马氏体不锈钢ZG06Cr13Ni4Mo.自耗电极和电渣锭的化学成分如表1所示.对自耗电极和电渣锭采用相同的热处理工艺进行处理,如表2所示.热处理后,分别在自耗电极和电渣锭的横截面和纵截面上切取试样.所有试样经砂纸湿磨后抛光,采用质量分数为10%的草酸溶液进行电解腐蚀.应用金相显微镜(OM)观察显微组织.分别沿电渣锭和自耗电极的轴向和径向切取拉伸棒状试样.在SANS-CMT5105型微机控制电子万能试验机上进行室温拉伸性能测定,拉伸速度为3 mm·min-1,引伸计标距为25 mm.测定所有试样的抗拉强度Rm、规定非比例延伸强度Rp0.2、断后伸长率A和断面收缩率Z.应用扫描电镜(SEM)观察试样断口形貌,研究断裂的微观机理.经过相同热处理后,分别沿电渣锭和自耗电极的轴向和径向切取冲击试样.在JBW-500屏显式冲击试验机上进行冲击试验,测定所有试样的冲击功AKV.应用扫描电镜(SEM)观察试样断口形貌,研究断裂的微观机理.在热处理后的电渣锭和自耗电极上分别切取试样,经砂纸湿磨后抛光,应用布氏硬度计测定试样上3个不同位置的硬度,取平均值作为最终结果.经过热处理后电渣锭与自耗电极的微观组织如图1所示.与自耗电极相比,电渣锭横截面和纵截面的晶粒更加细小.由于电渣熔铸具有良好的凝固条件,因此电渣锭的组织致密均匀,晶粒细小,电渣锭经过热处理后晶粒更加细小.而电极采用砂型铸造,原始晶粒粗大,虽然热处理具有细化晶粒的作用,但其晶粒尺寸仍较大.电渣锭和电极拉伸性能的测定结果如表3所示,从表中可知电渣锭的Rm为810 MPa以上,RP0.2为 575 MPa以上,A为 21.7%以上,Z为67.3%以上.通过与电极的对比可以看出,电渣锭的拉伸性能优于电极,并且各向异性的程度较低.从电渣锭和电极的显微组织(见图1)可以看出,由于电渣熔铸冷却强度大,热处理后电渣锭的晶粒更加细小.由于金属晶粒越细小,晶界的总面积越大,变形晶粒中的位错在晶界处受到的阻力越大,金属的强度越高.细小晶粒内部和晶界附近的应变相差较小,变形较均匀,因应力集中引起开裂的概率也较少,在断裂之前可承受较大的变形量,因此细晶粒电渣锭的塑性较高[7].同时,由于电渣熔铸顺序结晶和定向凝固的特点,电渣锭的组织更加均匀,因此其各向异性程度低.利用扫描电镜(SEM)观察拉伸断口形貌(图2).从图2中可以看出,电渣锭中韧窝数量多,深度大,因此塑性更好.电渣锭轴向拉伸试样的断口形貌与径向拉伸试样的断口形貌大致相同,因此各向异性程度低.电渣锭和电极的冲击性能如表4所示.从表中可知,电渣锭的冲击功为154 J以上.通过与电极的对比可以看出,电渣锭的冲击韧性更好,各向异性程度更低.从电渣锭和电极的显微组织(图1)可以看出,由于电渣熔铸冷却强度大,热处理后电渣锭的晶粒更加细小.金属晶粒越细小,晶界的总面积越大,变形晶粒中的位错在晶界处受到的阻力越大,金属的强度越高.由于细晶粒金属的裂纹不易产生也不易扩展,因而在断裂过程中吸收了更多的能量,表现出较高的韧性[7].同时,由于电渣熔铸顺序结晶和定向凝固的特点,电渣锭的组织致密均匀,各向异性程度低.应用扫描电镜(SEM)观察电渣锭与电极的冲击断口形貌如图3所示,从图中可以看出电渣锭断口处的韧窝数量较多,分布均匀,表现出较好的冲击韧性.同时,电渣锭轴向试样的断口形貌与径向试样的断口形貌大致相同,电渣锭各向异性程度低. 应用布氏硬度计测定热处理后电渣锭与电极的硬度如表5所示.从表中可以看出电渣锭的硬度值为278,高于电极的硬度.从电渣锭和电极的显微组织可以看出,由于电渣熔铸冷却强度大,热处理后电渣锭的晶粒更加细小.同时金属晶粒越细小,晶界的总面积越大,变形晶粒中的位错在晶界处受到的阻力越大,宏观表现为金属的硬度值越高.以热处理后的电渣熔铸低碳马氏体不锈钢为研究对象,分别进行拉伸试验、冲击试验和硬度试验,利用金相显微镜(OM)观察热处理后的显微组织,应用扫描电镜(SEM)观察拉伸断口和冲击断口,研究电渣熔铸低碳马氏体不锈钢的力学性能.通过与电极的对比,研究电渣熔铸对力学性能的影响.具体研究结果如下:(1)经过热处理后,电渣熔铸低碳马氏体不锈钢的晶粒更加细小.电渣熔铸具有良好的凝固条件,因此电渣锭的组织致密均匀,晶粒细小,电渣锭经过热处理后晶粒更加细小.而电极采用砂型铸造,原始晶粒粗大,虽然热处理具有细化晶粒的作用,但其晶粒尺寸仍较大.(2)电渣熔铸低碳马氏体不锈钢的Rm为810 MPa以上,RP0.2为 575 MPa以上,A为21.7%以上,Z为67.3%以上.电渣锭的拉伸性能明显优于电极,并且各向异性的程度低.由于电渣熔铸冷却强度大,热处理后电渣锭的晶粒更加细小,塑性更高.同时,由于电渣熔铸顺序结晶和定向凝固的特点,电渣锭的组织更加均匀,因此其各向异性程度低.(3)电渣熔铸低碳马氏体不锈钢的冲击功在154 J以上,冲击韧性优于电极,各向异性程度更低.由于电渣熔铸冷却强度大,热处理后电渣锭的晶粒更加细小,韧性更好.同时,由于电渣熔铸顺序结晶和定向凝固的特点,电渣锭的组织致密均匀,各向异性程度低.(4)电渣熔铸低碳马氏体不锈钢的布氏硬度为278,高于电极的硬度.由于电渣熔铸冷却强度大,热处理后电渣锭的晶粒更加细小,宏观表现为电渣锭的硬度值更高. 【相关文献】[1]孙霞,刘春明.铸造低碳马氏体不锈钢的现状与发展趋势[J].铸造,2007,56(1):1-5. (Sun Xia,Liu Chun-ming.Status and tendencyof development for cast low carbon martensitic stainless steel[J].Foundry,2007,56(1-5).)[2]Bilmes P D,Solari M,Llorente C L.Characteristics and effects of austenite resulting from tempering of 13CrNiMo martensitic steel weld metals[J].Mater Charanct,2001,48: 285-290.[3]Gesnouin C,Hazarabedian A,Bruzzoni P,et al.Effect of post-weld heattreatmenton the microstructure and hydrogen permeation of 13CrNiMo steels [J].Corros Sci,2004,46:1633-1641.[4]娄延春,张仲秋,熊云龙.大型纯净超低碳马氏体不锈钢铸件先进制造技术[J].铸造,2010,59(11):1148-1154.(Lou Yan-chun,Zhang Zhong-qiu,Xiong Yun-long.Advanced manufacturing technologies of large martensitic stainless steel castingswith ultra low carbon and high cleanliness[J].Foundry,2010,59(11):1148-1154.)[5]贾淑芹,王大威,刘洪超,等.电渣熔铸模拟三峡真机导叶组织性能研究及应用[J].铸造,2005,54(9):852-855.(Jia Shu-qin,Wang Da-wei,Liu Hong-chao et al.Microstructure and propertiesofESRC wicketgate of simulating hydraulic turbine for three gorges power station and its application[J].Foundry,2005,54(9):852-855.)[6]陈瑞,李旭东,郝学卓,等.电渣熔铸三峡电站水轮机导叶[J].铸造,2004,53(7):500-502.(Chen Rui,Li Xu-dong,Hao Xue-zhuo,et al.ESRC guide vanes of hydraulic turbine for three gorges power station[J].Foundry,2004,53(7):500-502.)[7]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,2008:249-250.(Cui Zhong-qi,Tan Yao-chun.Metallography and heat treatment[M].Beijing:Machinery Industry Press,2008: 249-250.)。
电渣重熔中去除夹杂物的一些考虑摘要电渣重熔去除夹杂过程是特种冶炼工作者面对电渣钢质量问题所要研究的很重要部分,所以面对很多,对好的氧化物评级,夹杂物要求很高的钢种而言,合理地使理论与实际想结合,把夹杂物的形成与去除过程掌握,则是我们特种冶炼轴承钢,军工耐高温等等钢种所要面对的重要任务。
关键词电渣重熔;夹杂物;端头;尺寸电渣重熔过程液态金属和熔渣充分接触发生在3个阶段:1)电极熔化末端:自耗电极端头,在熔渣内受熔渣的电阻热,沿表面逐层熔化,熔化金属沿锥头形成薄膜,金属细流沿锥面滑移,在端头汇聚成滴,金属流内可能产生湍流,不断更新表面;2)金属熔滴滴落:电极端头金属滴在重力和电磁引缩效应作用下,脱离电极滴落,穿过液态渣池,过渡到金属熔池,滴内金属可能产生环流;3)金属熔池:金属熔池上表面始终在渣层下和熔渣长时间相接触。
反映接触条件有两层含义,即接触面积和作用时间。
由表1可见,电渣重熔在电极熔化末端钢渣接触面积达4 220mm2/g,在熔滴过渡阶段,钢渣接触面积达62.8mm2/g,这是其它冶金炉达不到的,如炼钢厂30t电弧炉,钢渣接触面积仅0.34 mm2/g。
由于金属熔池作用时间为1 003s,一般考虑夹杂物浮生来研究夹杂物的去除是不对的,因为电极锥头和金属熔滴的钢渣反应的比面积是 4 220mm2/g与62.8mm2/g远远的大于0.34mm2/g的金属熔池的接触比面积。
以上为电渣重熔电极锥头面积对氧化物评级的影响:横坐标为电极锥头面积×103,mm2,纵坐标为氧化物评级。
由图1可看出不同的电极锥头面积,重熔去除非金属夹杂物的效果有显著不同,电渣重熔去除钢种非金属夹杂物主要发生在电极熔化末端熔滴形成的过程中。
1)自耗电极沿表面熔化,沿锥面形成薄膜厚度远远比熔滴半径及金属熔池深度小,其钢渣接触面积又比熔滴大,而且在逐渐熔化的过程中,任何部分夹杂物都可能和熔滴接触和渣进行反应;2)自耗电极由于熔化端头呈锥形,其尖端在熔滴形成的末端,由于电磁引缩效应,在端头形成缩颈,所以端头电流密度最大,有尖端放电的特征,也能论证这个区域温度为最高;3)电极熔化末端熔滴形成的时间比熔滴滴落的时间长,见表1,尽管不如金属熔池存在时间长,但是从动力学观点出发,将接触面积和作用时间综合考虑,可看出电极熔化端头熔滴形成过程依然是夹杂物去除最有利过程;4)电极熔化末端熔滴形成过程是最先和熔渣接触并发生反应部分,钢中原始夹杂物含量最高,无疑可大量去除夹杂物。
熔渣成分对气保护不锈钢药芯焊丝脱渣性影响的研究_30材料工程/2003年1期熔渣成分对气保护不锈钢药芯焊丝脱渣性影响的研究StudyonEffectsofCompositionandMicrostructure ofSlagontheSlagDetachabilityofGas—shielded FluxCoredWireforStainlessSteel栗卓新,蒋建敏,魏琪(北京工业大学,北京100022)LIZhuo—xin,JIANGJian—min,WEIQi (BeijingPolytechnicUniversity,Beijing100022,China)摘要:用EDAX和SEM研究了熔渣成分和显微组织对气保护不锈钢药芯脱渣性的影响,结果表明,熔渣中金红石与石英的比例对熔渣的微观组织结构有较大影响.当TiO./si0.约为6.0,脱渣性最好.当TiO/si0在1.6~3.2区间变化时,脱渣性最差.同时确定了TiO一SiO一MnO渣系的气保护不锈药芯焊丝的最佳脱渣区.关键词:不锈钢;药芯焊丝;脱渣性中图分类号:TG444.72文献标识码:A文章编号:1001—4381(2003)01—0030—04Abstract:Effectsofcompositionandmicrostractureoftheslagontheslagdetach abilityofgas—shieledflux—coredwireforstainlesssteelwerestudiedbymeansofEDAXand SEM.TheresultsshowthattheratioofTiO2/SiO2hasanobviouseffectontheslagmicrostructure. ThedetachabilityisexcellentwhenTiO2/SiO2is6.0,ItistheworstwhenTiO2/SiO2isbetween1.6~3.2.Finally, theoptimumzoneofslagdetachabilityofgasshieldedflux—coredwireforstain lesssteelinTiO2一SiO2-MnOslagsystemiSdetermined.Keywords:stainlesssteel;gas—shieldedflux—coredwire;slagdetachability 气保护不锈钢药芯焊丝电弧焊是高效低成本自动化的不锈钢结构制造技术.在发达国家,已占焊材的30以上,有近50的不锈钢设备是采用气保护不锈钢药芯焊丝电弧焊制造的.根据不锈钢焊接的特点及应用场合,脱渣性,飞溅及焊缝成型是重要的工艺性能指标.不锈钢药芯焊丝由于其含铬量高,易在熔渣中形成CrO.等尖晶石氧化物,因此脱渣困难.而脱渣性好坏直接影响焊缝质量,焊接生产率及焊工劳动强度.目前国内外很少进行气保护不锈钢药芯焊丝工艺性能理论的研究,尚未见到文献报道.在外界条件一定时,物质的性质取决于物质的内部构造.这种构造就是组成物质的粒子种类和分量,以及它们在运动中的排列方式,即物质的成分及组织结构.因此,可以说熔渣的脱渣性是由熔渣的化学成分及微观组织结构决定的.不同渣系的熔渣具有不同的微观组织结构;同一渣系的熔渣,其化学成分发生变化,微观组织结构也发生变化.在大量的工艺试验的基础上发现,药芯中金红石与石英的比例对熔渣的微观组织结构影响较大.因此,本工作在酸性渣系内选择了四种具有代表性的熔渣.采用扫描电镜,研究了熔渣化学成分,熔渣微观组织结构对脱渣性的影响.确定了TiO一SiO一MnO渣系的气保护不锈钢药芯焊丝的最佳脱渣区.1试验方法及试验条件药芯焊丝的脱渣性试验采用平板堆焊及45.V规定评定脱渣性.钢球重3000g,以初速度为零的自由落体状态锤向试板背面,平板堆焊时焊后停留1min后锤击,试验架高度500mm.坡口内焊接时,试验架高度调至1000mm,堆焊后立即用钢球砸击焊道背面,第一层时砸5次,第二层以后砸3次.本研究在酸性渣系内选择了四种具有代表性的熔渣.焊后收集熔渣,用EDAx分析熔渣化学成分,用SEM观察熔渣形貌,研究熔渣化学成分,熔渣微观组织结构及其与脱渣性的关系.2试验结果四种熔渣表面的EDAX成分分析结果见表1,相应的熔渣内表面(邻焊缝面)SEM微观形貌见图1.表2是四种熔渣内表面各相EDAX成分分析结果.四种熔渣内表面各相的显微组织特征及其脱渣率见表3.从表1熔渣化学成分分析结果可以看出:四种焊丝熔熔渣成分对气保护不锈钢药芯焊丝脱渣性影响的研究31 渣内表面化学成分相差较大,其中变化最明显的是TiO及SiO:.从1到4内表面的SiO:量逐渐增加,而TiO量逐渐减少;四种熔渣外表面的化学成分极为接近,均是由MnO为主的氧化物构成.比较内外表面化学成分,差别最大的是MnO,TiO.,siO及CrO..外表面的MnO,SiO含量明显高于内表面,而内表面TiO:,cr:().含量明显高于外表面.从表2可以看出,熔渣内表面的白色第二相与黑色基体相的成分比较接近,主要成分均是TiO一SiO.一MnO—Cr:O.. 由表3可以看出,TiO:/SiO:比例对熔渣内表面的显微组织结构及脱渣性影响较大1.,4.脱渣性好.3分析与讨论3.1熔渣化学成分对熔渣微观组织结构特征的影响由表1可知熔渣内外表面化学成分差别大,其原因一方面是由于脱氧产物的密度小于液态焊缝金属的密度,所以氧化物在液态金属及液态熔渣中上浮.细小球状液态或固态质点在互不相溶的第二液相介质中上浮的速度,遵守斯托克斯定律,可用下式表示:V一吾×号r.()式中:g为重力加速度;为液体的粘度;,为液体,脱氧产物的密度;r为脱氧产物的半径.脱氧产物密度的减小及半径的增大均有利于脱氧产物的上浮.MnO及TiO:.的密度小于SiO:.MnO及SiO:在液态时可聚合为尺寸较大的质点,因此有利于MnO及SiO:上浮.另一方面,液态熔渣与正在结晶的焊缝金属表面还要继续进行反应,反应产物则表1熔渣内表面(邻焊缝面)及外表面的EDAX成分分析结果(质量分数,)Fable1CompositionofinnerandoutersurfaceofmeltingslagbyEDAX(massfr action,)TiO2SiO2MnOCr203ZrO2NaO2AI203K2()CaOBi2()3MgOFeO1内表面49.068.25】6.45】3.343.】74.324.020.70O.4】0.O2O.O】0.492内表面38.4112.4216.5216.304.255.384.560.920.37O.O90.02O.57 3内表面3O.O318.5317.3215.215.O26.425.900.550.310.130.04O.31 4内表面24.412O.8818.1917.635.486.125.040.850.240.160.060.72 1外表面18.9916.363O.3610.482.255.405.640.261.04O.OO4.145.08 2外表面17.1617.423O.8810.172.455.495.340.360.59O.OO3.164.98 3外表面17.4920.3731.429.983.786.025.920.290.76O.OO3.174.78 4外表面l6.6O22.2730.838.134.646.004.590.090.160.O02.024.09图1熔渣的SEM微观形貌(a)1内表面;(b)2内表面;(c)3内表面;(d)4内表面Fig.1MicrostructureofslagbySEM(a)1innersurface:(b)2innersurface;(c)3innersurface;(d)4innersurface是在金属表面及熔渣内表面间形成氧化膜,直到熔渣凝固为止.如果焊缝中存在对氧具有较大亲合力的合金元素,由于其选择性的氧化作用,所形成的中间层就是这些元素的氧化物,因此使得表1中熔渣内表面的CrO.含量明显高于熔渣外表面.从图la,b,C,d可以看出:四种熔渣内表面微观组织结构相差较大.因此熔渣化学成分对熔渣微观组织结构的影响较大.同时可以看出,熔渣内表面的微观组织形貌具有不均匀性.每种渣的内表面均是由三种相组成,即黑色基体相,白色第二相及白色球状相.其中白色第二相的数量最多,它组织结构的变化使熔渣的微观形貌产生变化.由表2可见,熔渣内表面的白色第二相与黑色基体相的成分比较接近,主要成分均是TiO:一SiO:一MnO—CrO..2,3.,4熔渣内表面的第二相分两种结构,两种结构中TiO及SiO相对含量发生变化. 白色球状相主要成分均为FeO.由表3可见,2熔渣内表面,TiO/siO约为3.1,TiO相对含量下降,而SiO含量增加,熔渣内表面第二相由两种组织构成,一种为树枝状组织,另■32材料工程/2003年1期一种为石花状组织l_2].3熔渣内表面TiO./siO:约为1.6,第二相为白色羽毛状组织及孤岛状组织组成,羽毛状组织细小,数量多,密度大,而孤岛状组织尺寸大,数量少.前者TiO:与siO:比例与基体相当,后者TiO.与SiO:比例下降至接近1.4,白色球状相数量相对较多,尺寸较大.4熔渣内表面TiO./SiO:约为1.2,熔渣第二相为连续的网络玻璃状组织,占第二相中较大的数量,网络分割的部位则为石花状组织. 白色球状相尺寸较大,数量较多.可以看到随TiO.比例的下降,第二相中粗大的棒束状组织逐渐细化成较小的树枝状组织,进而变成更细小的羽毛状组织;随siO比例的增加,第二相中细小的石花状组织逐渐变成尺寸较大的孤岛状组织,进而变成连续的网络状玻璃相组织.综上所述,熔渣的化学成分对熔渣的显微组织结构有较大的影响,在本研究的气保护不锈钢药芯焊丝的酸性渣系内,熔渣中TiO与SiO相对含量对熔渣的微观组织结构影响最大口].表2熔渣内表面各相化学成分(质量分数,)Table2Phasecompositionsintheinnersurfaceoftheslag(massfraction,%) TiO2siO2Mn0Cr2O3Zr02NaO2AI2O3K20CaOBi2o3MgOFeO1黑色基底相5O.987.5913.9714.424.O84.184.170.120.45O.O2O.000.02 白色第二相49.O28.1212.0714.534.544.973.920.070.480.00O.O20.00白色球状相10.000.470.007.591.433.172.070.000.000.000.0075.32黑色基底相40.3211.3215.784.3O5.526.734.920.700.310.04O.O50.28 白色树枝第二相39.4711.5817.4115.424.375.624.870.340.470.06O.000.39白色石花第二相2O.1819.7216.3016.015.926.094.360.450.490.05O.O10.42白色球状相10.820.120.008.181.542.980.980.000.000.000.0075.33黑色基底相31.4716.5218.6414.215.976.046.070.430.380.09O.000.17白色羽毛第二相28.9618.5619.0314.886.475.875.170.600.200.140.040.18白色岛状第二相29.982O.7217.513.983.986.625.250.530.300.170.010.12白色球状相8.210.420.009.872.044.O20.820.000.000.000.0074.54黑色基底相25.7324.9618.989.219.O27.014.010.740.250.090.000.01 白色网络第二相24.8822.8918.218.989.998.O95.860.680.230.160.000.03白色石花第二相26.432O.1717.658.628.898.634.940.690.310.040.010.01白色球状相11.530.380.009.120.082.091.240.000.000.000.0073.7表3四种熔渣内表面各相的显微组织特征Table3Characteristicofmicrostructureininnersurfaceoffourtypesofslag组织特征TiO2/SiO2主要组成物脱渣率%白色第二相白色球状相16l1粗大长棒束晶体尺寸较小数量较少TiO2一CrzO3一MnO—SiO2100TiO2一MnO—Cr203一SiO223.1{1粗大树枝+石花状晶体尺寸较小数量较少85.8TiO2一SiOz—MnO—CrzO3TiOz—MnO—SiOz—CrzO331.6{1细小羽毛+孤岛状晶体尺寸较大数量较多64.4TiO z—SiOz—MnO—CrzO3TiOz—SiOz—MnO—CrzO341.2l1连续网状玻璃相尺寸较大数量较多99.0TiO2一SiO2一MnO—Cr2O33.2熔渣化学成分和微观结构对脱渣性的影响熔渣脱渣性的本质就是熔渣质点内部结合力及熔渣与焊缝金属间结合力的综合体现.凡是减弱熔渣与金属间结合力及增强熔渣质点内部结合力的因素均会改善脱渣性.TiO:含量高的酸性渣趋向于形成棒束状及树枝状晶体组织,而siO:含量高的渣趋向于形成非晶体玻璃状组织.在钛型酸性渣系中,随着含钛量增加,熔渣中钛酸盐的含量也随着增加,且钛酸盐以FeTiO和crTiO等形式存在n].当熔渣中钛量较高时,熔渣的微观组织呈方向性较强的棒束状,见图1a.这种粗大的较长的棒束状组织的结晶方向垂直于等温线,而沿焊接方向并呈一定角度指向焊缝中心,因此增加了固态熔渣的纵向结合力,增加了熔渣质点间纵向内聚熔渣成分对气保护不锈钢药芯焊丝脱渣性影响的研究33 力,使熔渣整体脱离焊缝金属.同时由于晶粒粗大,增大了熔渣组织的不均匀性,从而使熔渣在结晶过程中产生较大的内应力而使熔渣产生横向裂纹,使熔渣成段脱落,轻碰即可脱离焊缝金属,脱渣性极佳.随着熔渣中TiO含量的减少,SiO含量的增加,由于SiO.趋向于形成玻璃状非晶体组织,打乱了TiO棒束状组织的方向性,并使粗大组织细化成较小的树枝状晶体,进一步细化成细小的羽毛状组织,同时由于SiO.量还不足以形成连续的网络玻璃状组织,从而形成了图1b的树枝状晶体组织和石花状组织及图1c的羽毛状组织和孤岛状组织.由于这些细小组织交叉分布,方向性差,熔渣内部结合力较弱,焊后渣壳自身先破碎,部分渣在冷却过程先蹦离焊道, 另一部分渣则粘在焊道上,造成严重的粘渣.因此这一成分范围的熔渣脱渣性极差.随着熔渣中TiO.量继续下降,SiO.含量继续增加,直到SiO.含量足够多以形成连续的网状玻璃相组织,如图1d,这时熔渣整体性强,内部结合力较大, 渣壳密实,熔渣整体脱离焊缝金属,脱渣性较好.分析表3中熔渣内表面白色球状相对脱渣率的影响可以认为]:白色球状相的主要成分是FeO,而FeO造成粘渣则主要是因为FeO的品格结构为体心立方晶格,FeO搭建在焊缝金属中的a—Fe立方晶格上,从而使熔渣牢固地粘在焊缝表面上造成粘渣.综上所述,当熔渣内表面TiO./SiO.约为6.0时,熔渣内表面第二相为粗大的棒束状组织,熔渣的脱渣性最好,脱渣率达100.焊接工艺试验中发现,这种成分熔渣焊后渣壳整体脱落,并伴有横向裂纹, 一碰即脱.TiO./SiO:在一定范围内变化,熔渣微观组织均为粗大的棒束状,脱渣性好,当TiO:/SiO约为3.1时,熔渣内表面第二相为树枝状晶和石花状晶双相组织,脱渣性不好,熔渣不能整体脱落,有部分微小粘渣.当TiO:/SiO约为1.6时,熔渣内表面第二相为细小羽毛状晶和孤岛状晶双相组织,脱渣性最差,当TiO/SiO:约为1.2时,熔渣内表面为连续的网络状玻璃状组织,熔渣整体脱落,脱渣性好,脱渣率达999/6.四种熔渣的白色球状相对脱渣率的影响无规律性.1熔渣与2熔渣的白色球状相均为尺寸较小,数量较少,但两者脱渣率有差别;3熔渣与4熔渣的白色球状相均是尺寸较大,数量较多,但两者的脱渣率却差别较大.熔渣质点间结合力足够大,以使熔渣能整体或成段脱离焊缝金属是脱渣性优良的关键,否则,熔渣自身先破碎,产生蹦渣,从而造成粘渣,使熔渣的脱渣性恶化,白色球状相对脱渣性的影响要视熔渣整体结构而定,熔渣整体性强内聚力大, 白色球状相对脱渣性影响不大,反之熔渣整体性差则白色球状相对脱渣不利,产生粘渣.4结论(1)熔渣内外表面化学成分差别大,其原因一方面是由于脱氧产物的密度小于液态焊缝金属的密度, 氧化物在液态金属及液态熔渣中上浮;另一方面是由于焊缝中存在对氧具有较大亲合力的合金元素,发生选择性的氧化作用,在金属表面及熔渣内表面间形成氧化膜.(2)熔渣化学成分对熔渣的外表面微观组织形貌影响不大,熔渣的外表面均为等轴状晶体;而对熔渣内表面微观组织结构影响较大.熔渣内表面的微观组织形貌具有不均匀性.每种渣的内表面均是由三种相组成,即黑色基体相,白色第二相及白色球状相. (3)TiO./SiO.比值是通过影响熔渣微观组织结构而影响脱渣性的.TiO./SiO.从6.0下降到1.2,熔渣内表面的显微组织结构发生较大的变化.当TiO./ SiO.约为6.0,熔渣内表面第二相为具有较强方向性的粗大的树枝状组织,密度大,数量多,而白色球状相则尺寸小,脱渣性最好.而当TiO/Si0从1.6到3.2变化时时,熔渣为细小,交错,不连续的羽毛晶,针状晶及孤岛状组织,熔渣内部质点问结合力弱,整体性差,脱渣性差.当TiO./SiO.约为1.2时,熔渣内表面为连续的网络状玻璃状组织,熔渣整体脱落,脱渣性好,脱渣率达99.参考文献[1]孟庆森,钛铁矿焊条脱渣性改善的研究[J],焊接,1993(7):2—5.[2]PokhodayaI.K.Theinteractionofmoltenslagwithweldpool metalandthepeculiaritiesoftheslagcrustadhesionmechanism[A].In:weldpoolchemicalmetallurgyandmeta[C].London: BritishWeldingSociety.1980133—39.[3]LiZhuoxin.Studyoneffectsofphysicalandchemicalproperties ofmeltingslagondetachabilityofSSFCE(Chinese)[J].Journal ofMechanicalEngineering.1996,9,(3):254 (260)[4]MasaharuKumagai,eta1.Fundamentalstudiesonslagadher—encetosubmergedarcweldment[J].TransofJwS.1986,17(2):7—11.[5]LiZhuoxin.Studyonslagdetachabilityandstickslagmechanism ofSSFCE[J].TransactionsofTianjinUniversity,1997(1):79—84.基金项目:北京市优秀人才项目(1090301—02);北京市自然科学基金(2022006)资助项目收稿日期:2002—09—13;修改日期:2002—11-O1作者简介:栗卓新(1963一),男,博士,北京工业大学材料学院副教授. 研究方向:高效,低成本,自动化的焊接技术..承担并完成国家及省部级十多项科研课题,发表论文四十多篇,联系地址:北京工业大学材料学院(100022).。
电渣重熔的特点及发展多年来电渣冶金工作者做了全面、系统的研究,一致认为电渣重熔设备简单、操作方便、铸锭表面光洁、热塑性好、成材率高、具有很强的竞争力。
电渣重熔以其特殊的工艺过程和熔炼结晶方式具有其它生产工艺所不能替代的优越性,因而得到冶金工作者的广泛重视。
1它的优越性具体概括如下:1.1细化晶粒由于结晶器及水冷底板的强冷却作用,熔炼过程中,晶粒来不及长大,在钢锭内部呈细小均匀分布,起到改善钢锭内部组织的作用。
1.2减少钢中非金属杂质及夹杂在重熔过程中金属液滴是一滴一滴通过一定厚度的熔渣层,与呈镜面的金属液相比,金属液滴的比表面(单位重量占表面积)要大几百倍,增加了钢一渣界面积,熔渣吸附金属中的非金属杂质和夹杂的能力大大增加,同时钢中的杂质在通过渣层的过程中,按分配定律重新分配,使得钢液中杂质的浓度降低,起到渣洗的作用。
1.3改善钢的热加工性能由于电渣重熔后,钢锭晶粒变得细小均匀,钢锭的组织变得致密,钢锭表面光洁,同时钢中杂质减少,在热加工过程中应力集中和裂纹源大大减少,因此锻造过程中易产生的裂纹和开裂可以避免,由此可以提高钢锭的加工成材率。
1.4过程可控性好对产品的化学成分、夹杂物性质及形态、结晶方向、枝晶间距、显微偏析、碳化物颗粒度等均可以不同程度予以控制,可控制参量少,外围检测准确,便于实现微机闭环控制。
1.5减少组织的宏观偏析和微观偏析。
1.6可控制重熔气氛,减少氧、氮、氢的侵人。
1.7改善工具钢和模具钢中碳化物分布。
1.8可以生产超大型钢锭。
从以上可以看出电渣重熔技术在现代工业生产中有着不可取代的重要性。
在现代工业材质生产中,电渣重熔的优点得到了充分的发挥和利用。
2电渣重熔的不足概括如下:(1)灵活性不足。
电渣重熔只能将成分一定的钢材重熔,不能改变钢材的成分。
(2)生产成本高。
电渣重熔过程中,电耗非常大,又由于是二次精炼,大大增加了钢材的生产成本。
(3)氟的污染。
电渣渣料中含较多的CaF会逸出HF、SiF4、SF6等有害气体,危害工人健康,造成环境污染。
电渣炉重熔技术的发展趋势及在高品质钢锭生产中的应用摘要:本文介绍了电渣炉重熔技术的种类及发展趋势,研究了电渣炉重熔技术在高品质钢锭生产中的应用情况,结果表明:电渣炉重熔在大、中型锻件所需的钢锭生产中,处于优势地位。
关键词:电渣炉;重熔技术;钢锭The Application of Remelting Technology of Electric Slag Surnace in Production of High-quality Steel IngotZhao qiangsong1,Zhang jingchao1,Guo ziqiang1(1. No.6 Institute of Project Planning and Research of Engineering Group Co.,Ltd,Zhengzhou 450007,Henan,China)Abstract:The types of remelting technology of electric slag surnace and the trend of development were introduced.The application of remelting technology of electric slag surnace in high-quality steel ingot was studied. Experimental results show that remelting technology of electric slag surnace is dominant in steel ingot demanded for large and medium forge piece.Key words:electric slag surnace;remelting technology; steel ingot电渣炉重熔技术是对钢锭有更高品质要求时采用的一种熔炼设备,在冶金系统的特殊钢厂比较常见,而在机械行业以前很少用到这种熔炼设备,近些年在机械行业的应用是越来越多,随着国家经济的大发展,电力、冶金、交通、石化、基础机械和国防等行业对高品质钢锭的需要会越来越大。